dri: Introduce SWAP_METHOD tokens
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "brw_state.h"
41 #include "compiler/nir/nir.h"
42
43 #include "utils.h"
44 #include "util/xmlpool.h"
45
46 #ifndef DRM_FORMAT_MOD_INVALID
47 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
48 #endif
49
50 #ifndef DRM_FORMAT_MOD_LINEAR
51 #define DRM_FORMAT_MOD_LINEAR 0
52 #endif
53
54 static const __DRIconfigOptionsExtension brw_config_options = {
55 .base = { __DRI_CONFIG_OPTIONS, 1 },
56 .xml =
57 DRI_CONF_BEGIN
58 DRI_CONF_SECTION_PERFORMANCE
59 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
60 * DRI_CONF_BO_REUSE_ALL
61 */
62 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
63 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
64 DRI_CONF_ENUM(0, "Disable buffer object reuse")
65 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
66 DRI_CONF_DESC_END
67 DRI_CONF_OPT_END
68 DRI_CONF_MESA_NO_ERROR("false")
69 DRI_CONF_SECTION_END
70
71 DRI_CONF_SECTION_QUALITY
72 DRI_CONF_FORCE_S3TC_ENABLE("false")
73
74 DRI_CONF_PRECISE_TRIG("false")
75
76 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
77 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
78 "given integer. If negative, then do not clamp.")
79 DRI_CONF_OPT_END
80 DRI_CONF_SECTION_END
81
82 DRI_CONF_SECTION_DEBUG
83 DRI_CONF_NO_RAST("false")
84 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
85 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
86 DRI_CONF_DISABLE_THROTTLING("false")
87 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
88 DRI_CONF_FORCE_GLSL_VERSION(0)
89 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
90 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
91 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
92 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
93 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
94 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
95 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
96
97 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
98 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
99 DRI_CONF_OPT_END
100 DRI_CONF_SECTION_END
101
102 DRI_CONF_SECTION_MISCELLANEOUS
103 DRI_CONF_GLSL_ZERO_INIT("false")
104 DRI_CONF_SECTION_END
105 DRI_CONF_END
106 };
107
108 #include "intel_batchbuffer.h"
109 #include "intel_buffers.h"
110 #include "brw_bufmgr.h"
111 #include "intel_fbo.h"
112 #include "intel_mipmap_tree.h"
113 #include "intel_screen.h"
114 #include "intel_tex.h"
115 #include "intel_image.h"
116
117 #include "brw_context.h"
118
119 #include "i915_drm.h"
120
121 /**
122 * For debugging purposes, this returns a time in seconds.
123 */
124 double
125 get_time(void)
126 {
127 struct timespec tp;
128
129 clock_gettime(CLOCK_MONOTONIC, &tp);
130
131 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
132 }
133
134 static const __DRItexBufferExtension intelTexBufferExtension = {
135 .base = { __DRI_TEX_BUFFER, 3 },
136
137 .setTexBuffer = intelSetTexBuffer,
138 .setTexBuffer2 = intelSetTexBuffer2,
139 .releaseTexBuffer = NULL,
140 };
141
142 static void
143 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
144 __DRIdrawable *dPriv,
145 unsigned flags,
146 enum __DRI2throttleReason reason)
147 {
148 struct brw_context *brw = cPriv->driverPrivate;
149
150 if (!brw)
151 return;
152
153 struct gl_context *ctx = &brw->ctx;
154
155 FLUSH_VERTICES(ctx, 0);
156
157 if (flags & __DRI2_FLUSH_DRAWABLE)
158 intel_resolve_for_dri2_flush(brw, dPriv);
159
160 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
161 brw->need_swap_throttle = true;
162 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
163 brw->need_flush_throttle = true;
164
165 intel_batchbuffer_flush(brw);
166 }
167
168 /**
169 * Provides compatibility with loaders that only support the older (version
170 * 1-3) flush interface.
171 *
172 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
173 */
174 static void
175 intel_dri2_flush(__DRIdrawable *drawable)
176 {
177 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
178 __DRI2_FLUSH_DRAWABLE,
179 __DRI2_THROTTLE_SWAPBUFFER);
180 }
181
182 static const struct __DRI2flushExtensionRec intelFlushExtension = {
183 .base = { __DRI2_FLUSH, 4 },
184
185 .flush = intel_dri2_flush,
186 .invalidate = dri2InvalidateDrawable,
187 .flush_with_flags = intel_dri2_flush_with_flags,
188 };
189
190 static const struct intel_image_format intel_image_formats[] = {
191 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
192 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
193
194 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
195 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
196
197 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
198 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
199
200 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
201 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
202
203 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
204 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
205
206 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
207 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
208
209 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
210 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
211
212 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
213 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
214
215 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
216 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
217
218 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
219 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
220
221 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
222 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
223
224 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
225 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
226 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
227 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
228
229 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
230 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
231 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
232 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
233
234 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
235 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
236 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
237 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
238
239 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
240 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
241 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
242 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
243
244 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
245 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
246 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
247 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
248
249 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
250 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
251 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
252 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
253
254 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
255 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
256 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
257 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
258
259 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
260 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
261 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
262 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
263
264 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
265 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
266 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
267 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
268
269 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
270 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
271 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
272 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
273
274 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
275 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
276 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
277
278 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
279 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
280 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
281
282 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
283 * and treat them as planar buffers in the compositors.
284 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
285 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
286 * clusters and places pairs and places U into the G component and
287 * V into A. This lets the texture sampler interpolate the Y
288 * components correctly when sampling from plane 0, and interpolate
289 * U and V correctly when sampling from plane 1. */
290 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
291 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
292 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
293 { __DRI_IMAGE_FOURCC_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
294 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
295 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
296 };
297
298 static const struct {
299 uint64_t modifier;
300 unsigned since_gen;
301 } supported_modifiers[] = {
302 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
303 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
304 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
305 };
306
307 static bool
308 modifier_is_supported(const struct gen_device_info *devinfo,
309 uint64_t modifier)
310 {
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
314 if (supported_modifiers[i].modifier != modifier)
315 continue;
316
317 return supported_modifiers[i].since_gen <= devinfo->gen;
318 }
319
320 return false;
321 }
322
323 static uint64_t
324 tiling_to_modifier(uint32_t tiling)
325 {
326 static const uint64_t map[] = {
327 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
328 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
329 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
330 };
331
332 assert(tiling < ARRAY_SIZE(map));
333
334 return map[tiling];
335 }
336
337 static void
338 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
339 {
340 uint32_t tiling, swizzle;
341 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
342
343 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
344 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
345 func, image->offset);
346 }
347 }
348
349 static const struct intel_image_format *
350 intel_image_format_lookup(int fourcc)
351 {
352 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
353 if (intel_image_formats[i].fourcc == fourcc)
354 return &intel_image_formats[i];
355 }
356
357 return NULL;
358 }
359
360 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
361 {
362 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
363 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
364 *fourcc = intel_image_formats[i].fourcc;
365 return true;
366 }
367 }
368 return false;
369 }
370
371 static __DRIimage *
372 intel_allocate_image(struct intel_screen *screen, int dri_format,
373 void *loaderPrivate)
374 {
375 __DRIimage *image;
376
377 image = calloc(1, sizeof *image);
378 if (image == NULL)
379 return NULL;
380
381 image->screen = screen;
382 image->dri_format = dri_format;
383 image->offset = 0;
384
385 image->format = driImageFormatToGLFormat(dri_format);
386 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
387 image->format == MESA_FORMAT_NONE) {
388 free(image);
389 return NULL;
390 }
391
392 image->internal_format = _mesa_get_format_base_format(image->format);
393 image->data = loaderPrivate;
394
395 return image;
396 }
397
398 /**
399 * Sets up a DRIImage structure to point to a slice out of a miptree.
400 */
401 static void
402 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
403 struct intel_mipmap_tree *mt, GLuint level,
404 GLuint zoffset)
405 {
406 intel_miptree_make_shareable(brw, mt);
407
408 intel_miptree_check_level_layer(mt, level, zoffset);
409
410 image->width = minify(mt->surf.phys_level0_sa.width,
411 level - mt->first_level);
412 image->height = minify(mt->surf.phys_level0_sa.height,
413 level - mt->first_level);
414 image->pitch = mt->surf.row_pitch;
415
416 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
417 &image->tile_x,
418 &image->tile_y);
419
420 brw_bo_unreference(image->bo);
421 image->bo = mt->bo;
422 brw_bo_reference(mt->bo);
423 }
424
425 static __DRIimage *
426 intel_create_image_from_name(__DRIscreen *dri_screen,
427 int width, int height, int format,
428 int name, int pitch, void *loaderPrivate)
429 {
430 struct intel_screen *screen = dri_screen->driverPrivate;
431 __DRIimage *image;
432 int cpp;
433
434 image = intel_allocate_image(screen, format, loaderPrivate);
435 if (image == NULL)
436 return NULL;
437
438 if (image->format == MESA_FORMAT_NONE)
439 cpp = 1;
440 else
441 cpp = _mesa_get_format_bytes(image->format);
442
443 image->width = width;
444 image->height = height;
445 image->pitch = pitch * cpp;
446 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
447 name);
448 if (!image->bo) {
449 free(image);
450 return NULL;
451 }
452 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
453
454 return image;
455 }
456
457 static __DRIimage *
458 intel_create_image_from_renderbuffer(__DRIcontext *context,
459 int renderbuffer, void *loaderPrivate)
460 {
461 __DRIimage *image;
462 struct brw_context *brw = context->driverPrivate;
463 struct gl_context *ctx = &brw->ctx;
464 struct gl_renderbuffer *rb;
465 struct intel_renderbuffer *irb;
466
467 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
468 if (!rb) {
469 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
470 return NULL;
471 }
472
473 irb = intel_renderbuffer(rb);
474 intel_miptree_make_shareable(brw, irb->mt);
475 image = calloc(1, sizeof *image);
476 if (image == NULL)
477 return NULL;
478
479 image->internal_format = rb->InternalFormat;
480 image->format = rb->Format;
481 image->modifier = tiling_to_modifier(
482 isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
483 image->offset = 0;
484 image->data = loaderPrivate;
485 brw_bo_unreference(image->bo);
486 image->bo = irb->mt->bo;
487 brw_bo_reference(irb->mt->bo);
488 image->width = rb->Width;
489 image->height = rb->Height;
490 image->pitch = irb->mt->surf.row_pitch;
491 image->dri_format = driGLFormatToImageFormat(image->format);
492 image->has_depthstencil = irb->mt->stencil_mt? true : false;
493
494 rb->NeedsFinishRenderTexture = true;
495 return image;
496 }
497
498 static __DRIimage *
499 intel_create_image_from_texture(__DRIcontext *context, int target,
500 unsigned texture, int zoffset,
501 int level,
502 unsigned *error,
503 void *loaderPrivate)
504 {
505 __DRIimage *image;
506 struct brw_context *brw = context->driverPrivate;
507 struct gl_texture_object *obj;
508 struct intel_texture_object *iobj;
509 GLuint face = 0;
510
511 obj = _mesa_lookup_texture(&brw->ctx, texture);
512 if (!obj || obj->Target != target) {
513 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
514 return NULL;
515 }
516
517 if (target == GL_TEXTURE_CUBE_MAP)
518 face = zoffset;
519
520 _mesa_test_texobj_completeness(&brw->ctx, obj);
521 iobj = intel_texture_object(obj);
522 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
523 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
524 return NULL;
525 }
526
527 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
528 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
529 return NULL;
530 }
531
532 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
533 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
534 return NULL;
535 }
536 image = calloc(1, sizeof *image);
537 if (image == NULL) {
538 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
539 return NULL;
540 }
541
542 image->internal_format = obj->Image[face][level]->InternalFormat;
543 image->format = obj->Image[face][level]->TexFormat;
544 image->modifier = tiling_to_modifier(
545 isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
546 image->data = loaderPrivate;
547 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
548 image->dri_format = driGLFormatToImageFormat(image->format);
549 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
550 if (image->dri_format == MESA_FORMAT_NONE) {
551 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
552 free(image);
553 return NULL;
554 }
555
556 *error = __DRI_IMAGE_ERROR_SUCCESS;
557 return image;
558 }
559
560 static void
561 intel_destroy_image(__DRIimage *image)
562 {
563 brw_bo_unreference(image->bo);
564 free(image);
565 }
566
567 enum modifier_priority {
568 MODIFIER_PRIORITY_INVALID = 0,
569 MODIFIER_PRIORITY_LINEAR,
570 MODIFIER_PRIORITY_X,
571 MODIFIER_PRIORITY_Y,
572 };
573
574 const uint64_t priority_to_modifier[] = {
575 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
576 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
577 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
578 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
579 };
580
581 static uint64_t
582 select_best_modifier(struct gen_device_info *devinfo,
583 const uint64_t *modifiers,
584 const unsigned count)
585 {
586 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
587
588 for (int i = 0; i < count; i++) {
589 if (!modifier_is_supported(devinfo, modifiers[i]))
590 continue;
591
592 switch (modifiers[i]) {
593 case I915_FORMAT_MOD_Y_TILED:
594 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
595 break;
596 case I915_FORMAT_MOD_X_TILED:
597 prio = MAX2(prio, MODIFIER_PRIORITY_X);
598 break;
599 case DRM_FORMAT_MOD_LINEAR:
600 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
601 break;
602 case DRM_FORMAT_MOD_INVALID:
603 default:
604 break;
605 }
606 }
607
608 return priority_to_modifier[prio];
609 }
610
611 static __DRIimage *
612 intel_create_image_common(__DRIscreen *dri_screen,
613 int width, int height, int format,
614 unsigned int use,
615 const uint64_t *modifiers,
616 unsigned count,
617 void *loaderPrivate)
618 {
619 __DRIimage *image;
620 struct intel_screen *screen = dri_screen->driverPrivate;
621 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
622 bool ok;
623
624 /* Callers of this may specify a modifier, or a dri usage, but not both. The
625 * newer modifier interface deprecates the older usage flags newer modifier
626 * interface deprecates the older usage flags.
627 */
628 assert(!(use && count));
629
630 if (use & __DRI_IMAGE_USE_CURSOR) {
631 if (width != 64 || height != 64)
632 return NULL;
633 modifier = DRM_FORMAT_MOD_LINEAR;
634 }
635
636 if (use & __DRI_IMAGE_USE_LINEAR)
637 modifier = DRM_FORMAT_MOD_LINEAR;
638
639 if (modifier == DRM_FORMAT_MOD_INVALID) {
640 if (modifiers) {
641 /* User requested specific modifiers */
642 modifier = select_best_modifier(&screen->devinfo, modifiers, count);
643 if (modifier == DRM_FORMAT_MOD_INVALID)
644 return NULL;
645 } else {
646 /* Historically, X-tiled was the default, and so lack of modifier means
647 * X-tiled.
648 */
649 modifier = I915_FORMAT_MOD_X_TILED;
650 }
651 }
652
653 image = intel_allocate_image(screen, format, loaderPrivate);
654 if (image == NULL)
655 return NULL;
656
657 const struct isl_drm_modifier_info *mod_info =
658 isl_drm_modifier_get_info(modifier);
659
660 struct isl_surf surf;
661 ok = isl_surf_init(&screen->isl_dev, &surf,
662 .dim = ISL_SURF_DIM_2D,
663 .format = brw_isl_format_for_mesa_format(image->format),
664 .width = width,
665 .height = height,
666 .depth = 1,
667 .levels = 1,
668 .array_len = 1,
669 .samples = 1,
670 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
671 ISL_SURF_USAGE_TEXTURE_BIT |
672 ISL_SURF_USAGE_STORAGE_BIT,
673 .tiling_flags = (1 << mod_info->tiling));
674 assert(ok);
675 if (!ok) {
676 free(image);
677 return NULL;
678 }
679
680 /* We request that the bufmgr zero because, if a buffer gets re-used from
681 * the pool, we don't want to leak random garbage from our process to some
682 * other.
683 */
684 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image", surf.size,
685 isl_tiling_to_i915_tiling(mod_info->tiling),
686 surf.row_pitch, BO_ALLOC_ZEROED);
687 if (image->bo == NULL) {
688 free(image);
689 return NULL;
690 }
691 image->width = width;
692 image->height = height;
693 image->pitch = surf.row_pitch;
694 image->modifier = modifier;
695
696 return image;
697 }
698
699 static __DRIimage *
700 intel_create_image(__DRIscreen *dri_screen,
701 int width, int height, int format,
702 unsigned int use,
703 void *loaderPrivate)
704 {
705 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
706 loaderPrivate);
707 }
708
709 static __DRIimage *
710 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
711 int width, int height, int format,
712 const uint64_t *modifiers,
713 const unsigned count,
714 void *loaderPrivate)
715 {
716 return intel_create_image_common(dri_screen, width, height, format, 0,
717 modifiers, count, loaderPrivate);
718 }
719
720 static GLboolean
721 intel_query_image(__DRIimage *image, int attrib, int *value)
722 {
723 switch (attrib) {
724 case __DRI_IMAGE_ATTRIB_STRIDE:
725 *value = image->pitch;
726 return true;
727 case __DRI_IMAGE_ATTRIB_HANDLE:
728 *value = image->bo->gem_handle;
729 return true;
730 case __DRI_IMAGE_ATTRIB_NAME:
731 return !brw_bo_flink(image->bo, (uint32_t *) value);
732 case __DRI_IMAGE_ATTRIB_FORMAT:
733 *value = image->dri_format;
734 return true;
735 case __DRI_IMAGE_ATTRIB_WIDTH:
736 *value = image->width;
737 return true;
738 case __DRI_IMAGE_ATTRIB_HEIGHT:
739 *value = image->height;
740 return true;
741 case __DRI_IMAGE_ATTRIB_COMPONENTS:
742 if (image->planar_format == NULL)
743 return false;
744 *value = image->planar_format->components;
745 return true;
746 case __DRI_IMAGE_ATTRIB_FD:
747 return !brw_bo_gem_export_to_prime(image->bo, value);
748 case __DRI_IMAGE_ATTRIB_FOURCC:
749 return intel_lookup_fourcc(image->dri_format, value);
750 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
751 *value = 1;
752 return true;
753 case __DRI_IMAGE_ATTRIB_OFFSET:
754 *value = image->offset;
755 return true;
756 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
757 *value = (image->modifier & 0xffffffff);
758 return true;
759 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
760 *value = ((image->modifier >> 32) & 0xffffffff);
761 return true;
762
763 default:
764 return false;
765 }
766 }
767
768 static __DRIimage *
769 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
770 {
771 __DRIimage *image;
772
773 image = calloc(1, sizeof *image);
774 if (image == NULL)
775 return NULL;
776
777 brw_bo_reference(orig_image->bo);
778 image->bo = orig_image->bo;
779 image->internal_format = orig_image->internal_format;
780 image->planar_format = orig_image->planar_format;
781 image->dri_format = orig_image->dri_format;
782 image->format = orig_image->format;
783 image->modifier = orig_image->modifier;
784 image->offset = orig_image->offset;
785 image->width = orig_image->width;
786 image->height = orig_image->height;
787 image->pitch = orig_image->pitch;
788 image->tile_x = orig_image->tile_x;
789 image->tile_y = orig_image->tile_y;
790 image->has_depthstencil = orig_image->has_depthstencil;
791 image->data = loaderPrivate;
792
793 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
794 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
795
796 return image;
797 }
798
799 static GLboolean
800 intel_validate_usage(__DRIimage *image, unsigned int use)
801 {
802 if (use & __DRI_IMAGE_USE_CURSOR) {
803 if (image->width != 64 || image->height != 64)
804 return GL_FALSE;
805 }
806
807 return GL_TRUE;
808 }
809
810 static __DRIimage *
811 intel_create_image_from_names(__DRIscreen *dri_screen,
812 int width, int height, int fourcc,
813 int *names, int num_names,
814 int *strides, int *offsets,
815 void *loaderPrivate)
816 {
817 const struct intel_image_format *f = NULL;
818 __DRIimage *image;
819 int i, index;
820
821 if (dri_screen == NULL || names == NULL || num_names != 1)
822 return NULL;
823
824 f = intel_image_format_lookup(fourcc);
825 if (f == NULL)
826 return NULL;
827
828 image = intel_create_image_from_name(dri_screen, width, height,
829 __DRI_IMAGE_FORMAT_NONE,
830 names[0], strides[0],
831 loaderPrivate);
832
833 if (image == NULL)
834 return NULL;
835
836 image->planar_format = f;
837 for (i = 0; i < f->nplanes; i++) {
838 index = f->planes[i].buffer_index;
839 image->offsets[index] = offsets[index];
840 image->strides[index] = strides[index];
841 }
842
843 return image;
844 }
845
846 static __DRIimage *
847 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
848 int width, int height, int fourcc,
849 uint64_t modifier, int *fds, int num_fds,
850 int *strides, int *offsets,
851 void *loaderPrivate)
852 {
853 struct intel_screen *screen = dri_screen->driverPrivate;
854 const struct intel_image_format *f;
855 __DRIimage *image;
856 int i, index;
857 bool ok;
858
859 if (fds == NULL || num_fds < 1)
860 return NULL;
861
862 f = intel_image_format_lookup(fourcc);
863 if (f == NULL)
864 return NULL;
865
866 if (modifier != DRM_FORMAT_MOD_INVALID &&
867 !modifier_is_supported(&screen->devinfo, modifier))
868 return NULL;
869
870 if (f->nplanes == 1)
871 image = intel_allocate_image(screen, f->planes[0].dri_format,
872 loaderPrivate);
873 else
874 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
875 loaderPrivate);
876
877 if (image == NULL)
878 return NULL;
879
880 image->width = width;
881 image->height = height;
882 image->pitch = strides[0];
883
884 image->planar_format = f;
885
886 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
887 if (image->bo == NULL) {
888 free(image);
889 return NULL;
890 }
891
892 /* We only support all planes from the same bo.
893 * brw_bo_gem_create_from_prime() should return the same pointer for all
894 * fds received here */
895 for (i = 1; i < num_fds; i++) {
896 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
897 brw_bo_unreference(aux);
898 if (aux != image->bo) {
899 brw_bo_unreference(image->bo);
900 free(image);
901 return NULL;
902 }
903 }
904
905 if (modifier != DRM_FORMAT_MOD_INVALID)
906 image->modifier = modifier;
907 else
908 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
909
910 int size = 0;
911 for (i = 0; i < f->nplanes; i++) {
912 index = f->planes[i].buffer_index;
913 image->offsets[index] = offsets[index];
914 image->strides[index] = strides[index];
915
916 const struct isl_drm_modifier_info *mod_info =
917 isl_drm_modifier_get_info(image->modifier);
918
919 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
920
921 struct isl_surf surf;
922 ok = isl_surf_init(&screen->isl_dev, &surf,
923 .dim = ISL_SURF_DIM_2D,
924 .format = brw_isl_format_for_mesa_format(format),
925 .width = image->width >> f->planes[i].width_shift,
926 .height = image->height >> f->planes[i].height_shift,
927 .depth = 1,
928 .levels = 1,
929 .array_len = 1,
930 .samples = 1,
931 .row_pitch = strides[index],
932 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
933 ISL_SURF_USAGE_TEXTURE_BIT |
934 ISL_SURF_USAGE_STORAGE_BIT,
935 .tiling_flags = (1 << mod_info->tiling));
936 if (!ok) {
937 brw_bo_unreference(image->bo);
938 free(image);
939 return NULL;
940 }
941
942 const int end = offsets[index] + surf.size;
943 if (size < end)
944 size = end;
945 }
946
947 /* Check that the requested image actually fits within the BO. 'size'
948 * is already relative to the offsets, so we don't need to add that. */
949 if (image->bo->size == 0) {
950 image->bo->size = size;
951 } else if (size > image->bo->size) {
952 brw_bo_unreference(image->bo);
953 free(image);
954 return NULL;
955 }
956
957 if (f->nplanes == 1) {
958 image->offset = image->offsets[0];
959 intel_image_warn_if_unaligned(image, __func__);
960 }
961
962 return image;
963 }
964
965 static __DRIimage *
966 intel_create_image_from_fds(__DRIscreen *dri_screen,
967 int width, int height, int fourcc,
968 int *fds, int num_fds, int *strides, int *offsets,
969 void *loaderPrivate)
970 {
971 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
972 DRM_FORMAT_MOD_INVALID,
973 fds, num_fds, strides, offsets,
974 loaderPrivate);
975 }
976
977 static __DRIimage *
978 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
979 int width, int height,
980 int fourcc, uint64_t modifier,
981 int *fds, int num_fds,
982 int *strides, int *offsets,
983 enum __DRIYUVColorSpace yuv_color_space,
984 enum __DRISampleRange sample_range,
985 enum __DRIChromaSiting horizontal_siting,
986 enum __DRIChromaSiting vertical_siting,
987 unsigned *error,
988 void *loaderPrivate)
989 {
990 __DRIimage *image;
991 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
992
993 if (!f) {
994 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
995 return NULL;
996 }
997
998 image = intel_create_image_from_fds_common(dri_screen, width, height,
999 fourcc, modifier,
1000 fds, num_fds, strides, offsets,
1001 loaderPrivate);
1002
1003 /*
1004 * Invalid parameters and any inconsistencies between are assumed to be
1005 * checked by the caller. Therefore besides unsupported formats one can fail
1006 * only in allocation.
1007 */
1008 if (!image) {
1009 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1010 return NULL;
1011 }
1012
1013 image->dma_buf_imported = true;
1014 image->yuv_color_space = yuv_color_space;
1015 image->sample_range = sample_range;
1016 image->horizontal_siting = horizontal_siting;
1017 image->vertical_siting = vertical_siting;
1018
1019 *error = __DRI_IMAGE_ERROR_SUCCESS;
1020 return image;
1021 }
1022
1023 static __DRIimage *
1024 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1025 int width, int height, int fourcc,
1026 int *fds, int num_fds,
1027 int *strides, int *offsets,
1028 enum __DRIYUVColorSpace yuv_color_space,
1029 enum __DRISampleRange sample_range,
1030 enum __DRIChromaSiting horizontal_siting,
1031 enum __DRIChromaSiting vertical_siting,
1032 unsigned *error,
1033 void *loaderPrivate)
1034 {
1035 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1036 fourcc, DRM_FORMAT_MOD_INVALID,
1037 fds, num_fds, strides, offsets,
1038 yuv_color_space,
1039 sample_range,
1040 horizontal_siting,
1041 vertical_siting,
1042 error,
1043 loaderPrivate);
1044 }
1045
1046 static GLboolean
1047 intel_query_dma_buf_formats(__DRIscreen *screen, int max,
1048 int *formats, int *count)
1049 {
1050 int i, j = 0;
1051
1052 if (max == 0) {
1053 *count = ARRAY_SIZE(intel_image_formats) - 1; /* not SARGB */
1054 return true;
1055 }
1056
1057 for (i = 0; i < (ARRAY_SIZE(intel_image_formats)) && j < max; i++) {
1058 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888)
1059 continue;
1060 formats[j++] = intel_image_formats[i].fourcc;
1061 }
1062
1063 *count = j;
1064 return true;
1065 }
1066
1067 static GLboolean
1068 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1069 uint64_t *modifiers,
1070 unsigned int *external_only,
1071 int *count)
1072 {
1073 struct intel_screen *screen = _screen->driverPrivate;
1074 const struct intel_image_format *f;
1075 int num_mods = 0, i;
1076
1077 f = intel_image_format_lookup(fourcc);
1078 if (f == NULL)
1079 return false;
1080
1081 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1082 uint64_t modifier = supported_modifiers[i].modifier;
1083 if (!modifier_is_supported(&screen->devinfo, modifier))
1084 continue;
1085
1086 num_mods++;
1087 if (max == 0)
1088 continue;
1089
1090 modifiers[num_mods - 1] = modifier;
1091 if (num_mods >= max)
1092 break;
1093 }
1094
1095 if (external_only != NULL) {
1096 for (i = 0; i < num_mods && i < max; i++) {
1097 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1098 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1099 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV) {
1100 external_only[i] = GL_TRUE;
1101 }
1102 else {
1103 external_only[i] = GL_FALSE;
1104 }
1105 }
1106 }
1107
1108 *count = num_mods;
1109 return true;
1110 }
1111
1112 static __DRIimage *
1113 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1114 {
1115 int width, height, offset, stride, dri_format, index;
1116 const struct intel_image_format *f;
1117 __DRIimage *image;
1118
1119 if (parent == NULL || parent->planar_format == NULL)
1120 return NULL;
1121
1122 f = parent->planar_format;
1123
1124 if (plane >= f->nplanes)
1125 return NULL;
1126
1127 width = parent->width >> f->planes[plane].width_shift;
1128 height = parent->height >> f->planes[plane].height_shift;
1129 dri_format = f->planes[plane].dri_format;
1130 index = f->planes[plane].buffer_index;
1131 offset = parent->offsets[index];
1132 stride = parent->strides[index];
1133
1134 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1135 if (image == NULL)
1136 return NULL;
1137
1138 if (offset + height * stride > parent->bo->size) {
1139 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
1140 free(image);
1141 return NULL;
1142 }
1143
1144 image->bo = parent->bo;
1145 brw_bo_reference(parent->bo);
1146 image->modifier = parent->modifier;
1147
1148 image->width = width;
1149 image->height = height;
1150 image->pitch = stride;
1151 image->offset = offset;
1152
1153 intel_image_warn_if_unaligned(image, __func__);
1154
1155 return image;
1156 }
1157
1158 static const __DRIimageExtension intelImageExtension = {
1159 .base = { __DRI_IMAGE, 15 },
1160
1161 .createImageFromName = intel_create_image_from_name,
1162 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1163 .destroyImage = intel_destroy_image,
1164 .createImage = intel_create_image,
1165 .queryImage = intel_query_image,
1166 .dupImage = intel_dup_image,
1167 .validateUsage = intel_validate_usage,
1168 .createImageFromNames = intel_create_image_from_names,
1169 .fromPlanar = intel_from_planar,
1170 .createImageFromTexture = intel_create_image_from_texture,
1171 .createImageFromFds = intel_create_image_from_fds,
1172 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1173 .blitImage = NULL,
1174 .getCapabilities = NULL,
1175 .mapImage = NULL,
1176 .unmapImage = NULL,
1177 .createImageWithModifiers = intel_create_image_with_modifiers,
1178 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1179 .queryDmaBufFormats = intel_query_dma_buf_formats,
1180 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1181 };
1182
1183 static uint64_t
1184 get_aperture_size(int fd)
1185 {
1186 struct drm_i915_gem_get_aperture aperture;
1187
1188 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1189 return 0;
1190
1191 return aperture.aper_size;
1192 }
1193
1194 static int
1195 brw_query_renderer_integer(__DRIscreen *dri_screen,
1196 int param, unsigned int *value)
1197 {
1198 const struct intel_screen *const screen =
1199 (struct intel_screen *) dri_screen->driverPrivate;
1200
1201 switch (param) {
1202 case __DRI2_RENDERER_VENDOR_ID:
1203 value[0] = 0x8086;
1204 return 0;
1205 case __DRI2_RENDERER_DEVICE_ID:
1206 value[0] = screen->deviceID;
1207 return 0;
1208 case __DRI2_RENDERER_ACCELERATED:
1209 value[0] = 1;
1210 return 0;
1211 case __DRI2_RENDERER_VIDEO_MEMORY: {
1212 /* Once a batch uses more than 75% of the maximum mappable size, we
1213 * assume that there's some fragmentation, and we start doing extra
1214 * flushing, etc. That's the big cliff apps will care about.
1215 */
1216 const unsigned gpu_mappable_megabytes =
1217 screen->aperture_threshold / (1024 * 1024);
1218
1219 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1220 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1221
1222 if (system_memory_pages <= 0 || system_page_size <= 0)
1223 return -1;
1224
1225 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1226 * (uint64_t) system_page_size;
1227
1228 const unsigned system_memory_megabytes =
1229 (unsigned) (system_memory_bytes / (1024 * 1024));
1230
1231 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1232 return 0;
1233 }
1234 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1235 value[0] = 1;
1236 return 0;
1237 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1238 value[0] = 1;
1239 return 0;
1240 default:
1241 return driQueryRendererIntegerCommon(dri_screen, param, value);
1242 }
1243
1244 return -1;
1245 }
1246
1247 static int
1248 brw_query_renderer_string(__DRIscreen *dri_screen,
1249 int param, const char **value)
1250 {
1251 const struct intel_screen *screen =
1252 (struct intel_screen *) dri_screen->driverPrivate;
1253
1254 switch (param) {
1255 case __DRI2_RENDERER_VENDOR_ID:
1256 value[0] = brw_vendor_string;
1257 return 0;
1258 case __DRI2_RENDERER_DEVICE_ID:
1259 value[0] = brw_get_renderer_string(screen);
1260 return 0;
1261 default:
1262 break;
1263 }
1264
1265 return -1;
1266 }
1267
1268 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1269 .base = { __DRI2_RENDERER_QUERY, 1 },
1270
1271 .queryInteger = brw_query_renderer_integer,
1272 .queryString = brw_query_renderer_string
1273 };
1274
1275 static const __DRIrobustnessExtension dri2Robustness = {
1276 .base = { __DRI2_ROBUSTNESS, 1 }
1277 };
1278
1279 static const __DRIextension *screenExtensions[] = {
1280 &intelTexBufferExtension.base,
1281 &intelFenceExtension.base,
1282 &intelFlushExtension.base,
1283 &intelImageExtension.base,
1284 &intelRendererQueryExtension.base,
1285 &dri2ConfigQueryExtension.base,
1286 &dri2NoErrorExtension.base,
1287 NULL
1288 };
1289
1290 static const __DRIextension *intelRobustScreenExtensions[] = {
1291 &intelTexBufferExtension.base,
1292 &intelFenceExtension.base,
1293 &intelFlushExtension.base,
1294 &intelImageExtension.base,
1295 &intelRendererQueryExtension.base,
1296 &dri2ConfigQueryExtension.base,
1297 &dri2Robustness.base,
1298 &dri2NoErrorExtension.base,
1299 NULL
1300 };
1301
1302 static int
1303 intel_get_param(struct intel_screen *screen, int param, int *value)
1304 {
1305 int ret = 0;
1306 struct drm_i915_getparam gp;
1307
1308 memset(&gp, 0, sizeof(gp));
1309 gp.param = param;
1310 gp.value = value;
1311
1312 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1313 ret = -errno;
1314 if (ret != -EINVAL)
1315 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1316 }
1317
1318 return ret;
1319 }
1320
1321 static bool
1322 intel_get_boolean(struct intel_screen *screen, int param)
1323 {
1324 int value = 0;
1325 return (intel_get_param(screen, param, &value) == 0) && value;
1326 }
1327
1328 static int
1329 intel_get_integer(struct intel_screen *screen, int param)
1330 {
1331 int value = -1;
1332
1333 if (intel_get_param(screen, param, &value) == 0)
1334 return value;
1335
1336 return -1;
1337 }
1338
1339 static void
1340 intelDestroyScreen(__DRIscreen * sPriv)
1341 {
1342 struct intel_screen *screen = sPriv->driverPrivate;
1343
1344 brw_bufmgr_destroy(screen->bufmgr);
1345 driDestroyOptionInfo(&screen->optionCache);
1346
1347 ralloc_free(screen);
1348 sPriv->driverPrivate = NULL;
1349 }
1350
1351
1352 /**
1353 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1354 *
1355 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1356 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1357 * this does not allocate GPU memory.
1358 */
1359 static GLboolean
1360 intelCreateBuffer(__DRIscreen *dri_screen,
1361 __DRIdrawable * driDrawPriv,
1362 const struct gl_config * mesaVis, GLboolean isPixmap)
1363 {
1364 struct intel_renderbuffer *rb;
1365 struct intel_screen *screen = (struct intel_screen *)
1366 dri_screen->driverPrivate;
1367 mesa_format rgbFormat;
1368 unsigned num_samples =
1369 intel_quantize_num_samples(screen, mesaVis->samples);
1370
1371 if (isPixmap)
1372 return false;
1373
1374 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1375 if (!fb)
1376 return false;
1377
1378 _mesa_initialize_window_framebuffer(fb, mesaVis);
1379
1380 if (screen->winsys_msaa_samples_override != -1) {
1381 num_samples = screen->winsys_msaa_samples_override;
1382 fb->Visual.samples = num_samples;
1383 }
1384
1385 if (mesaVis->redBits == 5) {
1386 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1387 : MESA_FORMAT_B5G6R5_UNORM;
1388 } else if (mesaVis->sRGBCapable) {
1389 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1390 : MESA_FORMAT_B8G8R8A8_SRGB;
1391 } else if (mesaVis->alphaBits == 0) {
1392 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1393 : MESA_FORMAT_B8G8R8X8_UNORM;
1394 } else {
1395 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1396 : MESA_FORMAT_B8G8R8A8_SRGB;
1397 fb->Visual.sRGBCapable = true;
1398 }
1399
1400 /* setup the hardware-based renderbuffers */
1401 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1402 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1403
1404 if (mesaVis->doubleBufferMode) {
1405 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1406 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1407 }
1408
1409 /*
1410 * Assert here that the gl_config has an expected depth/stencil bit
1411 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1412 * which constructs the advertised configs.)
1413 */
1414 if (mesaVis->depthBits == 24) {
1415 assert(mesaVis->stencilBits == 8);
1416
1417 if (screen->devinfo.has_hiz_and_separate_stencil) {
1418 rb = intel_create_private_renderbuffer(screen,
1419 MESA_FORMAT_Z24_UNORM_X8_UINT,
1420 num_samples);
1421 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1422 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1423 num_samples);
1424 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1425 } else {
1426 /*
1427 * Use combined depth/stencil. Note that the renderbuffer is
1428 * attached to two attachment points.
1429 */
1430 rb = intel_create_private_renderbuffer(screen,
1431 MESA_FORMAT_Z24_UNORM_S8_UINT,
1432 num_samples);
1433 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1434 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1435 }
1436 }
1437 else if (mesaVis->depthBits == 16) {
1438 assert(mesaVis->stencilBits == 0);
1439 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1440 num_samples);
1441 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1442 }
1443 else {
1444 assert(mesaVis->depthBits == 0);
1445 assert(mesaVis->stencilBits == 0);
1446 }
1447
1448 /* now add any/all software-based renderbuffers we may need */
1449 _swrast_add_soft_renderbuffers(fb,
1450 false, /* never sw color */
1451 false, /* never sw depth */
1452 false, /* never sw stencil */
1453 mesaVis->accumRedBits > 0,
1454 false, /* never sw alpha */
1455 false /* never sw aux */ );
1456 driDrawPriv->driverPrivate = fb;
1457
1458 return true;
1459 }
1460
1461 static void
1462 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1463 {
1464 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1465
1466 _mesa_reference_framebuffer(&fb, NULL);
1467 }
1468
1469 static void
1470 intel_detect_sseu(struct intel_screen *screen)
1471 {
1472 assert(screen->devinfo.gen >= 8);
1473 int ret;
1474
1475 screen->subslice_total = -1;
1476 screen->eu_total = -1;
1477
1478 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1479 &screen->subslice_total);
1480 if (ret < 0 && ret != -EINVAL)
1481 goto err_out;
1482
1483 ret = intel_get_param(screen,
1484 I915_PARAM_EU_TOTAL, &screen->eu_total);
1485 if (ret < 0 && ret != -EINVAL)
1486 goto err_out;
1487
1488 /* Without this information, we cannot get the right Braswell brandstrings,
1489 * and we have to use conservative numbers for GPGPU on many platforms, but
1490 * otherwise, things will just work.
1491 */
1492 if (screen->subslice_total < 1 || screen->eu_total < 1)
1493 _mesa_warning(NULL,
1494 "Kernel 4.1 required to properly query GPU properties.\n");
1495
1496 return;
1497
1498 err_out:
1499 screen->subslice_total = -1;
1500 screen->eu_total = -1;
1501 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1502 }
1503
1504 static bool
1505 intel_init_bufmgr(struct intel_screen *screen)
1506 {
1507 __DRIscreen *dri_screen = screen->driScrnPriv;
1508
1509 if (getenv("INTEL_NO_HW") != NULL)
1510 screen->no_hw = true;
1511
1512 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd, BATCH_SZ);
1513 if (screen->bufmgr == NULL) {
1514 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1515 __func__, __LINE__);
1516 return false;
1517 }
1518
1519 if (!intel_get_boolean(screen, I915_PARAM_HAS_WAIT_TIMEOUT)) {
1520 fprintf(stderr, "[%s: %u] Kernel 3.6 required.\n", __func__, __LINE__);
1521 return false;
1522 }
1523
1524 return true;
1525 }
1526
1527 static bool
1528 intel_detect_swizzling(struct intel_screen *screen)
1529 {
1530 struct brw_bo *buffer;
1531 unsigned flags = 0;
1532 uint32_t aligned_pitch;
1533 uint32_t tiling = I915_TILING_X;
1534 uint32_t swizzle_mode = 0;
1535
1536 buffer = brw_bo_alloc_tiled_2d(screen->bufmgr, "swizzle test",
1537 64, 64, 4, tiling, &aligned_pitch, flags);
1538 if (buffer == NULL)
1539 return false;
1540
1541 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1542 brw_bo_unreference(buffer);
1543
1544 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1545 return false;
1546 else
1547 return true;
1548 }
1549
1550 static int
1551 intel_detect_timestamp(struct intel_screen *screen)
1552 {
1553 uint64_t dummy = 0, last = 0;
1554 int upper, lower, loops;
1555
1556 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1557 * TIMESTAMP register being shifted and the low 32bits always zero.
1558 *
1559 * More recent kernels offer an interface to read the full 36bits
1560 * everywhere.
1561 */
1562 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1563 return 3;
1564
1565 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1566 * upper 32bits for a rapidly changing timestamp.
1567 */
1568 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1569 return 0;
1570
1571 upper = lower = 0;
1572 for (loops = 0; loops < 10; loops++) {
1573 /* The TIMESTAMP should change every 80ns, so several round trips
1574 * through the kernel should be enough to advance it.
1575 */
1576 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1577 return 0;
1578
1579 upper += (dummy >> 32) != (last >> 32);
1580 if (upper > 1) /* beware 32bit counter overflow */
1581 return 2; /* upper dword holds the low 32bits of the timestamp */
1582
1583 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1584 if (lower > 1)
1585 return 1; /* timestamp is unshifted */
1586
1587 last = dummy;
1588 }
1589
1590 /* No advancement? No timestamp! */
1591 return 0;
1592 }
1593
1594 /**
1595 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1596 *
1597 * Some combinations of hardware and kernel versions allow this feature,
1598 * while others don't. Instead of trying to enumerate every case, just
1599 * try and write a register and see if works.
1600 */
1601 static bool
1602 intel_detect_pipelined_register(struct intel_screen *screen,
1603 int reg, uint32_t expected_value, bool reset)
1604 {
1605 if (screen->no_hw)
1606 return false;
1607
1608 struct brw_bo *results, *bo;
1609 uint32_t *batch;
1610 uint32_t offset = 0;
1611 void *map;
1612 bool success = false;
1613
1614 /* Create a zero'ed temporary buffer for reading our results */
1615 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1616 if (results == NULL)
1617 goto err;
1618
1619 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1620 if (bo == NULL)
1621 goto err_results;
1622
1623 map = brw_bo_map(NULL, bo, MAP_WRITE);
1624 if (!map)
1625 goto err_batch;
1626
1627 batch = map;
1628
1629 /* Write the register. */
1630 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1631 *batch++ = reg;
1632 *batch++ = expected_value;
1633
1634 /* Save the register's value back to the buffer. */
1635 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1636 *batch++ = reg;
1637 struct drm_i915_gem_relocation_entry reloc = {
1638 .offset = (char *) batch - (char *) map,
1639 .delta = offset * sizeof(uint32_t),
1640 .target_handle = results->gem_handle,
1641 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1642 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1643 };
1644 *batch++ = reloc.presumed_offset + reloc.delta;
1645
1646 /* And afterwards clear the register */
1647 if (reset) {
1648 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1649 *batch++ = reg;
1650 *batch++ = 0;
1651 }
1652
1653 *batch++ = MI_BATCH_BUFFER_END;
1654
1655 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1656 {
1657 .handle = results->gem_handle,
1658 },
1659 {
1660 .handle = bo->gem_handle,
1661 .relocation_count = 1,
1662 .relocs_ptr = (uintptr_t) &reloc,
1663 }
1664 };
1665
1666 struct drm_i915_gem_execbuffer2 execbuf = {
1667 .buffers_ptr = (uintptr_t) exec_objects,
1668 .buffer_count = 2,
1669 .batch_len = ALIGN((char *) batch - (char *) map, 8),
1670 .flags = I915_EXEC_RENDER,
1671 };
1672
1673 /* Don't bother with error checking - if the execbuf fails, the
1674 * value won't be written and we'll just report that there's no access.
1675 */
1676 __DRIscreen *dri_screen = screen->driScrnPriv;
1677 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1678
1679 /* Check whether the value got written. */
1680 void *results_map = brw_bo_map(NULL, results, MAP_READ);
1681 if (results_map) {
1682 success = *((uint32_t *)results_map + offset) == expected_value;
1683 brw_bo_unmap(results);
1684 }
1685
1686 err_batch:
1687 brw_bo_unreference(bo);
1688 err_results:
1689 brw_bo_unreference(results);
1690 err:
1691 return success;
1692 }
1693
1694 static bool
1695 intel_detect_pipelined_so(struct intel_screen *screen)
1696 {
1697 const struct gen_device_info *devinfo = &screen->devinfo;
1698
1699 /* Supposedly, Broadwell just works. */
1700 if (devinfo->gen >= 8)
1701 return true;
1702
1703 if (devinfo->gen <= 6)
1704 return false;
1705
1706 /* See the big explanation about command parser versions below */
1707 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1708 return true;
1709
1710 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1711 * statistics registers), and we already reset it to zero before using it.
1712 */
1713 return intel_detect_pipelined_register(screen,
1714 GEN7_SO_WRITE_OFFSET(0),
1715 0x1337d0d0,
1716 false);
1717 }
1718
1719 /**
1720 * Return array of MSAA modes supported by the hardware. The array is
1721 * zero-terminated and sorted in decreasing order.
1722 */
1723 const int*
1724 intel_supported_msaa_modes(const struct intel_screen *screen)
1725 {
1726 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1727 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1728 static const int gen7_modes[] = {8, 4, 0, -1};
1729 static const int gen6_modes[] = {4, 0, -1};
1730 static const int gen4_modes[] = {0, -1};
1731
1732 if (screen->devinfo.gen >= 9) {
1733 return gen9_modes;
1734 } else if (screen->devinfo.gen >= 8) {
1735 return gen8_modes;
1736 } else if (screen->devinfo.gen >= 7) {
1737 return gen7_modes;
1738 } else if (screen->devinfo.gen == 6) {
1739 return gen6_modes;
1740 } else {
1741 return gen4_modes;
1742 }
1743 }
1744
1745 static __DRIconfig**
1746 intel_screen_make_configs(__DRIscreen *dri_screen)
1747 {
1748 static const mesa_format formats[] = {
1749 MESA_FORMAT_B5G6R5_UNORM,
1750 MESA_FORMAT_B8G8R8A8_UNORM,
1751 MESA_FORMAT_B8G8R8X8_UNORM,
1752
1753 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
1754 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
1755 * server may disagree on which format the GLXFBConfig represents,
1756 * resulting in swapped color channels.
1757 *
1758 * The problem, as of 2017-05-30:
1759 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
1760 * order and chooses the first __DRIconfig with the expected channel
1761 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
1762 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
1763 *
1764 * EGL does not suffer from this problem. It correctly compares the
1765 * channel masks when matching EGLConfig to __DRIconfig.
1766 */
1767
1768 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
1769 MESA_FORMAT_R8G8B8A8_UNORM,
1770
1771 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
1772 MESA_FORMAT_R8G8B8X8_UNORM,
1773 };
1774
1775 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1776 static const GLenum back_buffer_modes[] = {
1777 __DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
1778 };
1779
1780 static const uint8_t singlesample_samples[1] = {0};
1781 static const uint8_t multisample_samples[2] = {4, 8};
1782
1783 struct intel_screen *screen = dri_screen->driverPrivate;
1784 const struct gen_device_info *devinfo = &screen->devinfo;
1785 uint8_t depth_bits[4], stencil_bits[4];
1786 __DRIconfig **configs = NULL;
1787
1788 /* Generate singlesample configs without accumulation buffer. */
1789 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1790 __DRIconfig **new_configs;
1791 int num_depth_stencil_bits = 2;
1792
1793 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1794 * buffer that has a different number of bits per pixel than the color
1795 * buffer, gen >= 6 supports this.
1796 */
1797 depth_bits[0] = 0;
1798 stencil_bits[0] = 0;
1799
1800 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1801 depth_bits[1] = 16;
1802 stencil_bits[1] = 0;
1803 if (devinfo->gen >= 6) {
1804 depth_bits[2] = 24;
1805 stencil_bits[2] = 8;
1806 num_depth_stencil_bits = 3;
1807 }
1808 } else {
1809 depth_bits[1] = 24;
1810 stencil_bits[1] = 8;
1811 }
1812
1813 new_configs = driCreateConfigs(formats[i],
1814 depth_bits,
1815 stencil_bits,
1816 num_depth_stencil_bits,
1817 back_buffer_modes, 2,
1818 singlesample_samples, 1,
1819 false, false);
1820 configs = driConcatConfigs(configs, new_configs);
1821 }
1822
1823 /* Generate the minimum possible set of configs that include an
1824 * accumulation buffer.
1825 */
1826 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1827 __DRIconfig **new_configs;
1828
1829 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1830 depth_bits[0] = 16;
1831 stencil_bits[0] = 0;
1832 } else {
1833 depth_bits[0] = 24;
1834 stencil_bits[0] = 8;
1835 }
1836
1837 new_configs = driCreateConfigs(formats[i],
1838 depth_bits, stencil_bits, 1,
1839 back_buffer_modes, 1,
1840 singlesample_samples, 1,
1841 true, false);
1842 configs = driConcatConfigs(configs, new_configs);
1843 }
1844
1845 /* Generate multisample configs.
1846 *
1847 * This loop breaks early, and hence is a no-op, on gen < 6.
1848 *
1849 * Multisample configs must follow the singlesample configs in order to
1850 * work around an X server bug present in 1.12. The X server chooses to
1851 * associate the first listed RGBA888-Z24S8 config, regardless of its
1852 * sample count, with the 32-bit depth visual used for compositing.
1853 *
1854 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1855 * supported. Singlebuffer configs are not supported because no one wants
1856 * them.
1857 */
1858 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1859 if (devinfo->gen < 6)
1860 break;
1861
1862 __DRIconfig **new_configs;
1863 const int num_depth_stencil_bits = 2;
1864 int num_msaa_modes = 0;
1865
1866 depth_bits[0] = 0;
1867 stencil_bits[0] = 0;
1868
1869 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1870 depth_bits[1] = 16;
1871 stencil_bits[1] = 0;
1872 } else {
1873 depth_bits[1] = 24;
1874 stencil_bits[1] = 8;
1875 }
1876
1877 if (devinfo->gen >= 7)
1878 num_msaa_modes = 2;
1879 else if (devinfo->gen == 6)
1880 num_msaa_modes = 1;
1881
1882 new_configs = driCreateConfigs(formats[i],
1883 depth_bits,
1884 stencil_bits,
1885 num_depth_stencil_bits,
1886 back_buffer_modes, 1,
1887 multisample_samples,
1888 num_msaa_modes,
1889 false, false);
1890 configs = driConcatConfigs(configs, new_configs);
1891 }
1892
1893 if (configs == NULL) {
1894 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1895 __LINE__);
1896 return NULL;
1897 }
1898
1899 return configs;
1900 }
1901
1902 static void
1903 set_max_gl_versions(struct intel_screen *screen)
1904 {
1905 __DRIscreen *dri_screen = screen->driScrnPriv;
1906 const bool has_astc = screen->devinfo.gen >= 9;
1907
1908 switch (screen->devinfo.gen) {
1909 case 10:
1910 case 9:
1911 case 8:
1912 dri_screen->max_gl_core_version = 45;
1913 dri_screen->max_gl_compat_version = 30;
1914 dri_screen->max_gl_es1_version = 11;
1915 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1916 break;
1917 case 7:
1918 dri_screen->max_gl_core_version = 33;
1919 if (can_do_pipelined_register_writes(screen)) {
1920 dri_screen->max_gl_core_version = 42;
1921 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
1922 dri_screen->max_gl_core_version = 43;
1923 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
1924 dri_screen->max_gl_core_version = 45;
1925 }
1926 dri_screen->max_gl_compat_version = 30;
1927 dri_screen->max_gl_es1_version = 11;
1928 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1929 break;
1930 case 6:
1931 dri_screen->max_gl_core_version = 33;
1932 dri_screen->max_gl_compat_version = 30;
1933 dri_screen->max_gl_es1_version = 11;
1934 dri_screen->max_gl_es2_version = 30;
1935 break;
1936 case 5:
1937 case 4:
1938 dri_screen->max_gl_core_version = 0;
1939 dri_screen->max_gl_compat_version = 21;
1940 dri_screen->max_gl_es1_version = 11;
1941 dri_screen->max_gl_es2_version = 20;
1942 break;
1943 default:
1944 unreachable("unrecognized intel_screen::gen");
1945 }
1946 }
1947
1948 /**
1949 * Return the revision (generally the revid field of the PCI header) of the
1950 * graphics device.
1951 *
1952 * XXX: This function is useful to keep around even if it is not currently in
1953 * use. It is necessary for new platforms and revision specific workarounds or
1954 * features. Please don't remove it so that we know it at least continues to
1955 * build.
1956 */
1957 static __attribute__((__unused__)) int
1958 brw_get_revision(int fd)
1959 {
1960 struct drm_i915_getparam gp;
1961 int revision;
1962 int ret;
1963
1964 memset(&gp, 0, sizeof(gp));
1965 gp.param = I915_PARAM_REVISION;
1966 gp.value = &revision;
1967
1968 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1969 if (ret)
1970 revision = -1;
1971
1972 return revision;
1973 }
1974
1975 static void
1976 shader_debug_log_mesa(void *data, const char *fmt, ...)
1977 {
1978 struct brw_context *brw = (struct brw_context *)data;
1979 va_list args;
1980
1981 va_start(args, fmt);
1982 GLuint msg_id = 0;
1983 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1984 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1985 MESA_DEBUG_TYPE_OTHER,
1986 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1987 va_end(args);
1988 }
1989
1990 static void
1991 shader_perf_log_mesa(void *data, const char *fmt, ...)
1992 {
1993 struct brw_context *brw = (struct brw_context *)data;
1994
1995 va_list args;
1996 va_start(args, fmt);
1997
1998 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1999 va_list args_copy;
2000 va_copy(args_copy, args);
2001 vfprintf(stderr, fmt, args_copy);
2002 va_end(args_copy);
2003 }
2004
2005 if (brw->perf_debug) {
2006 GLuint msg_id = 0;
2007 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2008 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2009 MESA_DEBUG_TYPE_PERFORMANCE,
2010 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2011 }
2012 va_end(args);
2013 }
2014
2015 static int
2016 parse_devid_override(const char *devid_override)
2017 {
2018 static const struct {
2019 const char *name;
2020 int pci_id;
2021 } name_map[] = {
2022 { "brw", 0x2a02 },
2023 { "g4x", 0x2a42 },
2024 { "ilk", 0x0042 },
2025 { "snb", 0x0126 },
2026 { "ivb", 0x016a },
2027 { "hsw", 0x0d2e },
2028 { "byt", 0x0f33 },
2029 { "bdw", 0x162e },
2030 { "skl", 0x1912 },
2031 { "kbl", 0x5912 },
2032 { "cnl", 0x5a52 },
2033 };
2034
2035 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
2036 if (!strcmp(name_map[i].name, devid_override))
2037 return name_map[i].pci_id;
2038 }
2039
2040 return strtol(devid_override, NULL, 0);
2041 }
2042
2043 /**
2044 * Get the PCI ID for the device. This can be overridden by setting the
2045 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
2046 *
2047 * Returns -1 on ioctl failure.
2048 */
2049 static int
2050 get_pci_device_id(struct intel_screen *screen)
2051 {
2052 if (geteuid() == getuid()) {
2053 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
2054 if (devid_override) {
2055 screen->no_hw = true;
2056 return parse_devid_override(devid_override);
2057 }
2058 }
2059
2060 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
2061 }
2062
2063 /**
2064 * This is the driver specific part of the createNewScreen entry point.
2065 * Called when using DRI2.
2066 *
2067 * \return the struct gl_config supported by this driver
2068 */
2069 static const
2070 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2071 {
2072 struct intel_screen *screen;
2073
2074 if (dri_screen->image.loader) {
2075 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2076 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2077 fprintf(stderr,
2078 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2079 "support required\n");
2080 return NULL;
2081 }
2082
2083 /* Allocate the private area */
2084 screen = rzalloc(NULL, struct intel_screen);
2085 if (!screen) {
2086 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2087 return NULL;
2088 }
2089 /* parse information in __driConfigOptions */
2090 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
2091
2092 screen->driScrnPriv = dri_screen;
2093 dri_screen->driverPrivate = (void *) screen;
2094
2095 screen->deviceID = get_pci_device_id(screen);
2096
2097 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
2098 return NULL;
2099
2100 if (!intel_init_bufmgr(screen))
2101 return NULL;
2102
2103 const struct gen_device_info *devinfo = &screen->devinfo;
2104
2105 brw_process_intel_debug_variable();
2106
2107 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2108 fprintf(stderr,
2109 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2110 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2111 }
2112
2113 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2114 /* Theorectically unlimited! At least for individual objects...
2115 *
2116 * Currently the entire (global) address space for all GTT maps is
2117 * limited to 64bits. That is all objects on the system that are
2118 * setup for GTT mmapping must fit within 64bits. An attempt to use
2119 * one that exceeds the limit with fail in brw_bo_map_gtt().
2120 *
2121 * Long before we hit that limit, we will be practically limited by
2122 * that any single object must fit in physical memory (RAM). The upper
2123 * limit on the CPU's address space is currently 48bits (Skylake), of
2124 * which only 39bits can be physical memory. (The GPU itself also has
2125 * a 48bit addressable virtual space.) We can fit over 32 million
2126 * objects of the current maximum allocable size before running out
2127 * of mmap space.
2128 */
2129 screen->max_gtt_map_object_size = UINT64_MAX;
2130 } else {
2131 /* Estimate the size of the mappable aperture into the GTT. There's an
2132 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2133 * It turns out it's basically always 256MB, though some ancient hardware
2134 * was smaller.
2135 */
2136 uint32_t gtt_size = 256 * 1024 * 1024;
2137
2138 /* We don't want to map two objects such that a memcpy between them would
2139 * just fault one mapping in and then the other over and over forever. So
2140 * we would need to divide the GTT size by 2. Additionally, some GTT is
2141 * taken up by things like the framebuffer and the ringbuffer and such, so
2142 * be more conservative.
2143 */
2144 screen->max_gtt_map_object_size = gtt_size / 4;
2145 }
2146
2147 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
2148
2149 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2150 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2151
2152 isl_device_init(&screen->isl_dev, &screen->devinfo,
2153 screen->hw_has_swizzling);
2154
2155 /* GENs prior to 8 do not support EU/Subslice info */
2156 if (devinfo->gen >= 8) {
2157 intel_detect_sseu(screen);
2158 } else if (devinfo->gen == 7) {
2159 screen->subslice_total = 1 << (devinfo->gt - 1);
2160 }
2161
2162 /* Gen7-7.5 kernel requirements / command parser saga:
2163 *
2164 * - pre-v3.16:
2165 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2166 *
2167 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2168 * all batches secure, allowing them to use any feature with no checking.
2169 * This is effectively equivalent to a command parser version of
2170 * \infinity - everything is possible.
2171 *
2172 * The command parser does not exist, and querying the version will
2173 * return -EINVAL.
2174 *
2175 * - v3.16:
2176 * The kernel enables the command parser by default, for systems with
2177 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2178 * hardware checker is still enabled, so Haswell and Baytrail cannot
2179 * do anything.
2180 *
2181 * Ivybridge goes from "everything is possible" to "only what the
2182 * command parser allows" (if the user boots with i915.cmd_parser=0,
2183 * then everything is possible again). We can only safely use features
2184 * allowed by the supported command parser version.
2185 *
2186 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2187 * implemented by the kernel, even if it's turned off. So, checking
2188 * for version > 0 does not mean that you can write registers. We have
2189 * to try it and see. The version does, however, indicate the age of
2190 * the kernel.
2191 *
2192 * Instead of matching the hardware checker's behavior of converting
2193 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2194 * -EINVAL, making it dangerous to try and use privileged features.
2195 *
2196 * Effective command parser versions:
2197 * - Haswell: 0 (reporting 1, writes don't work)
2198 * - Baytrail: 0 (reporting 1, writes don't work)
2199 * - Ivybridge: 1 (enabled) or infinite (disabled)
2200 *
2201 * - v3.17:
2202 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2203 * effectively version 1 (enabled) or infinite (disabled).
2204 *
2205 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2206 * Command parser v2 supports predicate writes.
2207 *
2208 * - Haswell: 0 (reporting 1, writes don't work)
2209 * - Baytrail: 2 (enabled) or infinite (disabled)
2210 * - Ivybridge: 2 (enabled) or infinite (disabled)
2211 *
2212 * So version >= 2 is enough to know that Ivybridge and Baytrail
2213 * will work. Haswell still can't do anything.
2214 *
2215 * - v4.0: Version 3 happened. Largely not relevant.
2216 *
2217 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2218 * L3 config registers are properly saved and restored as part
2219 * of the hardware context. We can approximately detect this point
2220 * in time by checking if I915_PARAM_REVISION is recognized - it
2221 * landed in a later commit, but in the same release cycle.
2222 *
2223 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2224 * Command parser finally gains secure batch promotion. On Haswell,
2225 * the hardware checker gets disabled, which finally allows it to do
2226 * privileged commands.
2227 *
2228 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2229 * - Haswell: 3 (enabled) or 0 (disabled)
2230 * - Baytrail: 3 (enabled) or infinite (disabled)
2231 * - Ivybridge: 3 (enabled) or infinite (disabled)
2232 *
2233 * Unfortunately, detecting this point in time is tricky, because
2234 * no version bump happened when this important change occurred.
2235 * On Haswell, if we can write any register, then the kernel is at
2236 * least this new, and we can start trusting the version number.
2237 *
2238 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2239 * Command parser reaches version 4, allowing access to Haswell
2240 * atomic scratch and chicken3 registers. If version >= 4, we know
2241 * the kernel is new enough to support privileged features on all
2242 * hardware. However, the user might have disabled it...and the
2243 * kernel will still report version 4. So we still have to guess
2244 * and check.
2245 *
2246 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2247 * Command parser v5 whitelists indirect compute shader dispatch
2248 * registers, needed for OpenGL 4.3 and later.
2249 *
2250 * - v4.8:
2251 * Command parser v7 lets us use MI_MATH on Haswell.
2252 *
2253 * Additionally, the kernel begins reporting version 0 when
2254 * the command parser is disabled, allowing us to skip the
2255 * guess-and-check step on Haswell. Unfortunately, this also
2256 * means that we can no longer use it as an indicator of the
2257 * age of the kernel.
2258 */
2259 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2260 &screen->cmd_parser_version) < 0) {
2261 /* Command parser does not exist - getparam is unrecognized */
2262 screen->cmd_parser_version = 0;
2263 }
2264
2265 /* Kernel 4.13 retuired for exec object capture */
2266 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2267 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2268 }
2269
2270 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
2271 screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
2272 }
2273
2274 if (!intel_detect_pipelined_so(screen)) {
2275 /* We can't do anything, so the effective version is 0. */
2276 screen->cmd_parser_version = 0;
2277 } else {
2278 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2279 }
2280
2281 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2282 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2283
2284 /* Haswell requires command parser version 4 in order to have L3
2285 * atomic scratch1 and chicken3 bits
2286 */
2287 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2288 screen->kernel_features |=
2289 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2290 }
2291
2292 /* Haswell requires command parser version 6 in order to write to the
2293 * MI_MATH GPR registers, and version 7 in order to use
2294 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2295 */
2296 if (devinfo->gen >= 8 ||
2297 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2298 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2299 }
2300
2301 /* Gen7 needs at least command parser version 5 to support compute */
2302 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2303 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2304
2305 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2306 if (force_msaa) {
2307 screen->winsys_msaa_samples_override =
2308 intel_quantize_num_samples(screen, atoi(force_msaa));
2309 printf("Forcing winsys sample count to %d\n",
2310 screen->winsys_msaa_samples_override);
2311 } else {
2312 screen->winsys_msaa_samples_override = -1;
2313 }
2314
2315 set_max_gl_versions(screen);
2316
2317 /* Notification of GPU resets requires hardware contexts and a kernel new
2318 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2319 * supported, calling it with a context of 0 will either generate EPERM or
2320 * no error. If the ioctl is not supported, it always generate EINVAL.
2321 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2322 * extension to the loader.
2323 *
2324 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2325 */
2326 if (devinfo->gen >= 6) {
2327 struct drm_i915_reset_stats stats;
2328 memset(&stats, 0, sizeof(stats));
2329
2330 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2331
2332 screen->has_context_reset_notification =
2333 (ret != -1 || errno != EINVAL);
2334 }
2335
2336 dri_screen->extensions = !screen->has_context_reset_notification
2337 ? screenExtensions : intelRobustScreenExtensions;
2338
2339 screen->compiler = brw_compiler_create(screen, devinfo);
2340 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2341 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2342 screen->compiler->constant_buffer_0_is_relative = devinfo->gen < 8;
2343 screen->program_id = 1;
2344
2345 screen->has_exec_fence =
2346 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2347
2348 intel_screen_init_surface_formats(screen);
2349
2350 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2351 }
2352
2353 struct intel_buffer {
2354 __DRIbuffer base;
2355 struct brw_bo *bo;
2356 };
2357
2358 static __DRIbuffer *
2359 intelAllocateBuffer(__DRIscreen *dri_screen,
2360 unsigned attachment, unsigned format,
2361 int width, int height)
2362 {
2363 struct intel_buffer *intelBuffer;
2364 struct intel_screen *screen = dri_screen->driverPrivate;
2365
2366 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2367 attachment == __DRI_BUFFER_BACK_LEFT);
2368
2369 intelBuffer = calloc(1, sizeof *intelBuffer);
2370 if (intelBuffer == NULL)
2371 return NULL;
2372
2373 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2374 * supports Y tiled and compressed buffers, but there is no way to plumb that
2375 * through to here. */
2376 uint32_t pitch;
2377 int cpp = format / 8;
2378 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2379 "intelAllocateBuffer",
2380 width,
2381 height,
2382 cpp,
2383 I915_TILING_X, &pitch,
2384 BO_ALLOC_FOR_RENDER);
2385
2386 if (intelBuffer->bo == NULL) {
2387 free(intelBuffer);
2388 return NULL;
2389 }
2390
2391 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2392
2393 intelBuffer->base.attachment = attachment;
2394 intelBuffer->base.cpp = cpp;
2395 intelBuffer->base.pitch = pitch;
2396
2397 return &intelBuffer->base;
2398 }
2399
2400 static void
2401 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2402 {
2403 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2404
2405 brw_bo_unreference(intelBuffer->bo);
2406 free(intelBuffer);
2407 }
2408
2409 static const struct __DriverAPIRec brw_driver_api = {
2410 .InitScreen = intelInitScreen2,
2411 .DestroyScreen = intelDestroyScreen,
2412 .CreateContext = brwCreateContext,
2413 .DestroyContext = intelDestroyContext,
2414 .CreateBuffer = intelCreateBuffer,
2415 .DestroyBuffer = intelDestroyBuffer,
2416 .MakeCurrent = intelMakeCurrent,
2417 .UnbindContext = intelUnbindContext,
2418 .AllocateBuffer = intelAllocateBuffer,
2419 .ReleaseBuffer = intelReleaseBuffer
2420 };
2421
2422 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2423 .base = { __DRI_DRIVER_VTABLE, 1 },
2424 .vtable = &brw_driver_api,
2425 };
2426
2427 static const __DRIextension *brw_driver_extensions[] = {
2428 &driCoreExtension.base,
2429 &driImageDriverExtension.base,
2430 &driDRI2Extension.base,
2431 &brw_vtable.base,
2432 &brw_config_options.base,
2433 NULL
2434 };
2435
2436 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2437 {
2438 globalDriverAPI = &brw_driver_api;
2439
2440 return brw_driver_extensions;
2441 }