i965/screen: Use ISL for allocating image BOs
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "brw_state.h"
41 #include "compiler/nir/nir.h"
42
43 #include "utils.h"
44 #include "xmlpool.h"
45
46 #ifndef DRM_FORMAT_MOD_INVALID
47 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
48 #endif
49
50 #ifndef DRM_FORMAT_MOD_LINEAR
51 #define DRM_FORMAT_MOD_LINEAR 0
52 #endif
53
54 static const __DRIconfigOptionsExtension brw_config_options = {
55 .base = { __DRI_CONFIG_OPTIONS, 1 },
56 .xml =
57 DRI_CONF_BEGIN
58 DRI_CONF_SECTION_PERFORMANCE
59 DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
60 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
61 * DRI_CONF_BO_REUSE_ALL
62 */
63 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
64 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
65 DRI_CONF_ENUM(0, "Disable buffer object reuse")
66 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
67 DRI_CONF_DESC_END
68 DRI_CONF_OPT_END
69 DRI_CONF_SECTION_END
70
71 DRI_CONF_SECTION_QUALITY
72 DRI_CONF_FORCE_S3TC_ENABLE("false")
73
74 DRI_CONF_PRECISE_TRIG("false")
75
76 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
77 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
78 "given integer. If negative, then do not clamp.")
79 DRI_CONF_OPT_END
80 DRI_CONF_SECTION_END
81
82 DRI_CONF_SECTION_DEBUG
83 DRI_CONF_NO_RAST("false")
84 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
85 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
86 DRI_CONF_DISABLE_THROTTLING("false")
87 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
88 DRI_CONF_FORCE_GLSL_VERSION(0)
89 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
90 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
91 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
92 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
93 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
94 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
95 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
96
97 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
98 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
99 DRI_CONF_OPT_END
100 DRI_CONF_SECTION_END
101
102 DRI_CONF_SECTION_MISCELLANEOUS
103 DRI_CONF_GLSL_ZERO_INIT("false")
104 DRI_CONF_SECTION_END
105 DRI_CONF_END
106 };
107
108 #include "intel_batchbuffer.h"
109 #include "intel_buffers.h"
110 #include "brw_bufmgr.h"
111 #include "intel_fbo.h"
112 #include "intel_mipmap_tree.h"
113 #include "intel_screen.h"
114 #include "intel_tex.h"
115 #include "intel_image.h"
116
117 #include "brw_context.h"
118
119 #include "i915_drm.h"
120
121 /**
122 * For debugging purposes, this returns a time in seconds.
123 */
124 double
125 get_time(void)
126 {
127 struct timespec tp;
128
129 clock_gettime(CLOCK_MONOTONIC, &tp);
130
131 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
132 }
133
134 static const __DRItexBufferExtension intelTexBufferExtension = {
135 .base = { __DRI_TEX_BUFFER, 3 },
136
137 .setTexBuffer = intelSetTexBuffer,
138 .setTexBuffer2 = intelSetTexBuffer2,
139 .releaseTexBuffer = NULL,
140 };
141
142 static void
143 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
144 __DRIdrawable *dPriv,
145 unsigned flags,
146 enum __DRI2throttleReason reason)
147 {
148 struct brw_context *brw = cPriv->driverPrivate;
149
150 if (!brw)
151 return;
152
153 struct gl_context *ctx = &brw->ctx;
154
155 FLUSH_VERTICES(ctx, 0);
156
157 if (flags & __DRI2_FLUSH_DRAWABLE)
158 intel_resolve_for_dri2_flush(brw, dPriv);
159
160 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
161 brw->need_swap_throttle = true;
162 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
163 brw->need_flush_throttle = true;
164
165 intel_batchbuffer_flush(brw);
166 }
167
168 /**
169 * Provides compatibility with loaders that only support the older (version
170 * 1-3) flush interface.
171 *
172 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
173 */
174 static void
175 intel_dri2_flush(__DRIdrawable *drawable)
176 {
177 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
178 __DRI2_FLUSH_DRAWABLE,
179 __DRI2_THROTTLE_SWAPBUFFER);
180 }
181
182 static const struct __DRI2flushExtensionRec intelFlushExtension = {
183 .base = { __DRI2_FLUSH, 4 },
184
185 .flush = intel_dri2_flush,
186 .invalidate = dri2InvalidateDrawable,
187 .flush_with_flags = intel_dri2_flush_with_flags,
188 };
189
190 static struct intel_image_format intel_image_formats[] = {
191 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
192 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
193
194 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
195 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
196
197 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
198 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
199
200 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
201 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
202
203 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
204 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
205
206 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
207 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
208
209 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
210 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
211
212 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
213 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
214
215 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
216 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
217
218 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
219 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
220
221 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
222 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
223
224 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
225 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
226 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
227 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
228
229 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
230 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
231 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
232 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
233
234 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
235 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
236 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
237 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
238
239 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
240 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
241 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
242 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
243
244 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
245 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
246 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
247 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
248
249 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
250 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
251 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
252 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
253
254 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
255 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
256 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
257 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
258
259 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
260 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
261 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
262 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
263
264 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
265 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
266 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
267 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
268
269 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
270 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
271 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
272 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
273
274 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
275 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
276 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
277
278 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
279 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
280 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
281
282 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
283 * and treat them as planar buffers in the compositors.
284 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
285 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
286 * clusters and places pairs and places U into the G component and
287 * V into A. This lets the texture sampler interpolate the Y
288 * components correctly when sampling from plane 0, and interpolate
289 * U and V correctly when sampling from plane 1. */
290 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
291 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
292 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
293 { __DRI_IMAGE_FOURCC_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
294 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
295 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
296 };
297
298 static const struct {
299 uint32_t tiling;
300 uint64_t modifier;
301 unsigned since_gen;
302 unsigned height_align;
303 } tiling_modifier_map[] = {
304 { .tiling = I915_TILING_NONE, .modifier = DRM_FORMAT_MOD_LINEAR,
305 .since_gen = 1, .height_align = 1 },
306 { .tiling = I915_TILING_X, .modifier = I915_FORMAT_MOD_X_TILED,
307 .since_gen = 1, .height_align = 8 },
308 { .tiling = I915_TILING_Y, .modifier = I915_FORMAT_MOD_Y_TILED,
309 .since_gen = 6, .height_align = 32 },
310 };
311
312 static bool
313 modifier_is_supported(uint64_t modifier)
314 {
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
318 if (tiling_modifier_map[i].modifier == modifier)
319 return true;
320 }
321
322 return false;
323 }
324
325 static uint64_t
326 tiling_to_modifier(uint32_t tiling)
327 {
328 int i;
329
330 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
331 if (tiling_modifier_map[i].tiling == tiling)
332 return tiling_modifier_map[i].modifier;
333 }
334
335 unreachable("tiling_to_modifier received unknown tiling mode");
336 }
337
338 static unsigned
339 get_tiled_height(uint64_t modifier, unsigned height)
340 {
341 int i;
342
343 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
344 if (tiling_modifier_map[i].modifier == modifier)
345 return ALIGN(height, tiling_modifier_map[i].height_align);
346 }
347
348 unreachable("get_tiled_height received unknown tiling mode");
349 }
350
351 static void
352 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
353 {
354 uint32_t tiling, swizzle;
355 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
356
357 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
358 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
359 func, image->offset);
360 }
361 }
362
363 static struct intel_image_format *
364 intel_image_format_lookup(int fourcc)
365 {
366 struct intel_image_format *f = NULL;
367
368 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
369 if (intel_image_formats[i].fourcc == fourcc) {
370 f = &intel_image_formats[i];
371 break;
372 }
373 }
374
375 return f;
376 }
377
378 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
379 {
380 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
381 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
382 *fourcc = intel_image_formats[i].fourcc;
383 return true;
384 }
385 }
386 return false;
387 }
388
389 static __DRIimage *
390 intel_allocate_image(struct intel_screen *screen, int dri_format,
391 void *loaderPrivate)
392 {
393 __DRIimage *image;
394
395 image = calloc(1, sizeof *image);
396 if (image == NULL)
397 return NULL;
398
399 image->screen = screen;
400 image->dri_format = dri_format;
401 image->offset = 0;
402
403 image->format = driImageFormatToGLFormat(dri_format);
404 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
405 image->format == MESA_FORMAT_NONE) {
406 free(image);
407 return NULL;
408 }
409
410 image->internal_format = _mesa_get_format_base_format(image->format);
411 image->data = loaderPrivate;
412
413 return image;
414 }
415
416 /**
417 * Sets up a DRIImage structure to point to a slice out of a miptree.
418 */
419 static void
420 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
421 struct intel_mipmap_tree *mt, GLuint level,
422 GLuint zoffset)
423 {
424 intel_miptree_make_shareable(brw, mt);
425
426 intel_miptree_check_level_layer(mt, level, zoffset);
427
428 image->width = minify(mt->physical_width0, level - mt->first_level);
429 image->height = minify(mt->physical_height0, level - mt->first_level);
430 image->pitch = mt->pitch;
431
432 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
433 &image->tile_x,
434 &image->tile_y);
435
436 brw_bo_unreference(image->bo);
437 image->bo = mt->bo;
438 brw_bo_reference(mt->bo);
439 }
440
441 static __DRIimage *
442 intel_create_image_from_name(__DRIscreen *dri_screen,
443 int width, int height, int format,
444 int name, int pitch, void *loaderPrivate)
445 {
446 struct intel_screen *screen = dri_screen->driverPrivate;
447 __DRIimage *image;
448 int cpp;
449
450 image = intel_allocate_image(screen, format, loaderPrivate);
451 if (image == NULL)
452 return NULL;
453
454 if (image->format == MESA_FORMAT_NONE)
455 cpp = 1;
456 else
457 cpp = _mesa_get_format_bytes(image->format);
458
459 image->width = width;
460 image->height = height;
461 image->pitch = pitch * cpp;
462 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
463 name);
464 if (!image->bo) {
465 free(image);
466 return NULL;
467 }
468 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
469
470 return image;
471 }
472
473 static __DRIimage *
474 intel_create_image_from_renderbuffer(__DRIcontext *context,
475 int renderbuffer, void *loaderPrivate)
476 {
477 __DRIimage *image;
478 struct brw_context *brw = context->driverPrivate;
479 struct gl_context *ctx = &brw->ctx;
480 struct gl_renderbuffer *rb;
481 struct intel_renderbuffer *irb;
482
483 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
484 if (!rb) {
485 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
486 return NULL;
487 }
488
489 irb = intel_renderbuffer(rb);
490 intel_miptree_make_shareable(brw, irb->mt);
491 image = calloc(1, sizeof *image);
492 if (image == NULL)
493 return NULL;
494
495 image->internal_format = rb->InternalFormat;
496 image->format = rb->Format;
497 image->modifier = tiling_to_modifier(irb->mt->tiling);
498 image->offset = 0;
499 image->data = loaderPrivate;
500 brw_bo_unreference(image->bo);
501 image->bo = irb->mt->bo;
502 brw_bo_reference(irb->mt->bo);
503 image->width = rb->Width;
504 image->height = rb->Height;
505 image->pitch = irb->mt->pitch;
506 image->dri_format = driGLFormatToImageFormat(image->format);
507 image->has_depthstencil = irb->mt->stencil_mt? true : false;
508
509 rb->NeedsFinishRenderTexture = true;
510 return image;
511 }
512
513 static __DRIimage *
514 intel_create_image_from_texture(__DRIcontext *context, int target,
515 unsigned texture, int zoffset,
516 int level,
517 unsigned *error,
518 void *loaderPrivate)
519 {
520 __DRIimage *image;
521 struct brw_context *brw = context->driverPrivate;
522 struct gl_texture_object *obj;
523 struct intel_texture_object *iobj;
524 GLuint face = 0;
525
526 obj = _mesa_lookup_texture(&brw->ctx, texture);
527 if (!obj || obj->Target != target) {
528 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
529 return NULL;
530 }
531
532 if (target == GL_TEXTURE_CUBE_MAP)
533 face = zoffset;
534
535 _mesa_test_texobj_completeness(&brw->ctx, obj);
536 iobj = intel_texture_object(obj);
537 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
538 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
539 return NULL;
540 }
541
542 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
543 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
544 return NULL;
545 }
546
547 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
548 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
549 return NULL;
550 }
551 image = calloc(1, sizeof *image);
552 if (image == NULL) {
553 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
554 return NULL;
555 }
556
557 image->internal_format = obj->Image[face][level]->InternalFormat;
558 image->format = obj->Image[face][level]->TexFormat;
559 image->modifier = tiling_to_modifier(iobj->mt->tiling);
560 image->data = loaderPrivate;
561 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
562 image->dri_format = driGLFormatToImageFormat(image->format);
563 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
564 if (image->dri_format == MESA_FORMAT_NONE) {
565 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
566 free(image);
567 return NULL;
568 }
569
570 *error = __DRI_IMAGE_ERROR_SUCCESS;
571 return image;
572 }
573
574 static void
575 intel_destroy_image(__DRIimage *image)
576 {
577 brw_bo_unreference(image->bo);
578 free(image);
579 }
580
581 enum modifier_priority {
582 MODIFIER_PRIORITY_INVALID = 0,
583 MODIFIER_PRIORITY_LINEAR,
584 MODIFIER_PRIORITY_X,
585 MODIFIER_PRIORITY_Y,
586 };
587
588 const uint64_t priority_to_modifier[] = {
589 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
590 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
591 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
592 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
593 };
594
595 static uint64_t
596 select_best_modifier(struct gen_device_info *devinfo,
597 const uint64_t *modifiers,
598 const unsigned count)
599 {
600 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
601
602 for (int i = 0; i < count; i++) {
603 switch (modifiers[i]) {
604 case I915_FORMAT_MOD_Y_TILED:
605 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
606 break;
607 case I915_FORMAT_MOD_X_TILED:
608 prio = MAX2(prio, MODIFIER_PRIORITY_X);
609 break;
610 case DRM_FORMAT_MOD_LINEAR:
611 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
612 break;
613 case DRM_FORMAT_MOD_INVALID:
614 default:
615 break;
616 }
617 }
618
619 return priority_to_modifier[prio];
620 }
621
622 static __DRIimage *
623 intel_create_image_common(__DRIscreen *dri_screen,
624 int width, int height, int format,
625 unsigned int use,
626 const uint64_t *modifiers,
627 unsigned count,
628 void *loaderPrivate)
629 {
630 __DRIimage *image;
631 struct intel_screen *screen = dri_screen->driverPrivate;
632 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
633 bool ok;
634
635 /* Callers of this may specify a modifier, or a dri usage, but not both. The
636 * newer modifier interface deprecates the older usage flags newer modifier
637 * interface deprecates the older usage flags.
638 */
639 assert(!(use && count));
640
641 if (use & __DRI_IMAGE_USE_CURSOR) {
642 if (width != 64 || height != 64)
643 return NULL;
644 modifier = DRM_FORMAT_MOD_LINEAR;
645 }
646
647 if (use & __DRI_IMAGE_USE_LINEAR)
648 modifier = DRM_FORMAT_MOD_LINEAR;
649
650 if (modifier == DRM_FORMAT_MOD_INVALID) {
651 if (modifiers) {
652 /* User requested specific modifiers */
653 modifier = select_best_modifier(&screen->devinfo, modifiers, count);
654 if (modifier == DRM_FORMAT_MOD_INVALID)
655 return NULL;
656 } else {
657 /* Historically, X-tiled was the default, and so lack of modifier means
658 * X-tiled.
659 */
660 modifier = I915_FORMAT_MOD_X_TILED;
661 }
662 }
663
664 image = intel_allocate_image(screen, format, loaderPrivate);
665 if (image == NULL)
666 return NULL;
667
668 const struct isl_drm_modifier_info *mod_info =
669 isl_drm_modifier_get_info(modifier);
670
671 struct isl_surf surf;
672 ok = isl_surf_init(&screen->isl_dev, &surf,
673 .dim = ISL_SURF_DIM_2D,
674 .format = brw_isl_format_for_mesa_format(image->format),
675 .width = width,
676 .height = height,
677 .depth = 1,
678 .levels = 1,
679 .array_len = 1,
680 .samples = 1,
681 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
682 ISL_SURF_USAGE_TEXTURE_BIT |
683 ISL_SURF_USAGE_STORAGE_BIT,
684 .tiling_flags = (1 << mod_info->tiling));
685 assert(ok);
686 if (!ok) {
687 free(image);
688 return NULL;
689 }
690
691 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image", surf.size,
692 isl_tiling_to_i915_tiling(mod_info->tiling),
693 surf.row_pitch, 0);
694 if (image->bo == NULL) {
695 free(image);
696 return NULL;
697 }
698 image->width = width;
699 image->height = height;
700 image->pitch = surf.row_pitch;
701 image->modifier = modifier;
702
703 return image;
704 }
705
706 static __DRIimage *
707 intel_create_image(__DRIscreen *dri_screen,
708 int width, int height, int format,
709 unsigned int use,
710 void *loaderPrivate)
711 {
712 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
713 loaderPrivate);
714 }
715
716 static __DRIimage *
717 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
718 int width, int height, int format,
719 const uint64_t *modifiers,
720 const unsigned count,
721 void *loaderPrivate)
722 {
723 return intel_create_image_common(dri_screen, width, height, format, 0,
724 modifiers, count, loaderPrivate);
725 }
726
727 static GLboolean
728 intel_query_image(__DRIimage *image, int attrib, int *value)
729 {
730 switch (attrib) {
731 case __DRI_IMAGE_ATTRIB_STRIDE:
732 *value = image->pitch;
733 return true;
734 case __DRI_IMAGE_ATTRIB_HANDLE:
735 *value = image->bo->gem_handle;
736 return true;
737 case __DRI_IMAGE_ATTRIB_NAME:
738 return !brw_bo_flink(image->bo, (uint32_t *) value);
739 case __DRI_IMAGE_ATTRIB_FORMAT:
740 *value = image->dri_format;
741 return true;
742 case __DRI_IMAGE_ATTRIB_WIDTH:
743 *value = image->width;
744 return true;
745 case __DRI_IMAGE_ATTRIB_HEIGHT:
746 *value = image->height;
747 return true;
748 case __DRI_IMAGE_ATTRIB_COMPONENTS:
749 if (image->planar_format == NULL)
750 return false;
751 *value = image->planar_format->components;
752 return true;
753 case __DRI_IMAGE_ATTRIB_FD:
754 return !brw_bo_gem_export_to_prime(image->bo, value);
755 case __DRI_IMAGE_ATTRIB_FOURCC:
756 return intel_lookup_fourcc(image->dri_format, value);
757 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
758 *value = 1;
759 return true;
760 case __DRI_IMAGE_ATTRIB_OFFSET:
761 *value = image->offset;
762 return true;
763 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
764 *value = (image->modifier & 0xffffffff);
765 return true;
766 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
767 *value = ((image->modifier >> 32) & 0xffffffff);
768 return true;
769
770 default:
771 return false;
772 }
773 }
774
775 static __DRIimage *
776 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
777 {
778 __DRIimage *image;
779
780 image = calloc(1, sizeof *image);
781 if (image == NULL)
782 return NULL;
783
784 brw_bo_reference(orig_image->bo);
785 image->bo = orig_image->bo;
786 image->internal_format = orig_image->internal_format;
787 image->planar_format = orig_image->planar_format;
788 image->dri_format = orig_image->dri_format;
789 image->format = orig_image->format;
790 image->modifier = orig_image->modifier;
791 image->offset = orig_image->offset;
792 image->width = orig_image->width;
793 image->height = orig_image->height;
794 image->pitch = orig_image->pitch;
795 image->tile_x = orig_image->tile_x;
796 image->tile_y = orig_image->tile_y;
797 image->has_depthstencil = orig_image->has_depthstencil;
798 image->data = loaderPrivate;
799
800 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
801 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
802
803 return image;
804 }
805
806 static GLboolean
807 intel_validate_usage(__DRIimage *image, unsigned int use)
808 {
809 if (use & __DRI_IMAGE_USE_CURSOR) {
810 if (image->width != 64 || image->height != 64)
811 return GL_FALSE;
812 }
813
814 return GL_TRUE;
815 }
816
817 static __DRIimage *
818 intel_create_image_from_names(__DRIscreen *dri_screen,
819 int width, int height, int fourcc,
820 int *names, int num_names,
821 int *strides, int *offsets,
822 void *loaderPrivate)
823 {
824 struct intel_image_format *f = NULL;
825 __DRIimage *image;
826 int i, index;
827
828 if (dri_screen == NULL || names == NULL || num_names != 1)
829 return NULL;
830
831 f = intel_image_format_lookup(fourcc);
832 if (f == NULL)
833 return NULL;
834
835 image = intel_create_image_from_name(dri_screen, width, height,
836 __DRI_IMAGE_FORMAT_NONE,
837 names[0], strides[0],
838 loaderPrivate);
839
840 if (image == NULL)
841 return NULL;
842
843 image->planar_format = f;
844 for (i = 0; i < f->nplanes; i++) {
845 index = f->planes[i].buffer_index;
846 image->offsets[index] = offsets[index];
847 image->strides[index] = strides[index];
848 }
849
850 return image;
851 }
852
853 static __DRIimage *
854 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
855 int width, int height, int fourcc,
856 uint64_t modifier, int *fds, int num_fds,
857 int *strides, int *offsets,
858 void *loaderPrivate)
859 {
860 struct intel_screen *screen = dri_screen->driverPrivate;
861 struct intel_image_format *f;
862 __DRIimage *image;
863 unsigned tiled_height;
864 int i, index;
865
866 if (fds == NULL || num_fds < 1)
867 return NULL;
868
869 f = intel_image_format_lookup(fourcc);
870 if (f == NULL)
871 return NULL;
872
873 if (modifier != DRM_FORMAT_MOD_INVALID && !modifier_is_supported(modifier))
874 return NULL;
875
876 if (f->nplanes == 1)
877 image = intel_allocate_image(screen, f->planes[0].dri_format,
878 loaderPrivate);
879 else
880 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
881 loaderPrivate);
882
883 if (image == NULL)
884 return NULL;
885
886 image->width = width;
887 image->height = height;
888 image->pitch = strides[0];
889
890 image->planar_format = f;
891
892 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
893 if (image->bo == NULL) {
894 free(image);
895 return NULL;
896 }
897
898 /* We only support all planes from the same bo.
899 * brw_bo_gem_create_from_prime() should return the same pointer for all
900 * fds received here */
901 for (i = 1; i < num_fds; i++) {
902 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
903 brw_bo_unreference(aux);
904 if (aux != image->bo) {
905 brw_bo_unreference(image->bo);
906 free(image);
907 return NULL;
908 }
909 }
910
911 if (modifier != DRM_FORMAT_MOD_INVALID)
912 image->modifier = modifier;
913 else
914 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
915 tiled_height = get_tiled_height(image->modifier, height);
916
917 int size = 0;
918 for (i = 0; i < f->nplanes; i++) {
919 index = f->planes[i].buffer_index;
920 image->offsets[index] = offsets[index];
921 image->strides[index] = strides[index];
922
923 const int plane_height = tiled_height >> f->planes[i].height_shift;
924 const int end = offsets[index] + plane_height * strides[index];
925 if (size < end)
926 size = end;
927 }
928
929 /* Check that the requested image actually fits within the BO. 'size'
930 * is already relative to the offsets, so we don't need to add that. */
931 if (image->bo->size == 0) {
932 image->bo->size = size;
933 } else if (size > image->bo->size) {
934 brw_bo_unreference(image->bo);
935 free(image);
936 return NULL;
937 }
938
939 if (f->nplanes == 1) {
940 image->offset = image->offsets[0];
941 intel_image_warn_if_unaligned(image, __func__);
942 }
943
944 return image;
945 }
946
947 static __DRIimage *
948 intel_create_image_from_fds(__DRIscreen *dri_screen,
949 int width, int height, int fourcc,
950 int *fds, int num_fds, int *strides, int *offsets,
951 void *loaderPrivate)
952 {
953 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
954 DRM_FORMAT_MOD_INVALID,
955 fds, num_fds, strides, offsets,
956 loaderPrivate);
957 }
958
959 static __DRIimage *
960 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
961 int width, int height,
962 int fourcc, uint64_t modifier,
963 int *fds, int num_fds,
964 int *strides, int *offsets,
965 enum __DRIYUVColorSpace yuv_color_space,
966 enum __DRISampleRange sample_range,
967 enum __DRIChromaSiting horizontal_siting,
968 enum __DRIChromaSiting vertical_siting,
969 unsigned *error,
970 void *loaderPrivate)
971 {
972 __DRIimage *image;
973 struct intel_image_format *f = intel_image_format_lookup(fourcc);
974
975 if (!f) {
976 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
977 return NULL;
978 }
979
980 image = intel_create_image_from_fds_common(dri_screen, width, height,
981 fourcc, modifier,
982 fds, num_fds, strides, offsets,
983 loaderPrivate);
984
985 /*
986 * Invalid parameters and any inconsistencies between are assumed to be
987 * checked by the caller. Therefore besides unsupported formats one can fail
988 * only in allocation.
989 */
990 if (!image) {
991 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
992 return NULL;
993 }
994
995 image->dma_buf_imported = true;
996 image->yuv_color_space = yuv_color_space;
997 image->sample_range = sample_range;
998 image->horizontal_siting = horizontal_siting;
999 image->vertical_siting = vertical_siting;
1000
1001 *error = __DRI_IMAGE_ERROR_SUCCESS;
1002 return image;
1003 }
1004
1005 static __DRIimage *
1006 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1007 int width, int height, int fourcc,
1008 int *fds, int num_fds,
1009 int *strides, int *offsets,
1010 enum __DRIYUVColorSpace yuv_color_space,
1011 enum __DRISampleRange sample_range,
1012 enum __DRIChromaSiting horizontal_siting,
1013 enum __DRIChromaSiting vertical_siting,
1014 unsigned *error,
1015 void *loaderPrivate)
1016 {
1017 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1018 fourcc, DRM_FORMAT_MOD_INVALID,
1019 fds, num_fds, strides, offsets,
1020 yuv_color_space,
1021 sample_range,
1022 horizontal_siting,
1023 vertical_siting,
1024 error,
1025 loaderPrivate);
1026 }
1027
1028 static GLboolean
1029 intel_query_dma_buf_formats(__DRIscreen *screen, int max,
1030 int *formats, int *count)
1031 {
1032 int i, j = 0;
1033
1034 if (max == 0) {
1035 *count = ARRAY_SIZE(intel_image_formats) - 1; /* not SARGB */
1036 return true;
1037 }
1038
1039 for (i = 0; i < (ARRAY_SIZE(intel_image_formats)) && j < max; i++) {
1040 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888)
1041 continue;
1042 formats[j++] = intel_image_formats[i].fourcc;
1043 }
1044
1045 *count = j;
1046 return true;
1047 }
1048
1049 static GLboolean
1050 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1051 uint64_t *modifiers,
1052 unsigned int *external_only,
1053 int *count)
1054 {
1055 struct intel_screen *screen = _screen->driverPrivate;
1056 struct intel_image_format *f;
1057 int num_mods = 0, i;
1058
1059 f = intel_image_format_lookup(fourcc);
1060 if (f == NULL)
1061 return false;
1062
1063 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
1064 if (screen->devinfo.gen < tiling_modifier_map[i].since_gen)
1065 continue;
1066
1067 num_mods++;
1068 if (max == 0)
1069 continue;
1070
1071 modifiers[num_mods - 1] = tiling_modifier_map[i].modifier;
1072 if (num_mods >= max)
1073 break;
1074 }
1075
1076 if (external_only != NULL) {
1077 for (i = 0; i < num_mods && i < max; i++) {
1078 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1079 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1080 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV) {
1081 external_only[i] = GL_TRUE;
1082 }
1083 else {
1084 external_only[i] = GL_FALSE;
1085 }
1086 }
1087 }
1088
1089 *count = num_mods;
1090 return true;
1091 }
1092
1093 static __DRIimage *
1094 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1095 {
1096 int width, height, offset, stride, dri_format, index;
1097 struct intel_image_format *f;
1098 __DRIimage *image;
1099
1100 if (parent == NULL || parent->planar_format == NULL)
1101 return NULL;
1102
1103 f = parent->planar_format;
1104
1105 if (plane >= f->nplanes)
1106 return NULL;
1107
1108 width = parent->width >> f->planes[plane].width_shift;
1109 height = parent->height >> f->planes[plane].height_shift;
1110 dri_format = f->planes[plane].dri_format;
1111 index = f->planes[plane].buffer_index;
1112 offset = parent->offsets[index];
1113 stride = parent->strides[index];
1114
1115 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1116 if (image == NULL)
1117 return NULL;
1118
1119 if (offset + height * stride > parent->bo->size) {
1120 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
1121 free(image);
1122 return NULL;
1123 }
1124
1125 image->bo = parent->bo;
1126 brw_bo_reference(parent->bo);
1127 image->modifier = parent->modifier;
1128
1129 image->width = width;
1130 image->height = height;
1131 image->pitch = stride;
1132 image->offset = offset;
1133
1134 intel_image_warn_if_unaligned(image, __func__);
1135
1136 return image;
1137 }
1138
1139 static const __DRIimageExtension intelImageExtension = {
1140 .base = { __DRI_IMAGE, 15 },
1141
1142 .createImageFromName = intel_create_image_from_name,
1143 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1144 .destroyImage = intel_destroy_image,
1145 .createImage = intel_create_image,
1146 .queryImage = intel_query_image,
1147 .dupImage = intel_dup_image,
1148 .validateUsage = intel_validate_usage,
1149 .createImageFromNames = intel_create_image_from_names,
1150 .fromPlanar = intel_from_planar,
1151 .createImageFromTexture = intel_create_image_from_texture,
1152 .createImageFromFds = intel_create_image_from_fds,
1153 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1154 .blitImage = NULL,
1155 .getCapabilities = NULL,
1156 .mapImage = NULL,
1157 .unmapImage = NULL,
1158 .createImageWithModifiers = intel_create_image_with_modifiers,
1159 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1160 .queryDmaBufFormats = intel_query_dma_buf_formats,
1161 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1162 };
1163
1164 static uint64_t
1165 get_aperture_size(int fd)
1166 {
1167 struct drm_i915_gem_get_aperture aperture;
1168
1169 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1170 return 0;
1171
1172 return aperture.aper_size;
1173 }
1174
1175 static int
1176 brw_query_renderer_integer(__DRIscreen *dri_screen,
1177 int param, unsigned int *value)
1178 {
1179 const struct intel_screen *const screen =
1180 (struct intel_screen *) dri_screen->driverPrivate;
1181
1182 switch (param) {
1183 case __DRI2_RENDERER_VENDOR_ID:
1184 value[0] = 0x8086;
1185 return 0;
1186 case __DRI2_RENDERER_DEVICE_ID:
1187 value[0] = screen->deviceID;
1188 return 0;
1189 case __DRI2_RENDERER_ACCELERATED:
1190 value[0] = 1;
1191 return 0;
1192 case __DRI2_RENDERER_VIDEO_MEMORY: {
1193 /* Once a batch uses more than 75% of the maximum mappable size, we
1194 * assume that there's some fragmentation, and we start doing extra
1195 * flushing, etc. That's the big cliff apps will care about.
1196 */
1197 const unsigned gpu_mappable_megabytes =
1198 screen->aperture_threshold / (1024 * 1024);
1199
1200 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1201 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1202
1203 if (system_memory_pages <= 0 || system_page_size <= 0)
1204 return -1;
1205
1206 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1207 * (uint64_t) system_page_size;
1208
1209 const unsigned system_memory_megabytes =
1210 (unsigned) (system_memory_bytes / (1024 * 1024));
1211
1212 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1213 return 0;
1214 }
1215 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1216 value[0] = 1;
1217 return 0;
1218 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1219 value[0] = 1;
1220 return 0;
1221 default:
1222 return driQueryRendererIntegerCommon(dri_screen, param, value);
1223 }
1224
1225 return -1;
1226 }
1227
1228 static int
1229 brw_query_renderer_string(__DRIscreen *dri_screen,
1230 int param, const char **value)
1231 {
1232 const struct intel_screen *screen =
1233 (struct intel_screen *) dri_screen->driverPrivate;
1234
1235 switch (param) {
1236 case __DRI2_RENDERER_VENDOR_ID:
1237 value[0] = brw_vendor_string;
1238 return 0;
1239 case __DRI2_RENDERER_DEVICE_ID:
1240 value[0] = brw_get_renderer_string(screen);
1241 return 0;
1242 default:
1243 break;
1244 }
1245
1246 return -1;
1247 }
1248
1249 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1250 .base = { __DRI2_RENDERER_QUERY, 1 },
1251
1252 .queryInteger = brw_query_renderer_integer,
1253 .queryString = brw_query_renderer_string
1254 };
1255
1256 static const __DRIrobustnessExtension dri2Robustness = {
1257 .base = { __DRI2_ROBUSTNESS, 1 }
1258 };
1259
1260 static const __DRIextension *screenExtensions[] = {
1261 &intelTexBufferExtension.base,
1262 &intelFenceExtension.base,
1263 &intelFlushExtension.base,
1264 &intelImageExtension.base,
1265 &intelRendererQueryExtension.base,
1266 &dri2ConfigQueryExtension.base,
1267 NULL
1268 };
1269
1270 static const __DRIextension *intelRobustScreenExtensions[] = {
1271 &intelTexBufferExtension.base,
1272 &intelFenceExtension.base,
1273 &intelFlushExtension.base,
1274 &intelImageExtension.base,
1275 &intelRendererQueryExtension.base,
1276 &dri2ConfigQueryExtension.base,
1277 &dri2Robustness.base,
1278 NULL
1279 };
1280
1281 static int
1282 intel_get_param(struct intel_screen *screen, int param, int *value)
1283 {
1284 int ret = 0;
1285 struct drm_i915_getparam gp;
1286
1287 memset(&gp, 0, sizeof(gp));
1288 gp.param = param;
1289 gp.value = value;
1290
1291 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1292 ret = -errno;
1293 if (ret != -EINVAL)
1294 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1295 }
1296
1297 return ret;
1298 }
1299
1300 static bool
1301 intel_get_boolean(struct intel_screen *screen, int param)
1302 {
1303 int value = 0;
1304 return (intel_get_param(screen, param, &value) == 0) && value;
1305 }
1306
1307 static int
1308 intel_get_integer(struct intel_screen *screen, int param)
1309 {
1310 int value = -1;
1311
1312 if (intel_get_param(screen, param, &value) == 0)
1313 return value;
1314
1315 return -1;
1316 }
1317
1318 static void
1319 intelDestroyScreen(__DRIscreen * sPriv)
1320 {
1321 struct intel_screen *screen = sPriv->driverPrivate;
1322
1323 brw_bufmgr_destroy(screen->bufmgr);
1324 driDestroyOptionInfo(&screen->optionCache);
1325
1326 ralloc_free(screen);
1327 sPriv->driverPrivate = NULL;
1328 }
1329
1330
1331 /**
1332 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1333 *
1334 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1335 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1336 * this does not allocate GPU memory.
1337 */
1338 static GLboolean
1339 intelCreateBuffer(__DRIscreen *dri_screen,
1340 __DRIdrawable * driDrawPriv,
1341 const struct gl_config * mesaVis, GLboolean isPixmap)
1342 {
1343 struct intel_renderbuffer *rb;
1344 struct intel_screen *screen = (struct intel_screen *)
1345 dri_screen->driverPrivate;
1346 mesa_format rgbFormat;
1347 unsigned num_samples =
1348 intel_quantize_num_samples(screen, mesaVis->samples);
1349
1350 if (isPixmap)
1351 return false;
1352
1353 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1354 if (!fb)
1355 return false;
1356
1357 _mesa_initialize_window_framebuffer(fb, mesaVis);
1358
1359 if (screen->winsys_msaa_samples_override != -1) {
1360 num_samples = screen->winsys_msaa_samples_override;
1361 fb->Visual.samples = num_samples;
1362 }
1363
1364 if (mesaVis->redBits == 5) {
1365 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1366 : MESA_FORMAT_B5G6R5_UNORM;
1367 } else if (mesaVis->sRGBCapable) {
1368 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1369 : MESA_FORMAT_B8G8R8A8_SRGB;
1370 } else if (mesaVis->alphaBits == 0) {
1371 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1372 : MESA_FORMAT_B8G8R8X8_UNORM;
1373 } else {
1374 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1375 : MESA_FORMAT_B8G8R8A8_SRGB;
1376 fb->Visual.sRGBCapable = true;
1377 }
1378
1379 /* setup the hardware-based renderbuffers */
1380 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1381 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1382
1383 if (mesaVis->doubleBufferMode) {
1384 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1385 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1386 }
1387
1388 /*
1389 * Assert here that the gl_config has an expected depth/stencil bit
1390 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1391 * which constructs the advertised configs.)
1392 */
1393 if (mesaVis->depthBits == 24) {
1394 assert(mesaVis->stencilBits == 8);
1395
1396 if (screen->devinfo.has_hiz_and_separate_stencil) {
1397 rb = intel_create_private_renderbuffer(screen,
1398 MESA_FORMAT_Z24_UNORM_X8_UINT,
1399 num_samples);
1400 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1401 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1402 num_samples);
1403 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1404 } else {
1405 /*
1406 * Use combined depth/stencil. Note that the renderbuffer is
1407 * attached to two attachment points.
1408 */
1409 rb = intel_create_private_renderbuffer(screen,
1410 MESA_FORMAT_Z24_UNORM_S8_UINT,
1411 num_samples);
1412 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1413 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1414 }
1415 }
1416 else if (mesaVis->depthBits == 16) {
1417 assert(mesaVis->stencilBits == 0);
1418 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1419 num_samples);
1420 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1421 }
1422 else {
1423 assert(mesaVis->depthBits == 0);
1424 assert(mesaVis->stencilBits == 0);
1425 }
1426
1427 /* now add any/all software-based renderbuffers we may need */
1428 _swrast_add_soft_renderbuffers(fb,
1429 false, /* never sw color */
1430 false, /* never sw depth */
1431 false, /* never sw stencil */
1432 mesaVis->accumRedBits > 0,
1433 false, /* never sw alpha */
1434 false /* never sw aux */ );
1435 driDrawPriv->driverPrivate = fb;
1436
1437 return true;
1438 }
1439
1440 static void
1441 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1442 {
1443 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1444
1445 _mesa_reference_framebuffer(&fb, NULL);
1446 }
1447
1448 static void
1449 intel_detect_sseu(struct intel_screen *screen)
1450 {
1451 assert(screen->devinfo.gen >= 8);
1452 int ret;
1453
1454 screen->subslice_total = -1;
1455 screen->eu_total = -1;
1456
1457 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1458 &screen->subslice_total);
1459 if (ret < 0 && ret != -EINVAL)
1460 goto err_out;
1461
1462 ret = intel_get_param(screen,
1463 I915_PARAM_EU_TOTAL, &screen->eu_total);
1464 if (ret < 0 && ret != -EINVAL)
1465 goto err_out;
1466
1467 /* Without this information, we cannot get the right Braswell brandstrings,
1468 * and we have to use conservative numbers for GPGPU on many platforms, but
1469 * otherwise, things will just work.
1470 */
1471 if (screen->subslice_total < 1 || screen->eu_total < 1)
1472 _mesa_warning(NULL,
1473 "Kernel 4.1 required to properly query GPU properties.\n");
1474
1475 return;
1476
1477 err_out:
1478 screen->subslice_total = -1;
1479 screen->eu_total = -1;
1480 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1481 }
1482
1483 static bool
1484 intel_init_bufmgr(struct intel_screen *screen)
1485 {
1486 __DRIscreen *dri_screen = screen->driScrnPriv;
1487
1488 if (getenv("INTEL_NO_HW") != NULL)
1489 screen->no_hw = true;
1490
1491 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd, BATCH_SZ);
1492 if (screen->bufmgr == NULL) {
1493 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1494 __func__, __LINE__);
1495 return false;
1496 }
1497
1498 if (!intel_get_boolean(screen, I915_PARAM_HAS_WAIT_TIMEOUT)) {
1499 fprintf(stderr, "[%s: %u] Kernel 3.6 required.\n", __func__, __LINE__);
1500 return false;
1501 }
1502
1503 return true;
1504 }
1505
1506 static bool
1507 intel_detect_swizzling(struct intel_screen *screen)
1508 {
1509 struct brw_bo *buffer;
1510 unsigned flags = 0;
1511 uint32_t aligned_pitch;
1512 uint32_t tiling = I915_TILING_X;
1513 uint32_t swizzle_mode = 0;
1514
1515 buffer = brw_bo_alloc_tiled_2d(screen->bufmgr, "swizzle test",
1516 64, 64, 4, tiling, &aligned_pitch, flags);
1517 if (buffer == NULL)
1518 return false;
1519
1520 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1521 brw_bo_unreference(buffer);
1522
1523 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1524 return false;
1525 else
1526 return true;
1527 }
1528
1529 static int
1530 intel_detect_timestamp(struct intel_screen *screen)
1531 {
1532 uint64_t dummy = 0, last = 0;
1533 int upper, lower, loops;
1534
1535 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1536 * TIMESTAMP register being shifted and the low 32bits always zero.
1537 *
1538 * More recent kernels offer an interface to read the full 36bits
1539 * everywhere.
1540 */
1541 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1542 return 3;
1543
1544 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1545 * upper 32bits for a rapidly changing timestamp.
1546 */
1547 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1548 return 0;
1549
1550 upper = lower = 0;
1551 for (loops = 0; loops < 10; loops++) {
1552 /* The TIMESTAMP should change every 80ns, so several round trips
1553 * through the kernel should be enough to advance it.
1554 */
1555 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1556 return 0;
1557
1558 upper += (dummy >> 32) != (last >> 32);
1559 if (upper > 1) /* beware 32bit counter overflow */
1560 return 2; /* upper dword holds the low 32bits of the timestamp */
1561
1562 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1563 if (lower > 1)
1564 return 1; /* timestamp is unshifted */
1565
1566 last = dummy;
1567 }
1568
1569 /* No advancement? No timestamp! */
1570 return 0;
1571 }
1572
1573 /**
1574 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1575 *
1576 * Some combinations of hardware and kernel versions allow this feature,
1577 * while others don't. Instead of trying to enumerate every case, just
1578 * try and write a register and see if works.
1579 */
1580 static bool
1581 intel_detect_pipelined_register(struct intel_screen *screen,
1582 int reg, uint32_t expected_value, bool reset)
1583 {
1584 if (screen->no_hw)
1585 return false;
1586
1587 struct brw_bo *results, *bo;
1588 uint32_t *batch;
1589 uint32_t offset = 0;
1590 void *map;
1591 bool success = false;
1592
1593 /* Create a zero'ed temporary buffer for reading our results */
1594 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1595 if (results == NULL)
1596 goto err;
1597
1598 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1599 if (bo == NULL)
1600 goto err_results;
1601
1602 map = brw_bo_map(NULL, bo, MAP_WRITE);
1603 if (!map)
1604 goto err_batch;
1605
1606 batch = map;
1607
1608 /* Write the register. */
1609 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1610 *batch++ = reg;
1611 *batch++ = expected_value;
1612
1613 /* Save the register's value back to the buffer. */
1614 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1615 *batch++ = reg;
1616 struct drm_i915_gem_relocation_entry reloc = {
1617 .offset = (char *) batch - (char *) map,
1618 .delta = offset * sizeof(uint32_t),
1619 .target_handle = results->gem_handle,
1620 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1621 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1622 };
1623 *batch++ = reloc.presumed_offset + reloc.delta;
1624
1625 /* And afterwards clear the register */
1626 if (reset) {
1627 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1628 *batch++ = reg;
1629 *batch++ = 0;
1630 }
1631
1632 *batch++ = MI_BATCH_BUFFER_END;
1633
1634 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1635 {
1636 .handle = results->gem_handle,
1637 },
1638 {
1639 .handle = bo->gem_handle,
1640 .relocation_count = 1,
1641 .relocs_ptr = (uintptr_t) &reloc,
1642 }
1643 };
1644
1645 struct drm_i915_gem_execbuffer2 execbuf = {
1646 .buffers_ptr = (uintptr_t) exec_objects,
1647 .buffer_count = 2,
1648 .batch_len = ALIGN((char *) batch - (char *) map, 8),
1649 .flags = I915_EXEC_RENDER,
1650 };
1651
1652 /* Don't bother with error checking - if the execbuf fails, the
1653 * value won't be written and we'll just report that there's no access.
1654 */
1655 __DRIscreen *dri_screen = screen->driScrnPriv;
1656 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1657
1658 /* Check whether the value got written. */
1659 void *results_map = brw_bo_map(NULL, results, MAP_READ);
1660 if (results_map) {
1661 success = *((uint32_t *)results_map + offset) == expected_value;
1662 brw_bo_unmap(results);
1663 }
1664
1665 err_batch:
1666 brw_bo_unreference(bo);
1667 err_results:
1668 brw_bo_unreference(results);
1669 err:
1670 return success;
1671 }
1672
1673 static bool
1674 intel_detect_pipelined_so(struct intel_screen *screen)
1675 {
1676 const struct gen_device_info *devinfo = &screen->devinfo;
1677
1678 /* Supposedly, Broadwell just works. */
1679 if (devinfo->gen >= 8)
1680 return true;
1681
1682 if (devinfo->gen <= 6)
1683 return false;
1684
1685 /* See the big explanation about command parser versions below */
1686 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1687 return true;
1688
1689 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1690 * statistics registers), and we already reset it to zero before using it.
1691 */
1692 return intel_detect_pipelined_register(screen,
1693 GEN7_SO_WRITE_OFFSET(0),
1694 0x1337d0d0,
1695 false);
1696 }
1697
1698 /**
1699 * Return array of MSAA modes supported by the hardware. The array is
1700 * zero-terminated and sorted in decreasing order.
1701 */
1702 const int*
1703 intel_supported_msaa_modes(const struct intel_screen *screen)
1704 {
1705 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1706 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1707 static const int gen7_modes[] = {8, 4, 0, -1};
1708 static const int gen6_modes[] = {4, 0, -1};
1709 static const int gen4_modes[] = {0, -1};
1710
1711 if (screen->devinfo.gen >= 9) {
1712 return gen9_modes;
1713 } else if (screen->devinfo.gen >= 8) {
1714 return gen8_modes;
1715 } else if (screen->devinfo.gen >= 7) {
1716 return gen7_modes;
1717 } else if (screen->devinfo.gen == 6) {
1718 return gen6_modes;
1719 } else {
1720 return gen4_modes;
1721 }
1722 }
1723
1724 static __DRIconfig**
1725 intel_screen_make_configs(__DRIscreen *dri_screen)
1726 {
1727 static const mesa_format formats[] = {
1728 MESA_FORMAT_B5G6R5_UNORM,
1729 MESA_FORMAT_B8G8R8A8_UNORM,
1730 MESA_FORMAT_B8G8R8X8_UNORM,
1731
1732 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
1733 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
1734 * server may disagree on which format the GLXFBConfig represents,
1735 * resulting in swapped color channels.
1736 *
1737 * The problem, as of 2017-05-30:
1738 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
1739 * order and chooses the first __DRIconfig with the expected channel
1740 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
1741 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
1742 *
1743 * EGL does not suffer from this problem. It correctly compares the
1744 * channel masks when matching EGLConfig to __DRIconfig.
1745 */
1746
1747 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
1748 MESA_FORMAT_R8G8B8A8_UNORM,
1749
1750 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
1751 MESA_FORMAT_R8G8B8X8_UNORM,
1752 };
1753
1754 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1755 static const GLenum back_buffer_modes[] = {
1756 GLX_SWAP_UNDEFINED_OML, GLX_NONE,
1757 };
1758
1759 static const uint8_t singlesample_samples[1] = {0};
1760 static const uint8_t multisample_samples[2] = {4, 8};
1761
1762 struct intel_screen *screen = dri_screen->driverPrivate;
1763 const struct gen_device_info *devinfo = &screen->devinfo;
1764 uint8_t depth_bits[4], stencil_bits[4];
1765 __DRIconfig **configs = NULL;
1766
1767 /* Generate singlesample configs without accumulation buffer. */
1768 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1769 __DRIconfig **new_configs;
1770 int num_depth_stencil_bits = 2;
1771
1772 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1773 * buffer that has a different number of bits per pixel than the color
1774 * buffer, gen >= 6 supports this.
1775 */
1776 depth_bits[0] = 0;
1777 stencil_bits[0] = 0;
1778
1779 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1780 depth_bits[1] = 16;
1781 stencil_bits[1] = 0;
1782 if (devinfo->gen >= 6) {
1783 depth_bits[2] = 24;
1784 stencil_bits[2] = 8;
1785 num_depth_stencil_bits = 3;
1786 }
1787 } else {
1788 depth_bits[1] = 24;
1789 stencil_bits[1] = 8;
1790 }
1791
1792 new_configs = driCreateConfigs(formats[i],
1793 depth_bits,
1794 stencil_bits,
1795 num_depth_stencil_bits,
1796 back_buffer_modes, 2,
1797 singlesample_samples, 1,
1798 false, false);
1799 configs = driConcatConfigs(configs, new_configs);
1800 }
1801
1802 /* Generate the minimum possible set of configs that include an
1803 * accumulation buffer.
1804 */
1805 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1806 __DRIconfig **new_configs;
1807
1808 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1809 depth_bits[0] = 16;
1810 stencil_bits[0] = 0;
1811 } else {
1812 depth_bits[0] = 24;
1813 stencil_bits[0] = 8;
1814 }
1815
1816 new_configs = driCreateConfigs(formats[i],
1817 depth_bits, stencil_bits, 1,
1818 back_buffer_modes, 1,
1819 singlesample_samples, 1,
1820 true, false);
1821 configs = driConcatConfigs(configs, new_configs);
1822 }
1823
1824 /* Generate multisample configs.
1825 *
1826 * This loop breaks early, and hence is a no-op, on gen < 6.
1827 *
1828 * Multisample configs must follow the singlesample configs in order to
1829 * work around an X server bug present in 1.12. The X server chooses to
1830 * associate the first listed RGBA888-Z24S8 config, regardless of its
1831 * sample count, with the 32-bit depth visual used for compositing.
1832 *
1833 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1834 * supported. Singlebuffer configs are not supported because no one wants
1835 * them.
1836 */
1837 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1838 if (devinfo->gen < 6)
1839 break;
1840
1841 __DRIconfig **new_configs;
1842 const int num_depth_stencil_bits = 2;
1843 int num_msaa_modes = 0;
1844
1845 depth_bits[0] = 0;
1846 stencil_bits[0] = 0;
1847
1848 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1849 depth_bits[1] = 16;
1850 stencil_bits[1] = 0;
1851 } else {
1852 depth_bits[1] = 24;
1853 stencil_bits[1] = 8;
1854 }
1855
1856 if (devinfo->gen >= 7)
1857 num_msaa_modes = 2;
1858 else if (devinfo->gen == 6)
1859 num_msaa_modes = 1;
1860
1861 new_configs = driCreateConfigs(formats[i],
1862 depth_bits,
1863 stencil_bits,
1864 num_depth_stencil_bits,
1865 back_buffer_modes, 1,
1866 multisample_samples,
1867 num_msaa_modes,
1868 false, false);
1869 configs = driConcatConfigs(configs, new_configs);
1870 }
1871
1872 if (configs == NULL) {
1873 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1874 __LINE__);
1875 return NULL;
1876 }
1877
1878 return configs;
1879 }
1880
1881 static void
1882 set_max_gl_versions(struct intel_screen *screen)
1883 {
1884 __DRIscreen *dri_screen = screen->driScrnPriv;
1885 const bool has_astc = screen->devinfo.gen >= 9;
1886
1887 switch (screen->devinfo.gen) {
1888 case 10:
1889 case 9:
1890 case 8:
1891 dri_screen->max_gl_core_version = 45;
1892 dri_screen->max_gl_compat_version = 30;
1893 dri_screen->max_gl_es1_version = 11;
1894 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1895 break;
1896 case 7:
1897 dri_screen->max_gl_core_version = 33;
1898 if (can_do_pipelined_register_writes(screen)) {
1899 dri_screen->max_gl_core_version = 42;
1900 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
1901 dri_screen->max_gl_core_version = 43;
1902 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
1903 dri_screen->max_gl_core_version = 45;
1904 }
1905 dri_screen->max_gl_compat_version = 30;
1906 dri_screen->max_gl_es1_version = 11;
1907 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1908 break;
1909 case 6:
1910 dri_screen->max_gl_core_version = 33;
1911 dri_screen->max_gl_compat_version = 30;
1912 dri_screen->max_gl_es1_version = 11;
1913 dri_screen->max_gl_es2_version = 30;
1914 break;
1915 case 5:
1916 case 4:
1917 dri_screen->max_gl_core_version = 0;
1918 dri_screen->max_gl_compat_version = 21;
1919 dri_screen->max_gl_es1_version = 11;
1920 dri_screen->max_gl_es2_version = 20;
1921 break;
1922 default:
1923 unreachable("unrecognized intel_screen::gen");
1924 }
1925 }
1926
1927 /**
1928 * Return the revision (generally the revid field of the PCI header) of the
1929 * graphics device.
1930 *
1931 * XXX: This function is useful to keep around even if it is not currently in
1932 * use. It is necessary for new platforms and revision specific workarounds or
1933 * features. Please don't remove it so that we know it at least continues to
1934 * build.
1935 */
1936 static __attribute__((__unused__)) int
1937 brw_get_revision(int fd)
1938 {
1939 struct drm_i915_getparam gp;
1940 int revision;
1941 int ret;
1942
1943 memset(&gp, 0, sizeof(gp));
1944 gp.param = I915_PARAM_REVISION;
1945 gp.value = &revision;
1946
1947 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1948 if (ret)
1949 revision = -1;
1950
1951 return revision;
1952 }
1953
1954 static void
1955 shader_debug_log_mesa(void *data, const char *fmt, ...)
1956 {
1957 struct brw_context *brw = (struct brw_context *)data;
1958 va_list args;
1959
1960 va_start(args, fmt);
1961 GLuint msg_id = 0;
1962 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1963 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1964 MESA_DEBUG_TYPE_OTHER,
1965 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1966 va_end(args);
1967 }
1968
1969 static void
1970 shader_perf_log_mesa(void *data, const char *fmt, ...)
1971 {
1972 struct brw_context *brw = (struct brw_context *)data;
1973
1974 va_list args;
1975 va_start(args, fmt);
1976
1977 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1978 va_list args_copy;
1979 va_copy(args_copy, args);
1980 vfprintf(stderr, fmt, args_copy);
1981 va_end(args_copy);
1982 }
1983
1984 if (brw->perf_debug) {
1985 GLuint msg_id = 0;
1986 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1987 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1988 MESA_DEBUG_TYPE_PERFORMANCE,
1989 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
1990 }
1991 va_end(args);
1992 }
1993
1994 static int
1995 parse_devid_override(const char *devid_override)
1996 {
1997 static const struct {
1998 const char *name;
1999 int pci_id;
2000 } name_map[] = {
2001 { "brw", 0x2a02 },
2002 { "g4x", 0x2a42 },
2003 { "ilk", 0x0042 },
2004 { "snb", 0x0126 },
2005 { "ivb", 0x016a },
2006 { "hsw", 0x0d2e },
2007 { "byt", 0x0f33 },
2008 { "bdw", 0x162e },
2009 { "skl", 0x1912 },
2010 { "kbl", 0x5912 },
2011 { "cnl", 0x5a52 },
2012 };
2013
2014 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
2015 if (!strcmp(name_map[i].name, devid_override))
2016 return name_map[i].pci_id;
2017 }
2018
2019 return strtod(devid_override, NULL);
2020 }
2021
2022 /**
2023 * Get the PCI ID for the device. This can be overridden by setting the
2024 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
2025 *
2026 * Returns -1 on ioctl failure.
2027 */
2028 static int
2029 get_pci_device_id(struct intel_screen *screen)
2030 {
2031 if (geteuid() == getuid()) {
2032 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
2033 if (devid_override) {
2034 screen->no_hw = true;
2035 return parse_devid_override(devid_override);
2036 }
2037 }
2038
2039 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
2040 }
2041
2042 /**
2043 * This is the driver specific part of the createNewScreen entry point.
2044 * Called when using DRI2.
2045 *
2046 * \return the struct gl_config supported by this driver
2047 */
2048 static const
2049 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2050 {
2051 struct intel_screen *screen;
2052
2053 if (dri_screen->image.loader) {
2054 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2055 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2056 fprintf(stderr,
2057 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2058 "support required\n");
2059 return NULL;
2060 }
2061
2062 /* Allocate the private area */
2063 screen = rzalloc(NULL, struct intel_screen);
2064 if (!screen) {
2065 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2066 return NULL;
2067 }
2068 /* parse information in __driConfigOptions */
2069 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
2070
2071 screen->driScrnPriv = dri_screen;
2072 dri_screen->driverPrivate = (void *) screen;
2073
2074 screen->deviceID = get_pci_device_id(screen);
2075
2076 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
2077 return NULL;
2078
2079 if (!intel_init_bufmgr(screen))
2080 return NULL;
2081
2082 const struct gen_device_info *devinfo = &screen->devinfo;
2083
2084 brw_process_intel_debug_variable();
2085
2086 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2087 fprintf(stderr,
2088 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2089 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2090 }
2091
2092 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2093 /* Theorectically unlimited! At least for individual objects...
2094 *
2095 * Currently the entire (global) address space for all GTT maps is
2096 * limited to 64bits. That is all objects on the system that are
2097 * setup for GTT mmapping must fit within 64bits. An attempt to use
2098 * one that exceeds the limit with fail in brw_bo_map_gtt().
2099 *
2100 * Long before we hit that limit, we will be practically limited by
2101 * that any single object must fit in physical memory (RAM). The upper
2102 * limit on the CPU's address space is currently 48bits (Skylake), of
2103 * which only 39bits can be physical memory. (The GPU itself also has
2104 * a 48bit addressable virtual space.) We can fit over 32 million
2105 * objects of the current maximum allocable size before running out
2106 * of mmap space.
2107 */
2108 screen->max_gtt_map_object_size = UINT64_MAX;
2109 } else {
2110 /* Estimate the size of the mappable aperture into the GTT. There's an
2111 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2112 * It turns out it's basically always 256MB, though some ancient hardware
2113 * was smaller.
2114 */
2115 uint32_t gtt_size = 256 * 1024 * 1024;
2116
2117 /* We don't want to map two objects such that a memcpy between them would
2118 * just fault one mapping in and then the other over and over forever. So
2119 * we would need to divide the GTT size by 2. Additionally, some GTT is
2120 * taken up by things like the framebuffer and the ringbuffer and such, so
2121 * be more conservative.
2122 */
2123 screen->max_gtt_map_object_size = gtt_size / 4;
2124 }
2125
2126 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
2127
2128 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2129 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2130
2131 isl_device_init(&screen->isl_dev, &screen->devinfo,
2132 screen->hw_has_swizzling);
2133
2134 /* GENs prior to 8 do not support EU/Subslice info */
2135 if (devinfo->gen >= 8) {
2136 intel_detect_sseu(screen);
2137 } else if (devinfo->gen == 7) {
2138 screen->subslice_total = 1 << (devinfo->gt - 1);
2139 }
2140
2141 /* Gen7-7.5 kernel requirements / command parser saga:
2142 *
2143 * - pre-v3.16:
2144 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2145 *
2146 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2147 * all batches secure, allowing them to use any feature with no checking.
2148 * This is effectively equivalent to a command parser version of
2149 * \infinity - everything is possible.
2150 *
2151 * The command parser does not exist, and querying the version will
2152 * return -EINVAL.
2153 *
2154 * - v3.16:
2155 * The kernel enables the command parser by default, for systems with
2156 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2157 * hardware checker is still enabled, so Haswell and Baytrail cannot
2158 * do anything.
2159 *
2160 * Ivybridge goes from "everything is possible" to "only what the
2161 * command parser allows" (if the user boots with i915.cmd_parser=0,
2162 * then everything is possible again). We can only safely use features
2163 * allowed by the supported command parser version.
2164 *
2165 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2166 * implemented by the kernel, even if it's turned off. So, checking
2167 * for version > 0 does not mean that you can write registers. We have
2168 * to try it and see. The version does, however, indicate the age of
2169 * the kernel.
2170 *
2171 * Instead of matching the hardware checker's behavior of converting
2172 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2173 * -EINVAL, making it dangerous to try and use privileged features.
2174 *
2175 * Effective command parser versions:
2176 * - Haswell: 0 (reporting 1, writes don't work)
2177 * - Baytrail: 0 (reporting 1, writes don't work)
2178 * - Ivybridge: 1 (enabled) or infinite (disabled)
2179 *
2180 * - v3.17:
2181 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2182 * effectively version 1 (enabled) or infinite (disabled).
2183 *
2184 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2185 * Command parser v2 supports predicate writes.
2186 *
2187 * - Haswell: 0 (reporting 1, writes don't work)
2188 * - Baytrail: 2 (enabled) or infinite (disabled)
2189 * - Ivybridge: 2 (enabled) or infinite (disabled)
2190 *
2191 * So version >= 2 is enough to know that Ivybridge and Baytrail
2192 * will work. Haswell still can't do anything.
2193 *
2194 * - v4.0: Version 3 happened. Largely not relevant.
2195 *
2196 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2197 * L3 config registers are properly saved and restored as part
2198 * of the hardware context. We can approximately detect this point
2199 * in time by checking if I915_PARAM_REVISION is recognized - it
2200 * landed in a later commit, but in the same release cycle.
2201 *
2202 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2203 * Command parser finally gains secure batch promotion. On Haswell,
2204 * the hardware checker gets disabled, which finally allows it to do
2205 * privileged commands.
2206 *
2207 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2208 * - Haswell: 3 (enabled) or 0 (disabled)
2209 * - Baytrail: 3 (enabled) or infinite (disabled)
2210 * - Ivybridge: 3 (enabled) or infinite (disabled)
2211 *
2212 * Unfortunately, detecting this point in time is tricky, because
2213 * no version bump happened when this important change occurred.
2214 * On Haswell, if we can write any register, then the kernel is at
2215 * least this new, and we can start trusting the version number.
2216 *
2217 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2218 * Command parser reaches version 4, allowing access to Haswell
2219 * atomic scratch and chicken3 registers. If version >= 4, we know
2220 * the kernel is new enough to support privileged features on all
2221 * hardware. However, the user might have disabled it...and the
2222 * kernel will still report version 4. So we still have to guess
2223 * and check.
2224 *
2225 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2226 * Command parser v5 whitelists indirect compute shader dispatch
2227 * registers, needed for OpenGL 4.3 and later.
2228 *
2229 * - v4.8:
2230 * Command parser v7 lets us use MI_MATH on Haswell.
2231 *
2232 * Additionally, the kernel begins reporting version 0 when
2233 * the command parser is disabled, allowing us to skip the
2234 * guess-and-check step on Haswell. Unfortunately, this also
2235 * means that we can no longer use it as an indicator of the
2236 * age of the kernel.
2237 */
2238 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2239 &screen->cmd_parser_version) < 0) {
2240 /* Command parser does not exist - getparam is unrecognized */
2241 screen->cmd_parser_version = 0;
2242 }
2243
2244 /* Kernel 4.13 retuired for exec object capture */
2245 #ifndef I915_PARAM_HAS_EXEC_CAPTURE
2246 #define I915_PARAM_HAS_EXEC_CAPTURE 45
2247 #endif
2248 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2249 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2250 }
2251
2252 if (!intel_detect_pipelined_so(screen)) {
2253 /* We can't do anything, so the effective version is 0. */
2254 screen->cmd_parser_version = 0;
2255 } else {
2256 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2257 }
2258
2259 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2260 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2261
2262 /* Haswell requires command parser version 4 in order to have L3
2263 * atomic scratch1 and chicken3 bits
2264 */
2265 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2266 screen->kernel_features |=
2267 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2268 }
2269
2270 /* Haswell requires command parser version 6 in order to write to the
2271 * MI_MATH GPR registers, and version 7 in order to use
2272 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2273 */
2274 if (devinfo->gen >= 8 ||
2275 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2276 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2277 }
2278
2279 /* Gen7 needs at least command parser version 5 to support compute */
2280 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2281 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2282
2283 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2284 if (force_msaa) {
2285 screen->winsys_msaa_samples_override =
2286 intel_quantize_num_samples(screen, atoi(force_msaa));
2287 printf("Forcing winsys sample count to %d\n",
2288 screen->winsys_msaa_samples_override);
2289 } else {
2290 screen->winsys_msaa_samples_override = -1;
2291 }
2292
2293 set_max_gl_versions(screen);
2294
2295 /* Notification of GPU resets requires hardware contexts and a kernel new
2296 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2297 * supported, calling it with a context of 0 will either generate EPERM or
2298 * no error. If the ioctl is not supported, it always generate EINVAL.
2299 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2300 * extension to the loader.
2301 *
2302 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2303 */
2304 if (devinfo->gen >= 6) {
2305 struct drm_i915_reset_stats stats;
2306 memset(&stats, 0, sizeof(stats));
2307
2308 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2309
2310 screen->has_context_reset_notification =
2311 (ret != -1 || errno != EINVAL);
2312 }
2313
2314 dri_screen->extensions = !screen->has_context_reset_notification
2315 ? screenExtensions : intelRobustScreenExtensions;
2316
2317 screen->compiler = brw_compiler_create(screen, devinfo);
2318 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2319 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2320 screen->program_id = 1;
2321
2322 screen->has_exec_fence =
2323 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2324
2325 intel_screen_init_surface_formats(screen);
2326
2327 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2328 }
2329
2330 struct intel_buffer {
2331 __DRIbuffer base;
2332 struct brw_bo *bo;
2333 };
2334
2335 static __DRIbuffer *
2336 intelAllocateBuffer(__DRIscreen *dri_screen,
2337 unsigned attachment, unsigned format,
2338 int width, int height)
2339 {
2340 struct intel_buffer *intelBuffer;
2341 struct intel_screen *screen = dri_screen->driverPrivate;
2342
2343 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2344 attachment == __DRI_BUFFER_BACK_LEFT);
2345
2346 intelBuffer = calloc(1, sizeof *intelBuffer);
2347 if (intelBuffer == NULL)
2348 return NULL;
2349
2350 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2351 * supports Y tiled and compressed buffers, but there is no way to plumb that
2352 * through to here. */
2353 uint32_t pitch;
2354 int cpp = format / 8;
2355 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2356 "intelAllocateBuffer",
2357 width,
2358 height,
2359 cpp,
2360 I915_TILING_X, &pitch,
2361 BO_ALLOC_FOR_RENDER);
2362
2363 if (intelBuffer->bo == NULL) {
2364 free(intelBuffer);
2365 return NULL;
2366 }
2367
2368 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2369
2370 intelBuffer->base.attachment = attachment;
2371 intelBuffer->base.cpp = cpp;
2372 intelBuffer->base.pitch = pitch;
2373
2374 return &intelBuffer->base;
2375 }
2376
2377 static void
2378 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2379 {
2380 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2381
2382 brw_bo_unreference(intelBuffer->bo);
2383 free(intelBuffer);
2384 }
2385
2386 static const struct __DriverAPIRec brw_driver_api = {
2387 .InitScreen = intelInitScreen2,
2388 .DestroyScreen = intelDestroyScreen,
2389 .CreateContext = brwCreateContext,
2390 .DestroyContext = intelDestroyContext,
2391 .CreateBuffer = intelCreateBuffer,
2392 .DestroyBuffer = intelDestroyBuffer,
2393 .MakeCurrent = intelMakeCurrent,
2394 .UnbindContext = intelUnbindContext,
2395 .AllocateBuffer = intelAllocateBuffer,
2396 .ReleaseBuffer = intelReleaseBuffer
2397 };
2398
2399 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2400 .base = { __DRI_DRIVER_VTABLE, 1 },
2401 .vtable = &brw_driver_api,
2402 };
2403
2404 static const __DRIextension *brw_driver_extensions[] = {
2405 &driCoreExtension.base,
2406 &driImageDriverExtension.base,
2407 &driDRI2Extension.base,
2408 &brw_vtable.base,
2409 &brw_config_options.base,
2410 NULL
2411 };
2412
2413 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2414 {
2415 globalDriverAPI = &brw_driver_api;
2416
2417 return brw_driver_extensions;
2418 }