i965: support UYVY for external import only
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "drm-uapi/drm_fourcc.h"
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "main/glthread.h"
38 #include "swrast/s_renderbuffer.h"
39 #include "util/ralloc.h"
40 #include "util/disk_cache.h"
41 #include "brw_defines.h"
42 #include "brw_state.h"
43 #include "compiler/nir/nir.h"
44
45 #include "utils.h"
46 #include "util/disk_cache.h"
47 #include "util/xmlpool.h"
48
49 #include "common/gen_defines.h"
50
51 static const __DRIconfigOptionsExtension brw_config_options = {
52 .base = { __DRI_CONFIG_OPTIONS, 1 },
53 .xml =
54 DRI_CONF_BEGIN
55 DRI_CONF_SECTION_PERFORMANCE
56 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
57 * DRI_CONF_BO_REUSE_ALL
58 */
59 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
60 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
61 DRI_CONF_ENUM(0, "Disable buffer object reuse")
62 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
63 DRI_CONF_DESC_END
64 DRI_CONF_OPT_END
65 DRI_CONF_MESA_NO_ERROR("false")
66 DRI_CONF_MESA_GLTHREAD("false")
67 DRI_CONF_SECTION_END
68
69 DRI_CONF_SECTION_QUALITY
70 DRI_CONF_PRECISE_TRIG("false")
71
72 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
73 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
74 "given integer. If negative, then do not clamp.")
75 DRI_CONF_OPT_END
76 DRI_CONF_SECTION_END
77
78 DRI_CONF_SECTION_DEBUG
79 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
80 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
81 DRI_CONF_DISABLE_THROTTLING("false")
82 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
83 DRI_CONF_FORCE_GLSL_VERSION(0)
84 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
85 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
86 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
87 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
88 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
89 DRI_CONF_ALLOW_GLSL_CROSS_STAGE_INTERPOLATION_MISMATCH("false")
90 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
91 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
92
93 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
94 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
95 DRI_CONF_OPT_END
96 DRI_CONF_SECTION_END
97
98 DRI_CONF_SECTION_MISCELLANEOUS
99 DRI_CONF_GLSL_ZERO_INIT("false")
100 DRI_CONF_ALLOW_RGB10_CONFIGS("false")
101 DRI_CONF_ALLOW_RGB565_CONFIGS("true")
102 DRI_CONF_SECTION_END
103 DRI_CONF_END
104 };
105
106 #include "intel_batchbuffer.h"
107 #include "intel_buffers.h"
108 #include "brw_bufmgr.h"
109 #include "intel_fbo.h"
110 #include "intel_mipmap_tree.h"
111 #include "intel_screen.h"
112 #include "intel_tex.h"
113 #include "intel_image.h"
114
115 #include "brw_context.h"
116
117 #include "drm-uapi/i915_drm.h"
118
119 /**
120 * For debugging purposes, this returns a time in seconds.
121 */
122 double
123 get_time(void)
124 {
125 struct timespec tp;
126
127 clock_gettime(CLOCK_MONOTONIC, &tp);
128
129 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
130 }
131
132 static const __DRItexBufferExtension intelTexBufferExtension = {
133 .base = { __DRI_TEX_BUFFER, 3 },
134
135 .setTexBuffer = intelSetTexBuffer,
136 .setTexBuffer2 = intelSetTexBuffer2,
137 .releaseTexBuffer = intelReleaseTexBuffer,
138 };
139
140 static void
141 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
142 __DRIdrawable *dPriv,
143 unsigned flags,
144 enum __DRI2throttleReason reason)
145 {
146 struct brw_context *brw = cPriv->driverPrivate;
147
148 if (!brw)
149 return;
150
151 struct gl_context *ctx = &brw->ctx;
152
153 _mesa_glthread_finish(ctx);
154
155 FLUSH_VERTICES(ctx, 0);
156
157 if (flags & __DRI2_FLUSH_DRAWABLE)
158 intel_resolve_for_dri2_flush(brw, dPriv);
159
160 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
161 brw->need_swap_throttle = true;
162 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
163 brw->need_flush_throttle = true;
164
165 intel_batchbuffer_flush(brw);
166 }
167
168 /**
169 * Provides compatibility with loaders that only support the older (version
170 * 1-3) flush interface.
171 *
172 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
173 */
174 static void
175 intel_dri2_flush(__DRIdrawable *drawable)
176 {
177 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
178 __DRI2_FLUSH_DRAWABLE,
179 __DRI2_THROTTLE_SWAPBUFFER);
180 }
181
182 static const struct __DRI2flushExtensionRec intelFlushExtension = {
183 .base = { __DRI2_FLUSH, 4 },
184
185 .flush = intel_dri2_flush,
186 .invalidate = dri2InvalidateDrawable,
187 .flush_with_flags = intel_dri2_flush_with_flags,
188 };
189
190 static const struct intel_image_format intel_image_formats[] = {
191 { __DRI_IMAGE_FOURCC_ARGB2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
192 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB2101010, 4 } } },
193
194 { __DRI_IMAGE_FOURCC_XRGB2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
195 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB2101010, 4 } } },
196
197 { __DRI_IMAGE_FOURCC_ABGR2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
198 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR2101010, 4 } } },
199
200 { __DRI_IMAGE_FOURCC_XBGR2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
201 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR2101010, 4 } } },
202
203 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
204 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
205
206 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
207 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
208
209 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
210 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
211
212 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
213 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
214
215 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
216 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
217
218 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
219 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
220
221 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
222 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
223
224 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
225 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
226
227 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
228 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
229
230 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
231 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
232
233 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
234 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
235
236 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
237 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
238 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
239 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
240
241 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
242 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
243 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
244 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
245
246 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
247 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
248 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
249 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
250
251 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
252 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
253 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
254 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
255
256 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
257 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
258 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
259 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
260
261 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
262 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
263 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
264 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
265
266 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
267 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
268 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
269 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
270
271 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
272 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
273 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
274 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
275
276 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
277 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
278 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
279 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
280
281 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
282 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
283 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
284 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
285
286 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
287 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
288 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
289
290 { __DRI_IMAGE_FOURCC_P010, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
291 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
292 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
293
294 { __DRI_IMAGE_FOURCC_P012, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
295 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
296 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
297
298 { __DRI_IMAGE_FOURCC_P016, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
299 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
300 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
301
302 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
303 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
304 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
305
306 { __DRI_IMAGE_FOURCC_AYUV, __DRI_IMAGE_COMPONENTS_AYUV, 1,
307 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
308
309 { __DRI_IMAGE_FOURCC_XYUV8888, __DRI_IMAGE_COMPONENTS_XYUV, 1,
310 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 } } },
311
312 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
313 * and treat them as planar buffers in the compositors.
314 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
315 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
316 * clusters and places pairs and places U into the G component and
317 * V into A. This lets the texture sampler interpolate the Y
318 * components correctly when sampling from plane 0, and interpolate
319 * U and V correctly when sampling from plane 1. */
320 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
321 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
322 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
323 { __DRI_IMAGE_FOURCC_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
324 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
325 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
326 };
327
328 static const struct {
329 uint64_t modifier;
330 unsigned since_gen;
331 } supported_modifiers[] = {
332 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
333 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
334 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
335 { .modifier = I915_FORMAT_MOD_Y_TILED_CCS , .since_gen = 9 },
336 };
337
338 static bool
339 modifier_is_supported(const struct gen_device_info *devinfo,
340 const struct intel_image_format *fmt, int dri_format,
341 uint64_t modifier)
342 {
343 const struct isl_drm_modifier_info *modinfo =
344 isl_drm_modifier_get_info(modifier);
345 int i;
346
347 /* ISL had better know about the modifier */
348 if (!modinfo)
349 return false;
350
351 if (modinfo->aux_usage == ISL_AUX_USAGE_CCS_E) {
352 /* If INTEL_DEBUG=norbc is set, don't support any CCS_E modifiers */
353 if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
354 return false;
355
356 /* CCS_E is not supported for planar images */
357 if (fmt && fmt->nplanes > 1)
358 return false;
359
360 if (fmt) {
361 assert(dri_format == 0);
362 dri_format = fmt->planes[0].dri_format;
363 }
364
365 mesa_format format = driImageFormatToGLFormat(dri_format);
366 /* Whether or not we support compression is based on the RGBA non-sRGB
367 * version of the format.
368 */
369 format = _mesa_format_fallback_rgbx_to_rgba(format);
370 format = _mesa_get_srgb_format_linear(format);
371 if (!isl_format_supports_ccs_e(devinfo,
372 brw_isl_format_for_mesa_format(format)))
373 return false;
374 }
375
376 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
377 if (supported_modifiers[i].modifier != modifier)
378 continue;
379
380 return supported_modifiers[i].since_gen <= devinfo->gen;
381 }
382
383 return false;
384 }
385
386 static uint64_t
387 tiling_to_modifier(uint32_t tiling)
388 {
389 static const uint64_t map[] = {
390 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
391 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
392 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
393 };
394
395 assert(tiling < ARRAY_SIZE(map));
396
397 return map[tiling];
398 }
399
400 static void
401 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
402 {
403 uint32_t tiling, swizzle;
404 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
405
406 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
407 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
408 func, image->offset);
409 }
410 }
411
412 static const struct intel_image_format *
413 intel_image_format_lookup(int fourcc)
414 {
415 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
416 if (intel_image_formats[i].fourcc == fourcc)
417 return &intel_image_formats[i];
418 }
419
420 return NULL;
421 }
422
423 static boolean
424 intel_image_get_fourcc(__DRIimage *image, int *fourcc)
425 {
426 if (image->planar_format) {
427 *fourcc = image->planar_format->fourcc;
428 return true;
429 }
430
431 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
432 if (intel_image_formats[i].planes[0].dri_format == image->dri_format) {
433 *fourcc = intel_image_formats[i].fourcc;
434 return true;
435 }
436 }
437 return false;
438 }
439
440 static __DRIimage *
441 intel_allocate_image(struct intel_screen *screen, int dri_format,
442 void *loaderPrivate)
443 {
444 __DRIimage *image;
445
446 image = calloc(1, sizeof *image);
447 if (image == NULL)
448 return NULL;
449
450 image->screen = screen;
451 image->dri_format = dri_format;
452 image->offset = 0;
453
454 image->format = driImageFormatToGLFormat(dri_format);
455 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
456 image->format == MESA_FORMAT_NONE) {
457 free(image);
458 return NULL;
459 }
460
461 image->internal_format = _mesa_get_format_base_format(image->format);
462 image->data = loaderPrivate;
463
464 return image;
465 }
466
467 /**
468 * Sets up a DRIImage structure to point to a slice out of a miptree.
469 */
470 static void
471 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
472 struct intel_mipmap_tree *mt, GLuint level,
473 GLuint zoffset)
474 {
475 intel_miptree_make_shareable(brw, mt);
476
477 intel_miptree_check_level_layer(mt, level, zoffset);
478
479 image->width = minify(mt->surf.phys_level0_sa.width,
480 level - mt->first_level);
481 image->height = minify(mt->surf.phys_level0_sa.height,
482 level - mt->first_level);
483 image->pitch = mt->surf.row_pitch_B;
484
485 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
486 &image->tile_x,
487 &image->tile_y);
488
489 brw_bo_unreference(image->bo);
490 image->bo = mt->bo;
491 brw_bo_reference(mt->bo);
492 }
493
494 static __DRIimage *
495 intel_create_image_from_name(__DRIscreen *dri_screen,
496 int width, int height, int format,
497 int name, int pitch, void *loaderPrivate)
498 {
499 struct intel_screen *screen = dri_screen->driverPrivate;
500 __DRIimage *image;
501 int cpp;
502
503 image = intel_allocate_image(screen, format, loaderPrivate);
504 if (image == NULL)
505 return NULL;
506
507 if (image->format == MESA_FORMAT_NONE)
508 cpp = 1;
509 else
510 cpp = _mesa_get_format_bytes(image->format);
511
512 image->width = width;
513 image->height = height;
514 image->pitch = pitch * cpp;
515 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
516 name);
517 if (!image->bo) {
518 free(image);
519 return NULL;
520 }
521 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
522
523 return image;
524 }
525
526 static __DRIimage *
527 intel_create_image_from_renderbuffer(__DRIcontext *context,
528 int renderbuffer, void *loaderPrivate)
529 {
530 __DRIimage *image;
531 struct brw_context *brw = context->driverPrivate;
532 struct gl_context *ctx = &brw->ctx;
533 struct gl_renderbuffer *rb;
534 struct intel_renderbuffer *irb;
535
536 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
537 if (!rb) {
538 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
539 return NULL;
540 }
541
542 irb = intel_renderbuffer(rb);
543 intel_miptree_make_shareable(brw, irb->mt);
544 image = calloc(1, sizeof *image);
545 if (image == NULL)
546 return NULL;
547
548 image->internal_format = rb->InternalFormat;
549 image->format = rb->Format;
550 image->modifier = tiling_to_modifier(
551 isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
552 image->offset = 0;
553 image->data = loaderPrivate;
554 brw_bo_unreference(image->bo);
555 image->bo = irb->mt->bo;
556 brw_bo_reference(irb->mt->bo);
557 image->width = rb->Width;
558 image->height = rb->Height;
559 image->pitch = irb->mt->surf.row_pitch_B;
560 image->dri_format = driGLFormatToImageFormat(image->format);
561 image->has_depthstencil = irb->mt->stencil_mt? true : false;
562
563 rb->NeedsFinishRenderTexture = true;
564 return image;
565 }
566
567 static __DRIimage *
568 intel_create_image_from_texture(__DRIcontext *context, int target,
569 unsigned texture, int zoffset,
570 int level,
571 unsigned *error,
572 void *loaderPrivate)
573 {
574 __DRIimage *image;
575 struct brw_context *brw = context->driverPrivate;
576 struct gl_texture_object *obj;
577 struct intel_texture_object *iobj;
578 GLuint face = 0;
579
580 obj = _mesa_lookup_texture(&brw->ctx, texture);
581 if (!obj || obj->Target != target) {
582 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
583 return NULL;
584 }
585
586 if (target == GL_TEXTURE_CUBE_MAP)
587 face = zoffset;
588
589 _mesa_test_texobj_completeness(&brw->ctx, obj);
590 iobj = intel_texture_object(obj);
591 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
592 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
593 return NULL;
594 }
595
596 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
597 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
598 return NULL;
599 }
600
601 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
602 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
603 return NULL;
604 }
605 image = calloc(1, sizeof *image);
606 if (image == NULL) {
607 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
608 return NULL;
609 }
610
611 image->internal_format = obj->Image[face][level]->InternalFormat;
612 image->format = obj->Image[face][level]->TexFormat;
613 image->modifier = tiling_to_modifier(
614 isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
615 image->data = loaderPrivate;
616 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
617 image->dri_format = driGLFormatToImageFormat(image->format);
618 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
619 image->planar_format = iobj->planar_format;
620 if (image->dri_format == __DRI_IMAGE_FORMAT_NONE) {
621 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
622 free(image);
623 return NULL;
624 }
625
626 *error = __DRI_IMAGE_ERROR_SUCCESS;
627 return image;
628 }
629
630 static void
631 intel_destroy_image(__DRIimage *image)
632 {
633 brw_bo_unreference(image->bo);
634 free(image);
635 }
636
637 enum modifier_priority {
638 MODIFIER_PRIORITY_INVALID = 0,
639 MODIFIER_PRIORITY_LINEAR,
640 MODIFIER_PRIORITY_X,
641 MODIFIER_PRIORITY_Y,
642 MODIFIER_PRIORITY_Y_CCS,
643 };
644
645 const uint64_t priority_to_modifier[] = {
646 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
647 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
648 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
649 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
650 [MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
651 };
652
653 static uint64_t
654 select_best_modifier(struct gen_device_info *devinfo,
655 int dri_format,
656 const uint64_t *modifiers,
657 const unsigned count)
658 {
659 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
660
661 for (int i = 0; i < count; i++) {
662 if (!modifier_is_supported(devinfo, NULL, dri_format, modifiers[i]))
663 continue;
664
665 switch (modifiers[i]) {
666 case I915_FORMAT_MOD_Y_TILED_CCS:
667 prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
668 break;
669 case I915_FORMAT_MOD_Y_TILED:
670 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
671 break;
672 case I915_FORMAT_MOD_X_TILED:
673 prio = MAX2(prio, MODIFIER_PRIORITY_X);
674 break;
675 case DRM_FORMAT_MOD_LINEAR:
676 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
677 break;
678 case DRM_FORMAT_MOD_INVALID:
679 default:
680 break;
681 }
682 }
683
684 return priority_to_modifier[prio];
685 }
686
687 static __DRIimage *
688 intel_create_image_common(__DRIscreen *dri_screen,
689 int width, int height, int format,
690 unsigned int use,
691 const uint64_t *modifiers,
692 unsigned count,
693 void *loaderPrivate)
694 {
695 __DRIimage *image;
696 struct intel_screen *screen = dri_screen->driverPrivate;
697 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
698 bool ok;
699
700 /* Callers of this may specify a modifier, or a dri usage, but not both. The
701 * newer modifier interface deprecates the older usage flags newer modifier
702 * interface deprecates the older usage flags.
703 */
704 assert(!(use && count));
705
706 if (use & __DRI_IMAGE_USE_CURSOR) {
707 if (width != 64 || height != 64)
708 return NULL;
709 modifier = DRM_FORMAT_MOD_LINEAR;
710 }
711
712 if (use & __DRI_IMAGE_USE_LINEAR)
713 modifier = DRM_FORMAT_MOD_LINEAR;
714
715 if (modifier == DRM_FORMAT_MOD_INVALID) {
716 if (modifiers) {
717 /* User requested specific modifiers */
718 modifier = select_best_modifier(&screen->devinfo, format,
719 modifiers, count);
720 if (modifier == DRM_FORMAT_MOD_INVALID)
721 return NULL;
722 } else {
723 /* Historically, X-tiled was the default, and so lack of modifier means
724 * X-tiled.
725 */
726 modifier = I915_FORMAT_MOD_X_TILED;
727 }
728 }
729
730 image = intel_allocate_image(screen, format, loaderPrivate);
731 if (image == NULL)
732 return NULL;
733
734 const struct isl_drm_modifier_info *mod_info =
735 isl_drm_modifier_get_info(modifier);
736
737 struct isl_surf surf;
738 ok = isl_surf_init(&screen->isl_dev, &surf,
739 .dim = ISL_SURF_DIM_2D,
740 .format = brw_isl_format_for_mesa_format(image->format),
741 .width = width,
742 .height = height,
743 .depth = 1,
744 .levels = 1,
745 .array_len = 1,
746 .samples = 1,
747 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
748 ISL_SURF_USAGE_TEXTURE_BIT |
749 ISL_SURF_USAGE_STORAGE_BIT,
750 .tiling_flags = (1 << mod_info->tiling));
751 assert(ok);
752 if (!ok) {
753 free(image);
754 return NULL;
755 }
756
757 struct isl_surf aux_surf;
758 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
759 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, 0);
760 if (!ok) {
761 free(image);
762 return NULL;
763 }
764 } else {
765 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
766 aux_surf.size_B = 0;
767 }
768
769 /* We request that the bufmgr zero the buffer for us for two reasons:
770 *
771 * 1) If a buffer gets re-used from the pool, we don't want to leak random
772 * garbage from our process to some other.
773 *
774 * 2) For images with CCS_E, we want to ensure that the CCS starts off in
775 * a valid state. A CCS value of 0 indicates that the given block is
776 * in the pass-through state which is what we want.
777 */
778 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
779 surf.size_B + aux_surf.size_B,
780 BRW_MEMZONE_OTHER,
781 isl_tiling_to_i915_tiling(mod_info->tiling),
782 surf.row_pitch_B, BO_ALLOC_ZEROED);
783 if (image->bo == NULL) {
784 free(image);
785 return NULL;
786 }
787 image->width = width;
788 image->height = height;
789 image->pitch = surf.row_pitch_B;
790 image->modifier = modifier;
791
792 if (aux_surf.size_B) {
793 image->aux_offset = surf.size_B;
794 image->aux_pitch = aux_surf.row_pitch_B;
795 image->aux_size = aux_surf.size_B;
796 }
797
798 return image;
799 }
800
801 static __DRIimage *
802 intel_create_image(__DRIscreen *dri_screen,
803 int width, int height, int format,
804 unsigned int use,
805 void *loaderPrivate)
806 {
807 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
808 loaderPrivate);
809 }
810
811 static void *
812 intel_map_image(__DRIcontext *context, __DRIimage *image,
813 int x0, int y0, int width, int height,
814 unsigned int flags, int *stride, void **map_info)
815 {
816 struct brw_context *brw = NULL;
817 struct brw_bo *bo = NULL;
818 void *raw_data = NULL;
819 GLuint pix_w = 1;
820 GLuint pix_h = 1;
821 GLint pix_bytes = 1;
822
823 if (!context || !image || !stride || !map_info || *map_info)
824 return NULL;
825
826 if (x0 < 0 || x0 >= image->width || width > image->width - x0)
827 return NULL;
828
829 if (y0 < 0 || y0 >= image->height || height > image->height - y0)
830 return NULL;
831
832 if (flags & MAP_INTERNAL_MASK)
833 return NULL;
834
835 brw = context->driverPrivate;
836 bo = image->bo;
837
838 assert(brw);
839 assert(bo);
840
841 /* DRI flags and GL_MAP.*_BIT flags are the same, so just pass them on. */
842 raw_data = brw_bo_map(brw, bo, flags);
843 if (!raw_data)
844 return NULL;
845
846 _mesa_get_format_block_size(image->format, &pix_w, &pix_h);
847 pix_bytes = _mesa_get_format_bytes(image->format);
848
849 assert(pix_w);
850 assert(pix_h);
851 assert(pix_bytes > 0);
852
853 raw_data += (x0 / pix_w) * pix_bytes + (y0 / pix_h) * image->pitch;
854
855 brw_bo_reference(bo);
856
857 *stride = image->pitch;
858 *map_info = bo;
859
860 return raw_data;
861 }
862
863 static void
864 intel_unmap_image(__DRIcontext *context, __DRIimage *image, void *map_info)
865 {
866 struct brw_bo *bo = map_info;
867
868 brw_bo_unmap(bo);
869 brw_bo_unreference(bo);
870 }
871
872 static __DRIimage *
873 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
874 int width, int height, int format,
875 const uint64_t *modifiers,
876 const unsigned count,
877 void *loaderPrivate)
878 {
879 return intel_create_image_common(dri_screen, width, height, format, 0,
880 modifiers, count, loaderPrivate);
881 }
882
883 static GLboolean
884 intel_query_image(__DRIimage *image, int attrib, int *value)
885 {
886 switch (attrib) {
887 case __DRI_IMAGE_ATTRIB_STRIDE:
888 *value = image->pitch;
889 return true;
890 case __DRI_IMAGE_ATTRIB_HANDLE:
891 *value = brw_bo_export_gem_handle(image->bo);
892 return true;
893 case __DRI_IMAGE_ATTRIB_NAME:
894 return !brw_bo_flink(image->bo, (uint32_t *) value);
895 case __DRI_IMAGE_ATTRIB_FORMAT:
896 *value = image->dri_format;
897 return true;
898 case __DRI_IMAGE_ATTRIB_WIDTH:
899 *value = image->width;
900 return true;
901 case __DRI_IMAGE_ATTRIB_HEIGHT:
902 *value = image->height;
903 return true;
904 case __DRI_IMAGE_ATTRIB_COMPONENTS:
905 if (image->planar_format == NULL)
906 return false;
907 *value = image->planar_format->components;
908 return true;
909 case __DRI_IMAGE_ATTRIB_FD:
910 return !brw_bo_gem_export_to_prime(image->bo, value);
911 case __DRI_IMAGE_ATTRIB_FOURCC:
912 return intel_image_get_fourcc(image, value);
913 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
914 if (isl_drm_modifier_has_aux(image->modifier)) {
915 assert(!image->planar_format || image->planar_format->nplanes == 1);
916 *value = 2;
917 } else if (image->planar_format) {
918 *value = image->planar_format->nplanes;
919 } else {
920 *value = 1;
921 }
922 return true;
923 case __DRI_IMAGE_ATTRIB_OFFSET:
924 *value = image->offset;
925 return true;
926 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
927 *value = (image->modifier & 0xffffffff);
928 return true;
929 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
930 *value = ((image->modifier >> 32) & 0xffffffff);
931 return true;
932
933 default:
934 return false;
935 }
936 }
937
938 static GLboolean
939 intel_query_format_modifier_attribs(__DRIscreen *dri_screen,
940 uint32_t fourcc, uint64_t modifier,
941 int attrib, uint64_t *value)
942 {
943 struct intel_screen *screen = dri_screen->driverPrivate;
944 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
945
946 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
947 return false;
948
949 switch (attrib) {
950 case __DRI_IMAGE_FORMAT_MODIFIER_ATTRIB_PLANE_COUNT:
951 *value = isl_drm_modifier_has_aux(modifier) ? 2 : f->nplanes;
952 return true;
953
954 default:
955 return false;
956 }
957 }
958
959 static __DRIimage *
960 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
961 {
962 __DRIimage *image;
963
964 image = calloc(1, sizeof *image);
965 if (image == NULL)
966 return NULL;
967
968 brw_bo_reference(orig_image->bo);
969 image->bo = orig_image->bo;
970 image->internal_format = orig_image->internal_format;
971 image->planar_format = orig_image->planar_format;
972 image->dri_format = orig_image->dri_format;
973 image->format = orig_image->format;
974 image->modifier = orig_image->modifier;
975 image->offset = orig_image->offset;
976 image->width = orig_image->width;
977 image->height = orig_image->height;
978 image->pitch = orig_image->pitch;
979 image->tile_x = orig_image->tile_x;
980 image->tile_y = orig_image->tile_y;
981 image->has_depthstencil = orig_image->has_depthstencil;
982 image->data = loaderPrivate;
983 image->aux_offset = orig_image->aux_offset;
984 image->aux_pitch = orig_image->aux_pitch;
985
986 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
987 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
988
989 return image;
990 }
991
992 static GLboolean
993 intel_validate_usage(__DRIimage *image, unsigned int use)
994 {
995 if (use & __DRI_IMAGE_USE_CURSOR) {
996 if (image->width != 64 || image->height != 64)
997 return GL_FALSE;
998 }
999
1000 return GL_TRUE;
1001 }
1002
1003 static __DRIimage *
1004 intel_create_image_from_names(__DRIscreen *dri_screen,
1005 int width, int height, int fourcc,
1006 int *names, int num_names,
1007 int *strides, int *offsets,
1008 void *loaderPrivate)
1009 {
1010 const struct intel_image_format *f = NULL;
1011 __DRIimage *image;
1012 int i, index;
1013
1014 if (dri_screen == NULL || names == NULL || num_names != 1)
1015 return NULL;
1016
1017 f = intel_image_format_lookup(fourcc);
1018 if (f == NULL)
1019 return NULL;
1020
1021 image = intel_create_image_from_name(dri_screen, width, height,
1022 __DRI_IMAGE_FORMAT_NONE,
1023 names[0], strides[0],
1024 loaderPrivate);
1025
1026 if (image == NULL)
1027 return NULL;
1028
1029 image->planar_format = f;
1030 for (i = 0; i < f->nplanes; i++) {
1031 index = f->planes[i].buffer_index;
1032 image->offsets[index] = offsets[index];
1033 image->strides[index] = strides[index];
1034 }
1035
1036 return image;
1037 }
1038
1039 static __DRIimage *
1040 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
1041 int width, int height, int fourcc,
1042 uint64_t modifier, int *fds, int num_fds,
1043 int *strides, int *offsets,
1044 void *loaderPrivate)
1045 {
1046 struct intel_screen *screen = dri_screen->driverPrivate;
1047 const struct intel_image_format *f;
1048 __DRIimage *image;
1049 int i, index;
1050 bool ok;
1051
1052 if (fds == NULL || num_fds < 1)
1053 return NULL;
1054
1055 f = intel_image_format_lookup(fourcc);
1056 if (f == NULL)
1057 return NULL;
1058
1059 if (modifier != DRM_FORMAT_MOD_INVALID &&
1060 !modifier_is_supported(&screen->devinfo, f, 0, modifier))
1061 return NULL;
1062
1063 if (f->nplanes == 1)
1064 image = intel_allocate_image(screen, f->planes[0].dri_format,
1065 loaderPrivate);
1066 else
1067 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
1068 loaderPrivate);
1069
1070 if (image == NULL)
1071 return NULL;
1072
1073 image->width = width;
1074 image->height = height;
1075 image->pitch = strides[0];
1076
1077 image->planar_format = f;
1078
1079 if (modifier != DRM_FORMAT_MOD_INVALID) {
1080 const struct isl_drm_modifier_info *mod_info =
1081 isl_drm_modifier_get_info(modifier);
1082 uint32_t tiling = isl_tiling_to_i915_tiling(mod_info->tiling);
1083 image->bo = brw_bo_gem_create_from_prime_tiled(screen->bufmgr, fds[0],
1084 tiling, strides[0]);
1085 } else {
1086 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
1087 }
1088
1089 if (image->bo == NULL) {
1090 free(image);
1091 return NULL;
1092 }
1093
1094 /* We only support all planes from the same bo.
1095 * brw_bo_gem_create_from_prime() should return the same pointer for all
1096 * fds received here */
1097 for (i = 1; i < num_fds; i++) {
1098 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
1099 brw_bo_unreference(aux);
1100 if (aux != image->bo) {
1101 brw_bo_unreference(image->bo);
1102 free(image);
1103 return NULL;
1104 }
1105 }
1106
1107 if (modifier != DRM_FORMAT_MOD_INVALID)
1108 image->modifier = modifier;
1109 else
1110 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
1111
1112 const struct isl_drm_modifier_info *mod_info =
1113 isl_drm_modifier_get_info(image->modifier);
1114
1115 int size = 0;
1116 struct isl_surf surf;
1117 for (i = 0; i < f->nplanes; i++) {
1118 index = f->planes[i].buffer_index;
1119 image->offsets[index] = offsets[index];
1120 image->strides[index] = strides[index];
1121
1122 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
1123 /* The images we will create are actually based on the RGBA non-sRGB
1124 * version of the format.
1125 */
1126 format = _mesa_format_fallback_rgbx_to_rgba(format);
1127 format = _mesa_get_srgb_format_linear(format);
1128
1129 ok = isl_surf_init(&screen->isl_dev, &surf,
1130 .dim = ISL_SURF_DIM_2D,
1131 .format = brw_isl_format_for_mesa_format(format),
1132 .width = image->width >> f->planes[i].width_shift,
1133 .height = image->height >> f->planes[i].height_shift,
1134 .depth = 1,
1135 .levels = 1,
1136 .array_len = 1,
1137 .samples = 1,
1138 .row_pitch_B = strides[index],
1139 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
1140 ISL_SURF_USAGE_TEXTURE_BIT |
1141 ISL_SURF_USAGE_STORAGE_BIT,
1142 .tiling_flags = (1 << mod_info->tiling));
1143 if (!ok) {
1144 brw_bo_unreference(image->bo);
1145 free(image);
1146 return NULL;
1147 }
1148
1149 const int end = offsets[index] + surf.size_B;
1150 if (size < end)
1151 size = end;
1152 }
1153
1154 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
1155 /* Even though we initialize surf in the loop above, we know that
1156 * anything with CCS_E will have exactly one plane so surf is properly
1157 * initialized when we get here.
1158 */
1159 assert(f->nplanes == 1);
1160
1161 image->aux_offset = offsets[1];
1162 image->aux_pitch = strides[1];
1163
1164 /* Scanout hardware requires that the CCS be placed after the main
1165 * surface in memory. We consider any CCS that is placed any earlier in
1166 * memory to be invalid and reject it.
1167 *
1168 * At some point in the future, this restriction may be relaxed if the
1169 * hardware becomes less strict but we may need a new modifier for that.
1170 */
1171 assert(size > 0);
1172 if (image->aux_offset < size) {
1173 brw_bo_unreference(image->bo);
1174 free(image);
1175 return NULL;
1176 }
1177
1178 struct isl_surf aux_surf;
1179 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf,
1180 image->aux_pitch);
1181 if (!ok) {
1182 brw_bo_unreference(image->bo);
1183 free(image);
1184 return NULL;
1185 }
1186
1187 image->aux_size = aux_surf.size_B;
1188
1189 const int end = image->aux_offset + aux_surf.size_B;
1190 if (size < end)
1191 size = end;
1192 } else {
1193 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
1194 }
1195
1196 /* Check that the requested image actually fits within the BO. 'size'
1197 * is already relative to the offsets, so we don't need to add that. */
1198 if (image->bo->size == 0) {
1199 image->bo->size = size;
1200 } else if (size > image->bo->size) {
1201 brw_bo_unreference(image->bo);
1202 free(image);
1203 return NULL;
1204 }
1205
1206 if (f->nplanes == 1) {
1207 image->offset = image->offsets[0];
1208 intel_image_warn_if_unaligned(image, __func__);
1209 }
1210
1211 return image;
1212 }
1213
1214 static __DRIimage *
1215 intel_create_image_from_fds(__DRIscreen *dri_screen,
1216 int width, int height, int fourcc,
1217 int *fds, int num_fds, int *strides, int *offsets,
1218 void *loaderPrivate)
1219 {
1220 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
1221 DRM_FORMAT_MOD_INVALID,
1222 fds, num_fds, strides, offsets,
1223 loaderPrivate);
1224 }
1225
1226 static __DRIimage *
1227 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
1228 int width, int height,
1229 int fourcc, uint64_t modifier,
1230 int *fds, int num_fds,
1231 int *strides, int *offsets,
1232 enum __DRIYUVColorSpace yuv_color_space,
1233 enum __DRISampleRange sample_range,
1234 enum __DRIChromaSiting horizontal_siting,
1235 enum __DRIChromaSiting vertical_siting,
1236 unsigned *error,
1237 void *loaderPrivate)
1238 {
1239 __DRIimage *image;
1240 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
1241
1242 if (!f) {
1243 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
1244 return NULL;
1245 }
1246
1247 image = intel_create_image_from_fds_common(dri_screen, width, height,
1248 fourcc, modifier,
1249 fds, num_fds, strides, offsets,
1250 loaderPrivate);
1251
1252 /*
1253 * Invalid parameters and any inconsistencies between are assumed to be
1254 * checked by the caller. Therefore besides unsupported formats one can fail
1255 * only in allocation.
1256 */
1257 if (!image) {
1258 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1259 return NULL;
1260 }
1261
1262 image->yuv_color_space = yuv_color_space;
1263 image->sample_range = sample_range;
1264 image->horizontal_siting = horizontal_siting;
1265 image->vertical_siting = vertical_siting;
1266
1267 *error = __DRI_IMAGE_ERROR_SUCCESS;
1268 return image;
1269 }
1270
1271 static __DRIimage *
1272 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1273 int width, int height, int fourcc,
1274 int *fds, int num_fds,
1275 int *strides, int *offsets,
1276 enum __DRIYUVColorSpace yuv_color_space,
1277 enum __DRISampleRange sample_range,
1278 enum __DRIChromaSiting horizontal_siting,
1279 enum __DRIChromaSiting vertical_siting,
1280 unsigned *error,
1281 void *loaderPrivate)
1282 {
1283 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1284 fourcc, DRM_FORMAT_MOD_INVALID,
1285 fds, num_fds, strides, offsets,
1286 yuv_color_space,
1287 sample_range,
1288 horizontal_siting,
1289 vertical_siting,
1290 error,
1291 loaderPrivate);
1292 }
1293
1294 static bool
1295 intel_image_format_is_supported(const struct gen_device_info *devinfo,
1296 const struct intel_image_format *fmt)
1297 {
1298 /* Currently, all formats with an intel_image_format are available on all
1299 * platforms so there's really nothing to check there.
1300 */
1301
1302 #ifndef NDEBUG
1303 if (fmt->nplanes == 1) {
1304 mesa_format format = driImageFormatToGLFormat(fmt->planes[0].dri_format);
1305 /* The images we will create are actually based on the RGBA non-sRGB
1306 * version of the format.
1307 */
1308 format = _mesa_format_fallback_rgbx_to_rgba(format);
1309 format = _mesa_get_srgb_format_linear(format);
1310 enum isl_format isl_format = brw_isl_format_for_mesa_format(format);
1311 assert(isl_format_supports_rendering(devinfo, isl_format));
1312 }
1313 #endif
1314
1315 return true;
1316 }
1317
1318 static GLboolean
1319 intel_query_dma_buf_formats(__DRIscreen *_screen, int max,
1320 int *formats, int *count)
1321 {
1322 struct intel_screen *screen = _screen->driverPrivate;
1323 int num_formats = 0, i;
1324
1325 for (i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
1326 /* These two formats are valid DRI formats but do not exist in
1327 * drm_fourcc.h in the Linux kernel. We don't want to accidentally
1328 * advertise them through the EGL layer.
1329 */
1330 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888 ||
1331 intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SABGR8888)
1332 continue;
1333
1334 if (!intel_image_format_is_supported(&screen->devinfo,
1335 &intel_image_formats[i]))
1336 continue;
1337
1338 num_formats++;
1339 if (max == 0)
1340 continue;
1341
1342 formats[num_formats - 1] = intel_image_formats[i].fourcc;
1343 if (num_formats >= max)
1344 break;
1345 }
1346
1347 *count = num_formats;
1348 return true;
1349 }
1350
1351 static GLboolean
1352 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1353 uint64_t *modifiers,
1354 unsigned int *external_only,
1355 int *count)
1356 {
1357 struct intel_screen *screen = _screen->driverPrivate;
1358 const struct intel_image_format *f;
1359 int num_mods = 0, i;
1360
1361 f = intel_image_format_lookup(fourcc);
1362 if (f == NULL)
1363 return false;
1364
1365 if (!intel_image_format_is_supported(&screen->devinfo, f))
1366 return false;
1367
1368 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1369 uint64_t modifier = supported_modifiers[i].modifier;
1370 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
1371 continue;
1372
1373 num_mods++;
1374 if (max == 0)
1375 continue;
1376
1377 modifiers[num_mods - 1] = modifier;
1378 if (num_mods >= max)
1379 break;
1380 }
1381
1382 if (external_only != NULL) {
1383 for (i = 0; i < num_mods && i < max; i++) {
1384 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1385 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1386 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV ||
1387 f->components == __DRI_IMAGE_COMPONENTS_Y_UXVX) {
1388 external_only[i] = GL_TRUE;
1389 }
1390 else {
1391 external_only[i] = GL_FALSE;
1392 }
1393 }
1394 }
1395
1396 *count = num_mods;
1397 return true;
1398 }
1399
1400 static __DRIimage *
1401 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1402 {
1403 int width, height, offset, stride, size, dri_format;
1404 __DRIimage *image;
1405
1406 if (parent == NULL)
1407 return NULL;
1408
1409 width = parent->width;
1410 height = parent->height;
1411
1412 const struct intel_image_format *f = parent->planar_format;
1413
1414 if (f && plane < f->nplanes) {
1415 /* Use the planar format definition. */
1416 width >>= f->planes[plane].width_shift;
1417 height >>= f->planes[plane].height_shift;
1418 dri_format = f->planes[plane].dri_format;
1419 int index = f->planes[plane].buffer_index;
1420 offset = parent->offsets[index];
1421 stride = parent->strides[index];
1422 size = height * stride;
1423 } else if (plane == 0) {
1424 /* The only plane of a non-planar image: copy the parent definition
1425 * directly. */
1426 dri_format = parent->dri_format;
1427 offset = parent->offset;
1428 stride = parent->pitch;
1429 size = height * stride;
1430 } else if (plane == 1 && parent->modifier != DRM_FORMAT_MOD_INVALID &&
1431 isl_drm_modifier_has_aux(parent->modifier)) {
1432 /* Auxiliary plane */
1433 dri_format = parent->dri_format;
1434 offset = parent->aux_offset;
1435 stride = parent->aux_pitch;
1436 size = parent->aux_size;
1437 } else {
1438 return NULL;
1439 }
1440
1441 if (offset + size > parent->bo->size) {
1442 _mesa_warning(NULL, "intel_from_planar: subimage out of bounds");
1443 return NULL;
1444 }
1445
1446 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1447 if (image == NULL)
1448 return NULL;
1449
1450 image->bo = parent->bo;
1451 brw_bo_reference(parent->bo);
1452 image->modifier = parent->modifier;
1453
1454 image->width = width;
1455 image->height = height;
1456 image->pitch = stride;
1457 image->offset = offset;
1458
1459 intel_image_warn_if_unaligned(image, __func__);
1460
1461 return image;
1462 }
1463
1464 static const __DRIimageExtension intelImageExtension = {
1465 .base = { __DRI_IMAGE, 16 },
1466
1467 .createImageFromName = intel_create_image_from_name,
1468 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1469 .destroyImage = intel_destroy_image,
1470 .createImage = intel_create_image,
1471 .queryImage = intel_query_image,
1472 .dupImage = intel_dup_image,
1473 .validateUsage = intel_validate_usage,
1474 .createImageFromNames = intel_create_image_from_names,
1475 .fromPlanar = intel_from_planar,
1476 .createImageFromTexture = intel_create_image_from_texture,
1477 .createImageFromFds = intel_create_image_from_fds,
1478 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1479 .blitImage = NULL,
1480 .getCapabilities = NULL,
1481 .mapImage = intel_map_image,
1482 .unmapImage = intel_unmap_image,
1483 .createImageWithModifiers = intel_create_image_with_modifiers,
1484 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1485 .queryDmaBufFormats = intel_query_dma_buf_formats,
1486 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1487 .queryDmaBufFormatModifierAttribs = intel_query_format_modifier_attribs,
1488 };
1489
1490 static uint64_t
1491 get_aperture_size(int fd)
1492 {
1493 struct drm_i915_gem_get_aperture aperture;
1494
1495 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1496 return 0;
1497
1498 return aperture.aper_size;
1499 }
1500
1501 static int
1502 brw_query_renderer_integer(__DRIscreen *dri_screen,
1503 int param, unsigned int *value)
1504 {
1505 const struct intel_screen *const screen =
1506 (struct intel_screen *) dri_screen->driverPrivate;
1507
1508 switch (param) {
1509 case __DRI2_RENDERER_VENDOR_ID:
1510 value[0] = 0x8086;
1511 return 0;
1512 case __DRI2_RENDERER_DEVICE_ID:
1513 value[0] = screen->deviceID;
1514 return 0;
1515 case __DRI2_RENDERER_ACCELERATED:
1516 value[0] = 1;
1517 return 0;
1518 case __DRI2_RENDERER_VIDEO_MEMORY: {
1519 /* Once a batch uses more than 75% of the maximum mappable size, we
1520 * assume that there's some fragmentation, and we start doing extra
1521 * flushing, etc. That's the big cliff apps will care about.
1522 */
1523 const unsigned gpu_mappable_megabytes =
1524 screen->aperture_threshold / (1024 * 1024);
1525
1526 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1527 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1528
1529 if (system_memory_pages <= 0 || system_page_size <= 0)
1530 return -1;
1531
1532 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1533 * (uint64_t) system_page_size;
1534
1535 const unsigned system_memory_megabytes =
1536 (unsigned) (system_memory_bytes / (1024 * 1024));
1537
1538 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1539 return 0;
1540 }
1541 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1542 value[0] = 1;
1543 return 0;
1544 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1545 value[0] = 1;
1546 return 0;
1547 case __DRI2_RENDERER_HAS_CONTEXT_PRIORITY:
1548 value[0] = 0;
1549 if (brw_hw_context_set_priority(screen->bufmgr,
1550 0, GEN_CONTEXT_HIGH_PRIORITY) == 0)
1551 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_HIGH;
1552 if (brw_hw_context_set_priority(screen->bufmgr,
1553 0, GEN_CONTEXT_LOW_PRIORITY) == 0)
1554 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_LOW;
1555 /* reset to default last, just in case */
1556 if (brw_hw_context_set_priority(screen->bufmgr,
1557 0, GEN_CONTEXT_MEDIUM_PRIORITY) == 0)
1558 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_MEDIUM;
1559 return 0;
1560 case __DRI2_RENDERER_HAS_FRAMEBUFFER_SRGB:
1561 value[0] = 1;
1562 return 0;
1563 default:
1564 return driQueryRendererIntegerCommon(dri_screen, param, value);
1565 }
1566
1567 return -1;
1568 }
1569
1570 static int
1571 brw_query_renderer_string(__DRIscreen *dri_screen,
1572 int param, const char **value)
1573 {
1574 const struct intel_screen *screen =
1575 (struct intel_screen *) dri_screen->driverPrivate;
1576
1577 switch (param) {
1578 case __DRI2_RENDERER_VENDOR_ID:
1579 value[0] = brw_vendor_string;
1580 return 0;
1581 case __DRI2_RENDERER_DEVICE_ID:
1582 value[0] = brw_get_renderer_string(screen);
1583 return 0;
1584 default:
1585 break;
1586 }
1587
1588 return -1;
1589 }
1590
1591 static void
1592 brw_set_cache_funcs(__DRIscreen *dri_screen,
1593 __DRIblobCacheSet set, __DRIblobCacheGet get)
1594 {
1595 const struct intel_screen *const screen =
1596 (struct intel_screen *) dri_screen->driverPrivate;
1597
1598 if (!screen->disk_cache)
1599 return;
1600
1601 disk_cache_set_callbacks(screen->disk_cache, set, get);
1602 }
1603
1604 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1605 .base = { __DRI2_RENDERER_QUERY, 1 },
1606
1607 .queryInteger = brw_query_renderer_integer,
1608 .queryString = brw_query_renderer_string
1609 };
1610
1611 static const __DRIrobustnessExtension dri2Robustness = {
1612 .base = { __DRI2_ROBUSTNESS, 1 }
1613 };
1614
1615 static const __DRI2blobExtension intelBlobExtension = {
1616 .base = { __DRI2_BLOB, 1 },
1617 .set_cache_funcs = brw_set_cache_funcs
1618 };
1619
1620 static const __DRImutableRenderBufferDriverExtension intelMutableRenderBufferExtension = {
1621 .base = { __DRI_MUTABLE_RENDER_BUFFER_DRIVER, 1 },
1622 };
1623
1624 static const __DRIextension *screenExtensions[] = {
1625 &intelTexBufferExtension.base,
1626 &intelFenceExtension.base,
1627 &intelFlushExtension.base,
1628 &intelImageExtension.base,
1629 &intelRendererQueryExtension.base,
1630 &intelMutableRenderBufferExtension.base,
1631 &dri2ConfigQueryExtension.base,
1632 &dri2NoErrorExtension.base,
1633 &intelBlobExtension.base,
1634 NULL
1635 };
1636
1637 static const __DRIextension *intelRobustScreenExtensions[] = {
1638 &intelTexBufferExtension.base,
1639 &intelFenceExtension.base,
1640 &intelFlushExtension.base,
1641 &intelImageExtension.base,
1642 &intelRendererQueryExtension.base,
1643 &intelMutableRenderBufferExtension.base,
1644 &dri2ConfigQueryExtension.base,
1645 &dri2Robustness.base,
1646 &dri2NoErrorExtension.base,
1647 &intelBlobExtension.base,
1648 NULL
1649 };
1650
1651 static int
1652 intel_get_param(struct intel_screen *screen, int param, int *value)
1653 {
1654 int ret = 0;
1655 struct drm_i915_getparam gp;
1656
1657 memset(&gp, 0, sizeof(gp));
1658 gp.param = param;
1659 gp.value = value;
1660
1661 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1662 ret = -errno;
1663 if (ret != -EINVAL)
1664 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1665 }
1666
1667 return ret;
1668 }
1669
1670 static bool
1671 intel_get_boolean(struct intel_screen *screen, int param)
1672 {
1673 int value = 0;
1674 return (intel_get_param(screen, param, &value) == 0) && value;
1675 }
1676
1677 static int
1678 intel_get_integer(struct intel_screen *screen, int param)
1679 {
1680 int value = -1;
1681
1682 if (intel_get_param(screen, param, &value) == 0)
1683 return value;
1684
1685 return -1;
1686 }
1687
1688 static void
1689 intelDestroyScreen(__DRIscreen * sPriv)
1690 {
1691 struct intel_screen *screen = sPriv->driverPrivate;
1692
1693 brw_bufmgr_destroy(screen->bufmgr);
1694 driDestroyOptionInfo(&screen->optionCache);
1695
1696 disk_cache_destroy(screen->disk_cache);
1697
1698 ralloc_free(screen);
1699 sPriv->driverPrivate = NULL;
1700 }
1701
1702
1703 /**
1704 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1705 *
1706 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1707 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1708 * this does not allocate GPU memory.
1709 */
1710 static GLboolean
1711 intelCreateBuffer(__DRIscreen *dri_screen,
1712 __DRIdrawable * driDrawPriv,
1713 const struct gl_config * mesaVis, GLboolean isPixmap)
1714 {
1715 struct intel_renderbuffer *rb;
1716 struct intel_screen *screen = (struct intel_screen *)
1717 dri_screen->driverPrivate;
1718 mesa_format rgbFormat;
1719 unsigned num_samples =
1720 intel_quantize_num_samples(screen, mesaVis->samples);
1721
1722 if (isPixmap)
1723 return false;
1724
1725 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1726 if (!fb)
1727 return false;
1728
1729 _mesa_initialize_window_framebuffer(fb, mesaVis);
1730
1731 if (screen->winsys_msaa_samples_override != -1) {
1732 num_samples = screen->winsys_msaa_samples_override;
1733 fb->Visual.samples = num_samples;
1734 }
1735
1736 if (mesaVis->redBits == 10 && mesaVis->alphaBits > 0) {
1737 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10A2_UNORM
1738 : MESA_FORMAT_R10G10B10A2_UNORM;
1739 } else if (mesaVis->redBits == 10) {
1740 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10X2_UNORM
1741 : MESA_FORMAT_R10G10B10X2_UNORM;
1742 } else if (mesaVis->redBits == 5) {
1743 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1744 : MESA_FORMAT_B5G6R5_UNORM;
1745 } else if (mesaVis->sRGBCapable) {
1746 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1747 : MESA_FORMAT_B8G8R8A8_SRGB;
1748 } else if (mesaVis->alphaBits == 0) {
1749 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1750 : MESA_FORMAT_B8G8R8X8_UNORM;
1751 } else {
1752 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1753 : MESA_FORMAT_B8G8R8A8_SRGB;
1754 fb->Visual.sRGBCapable = true;
1755 }
1756
1757 /* mesaVis->sRGBCapable was set, user is asking for sRGB */
1758 bool srgb_cap_set = mesaVis->redBits >= 8 && mesaVis->sRGBCapable;
1759
1760 /* setup the hardware-based renderbuffers */
1761 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1762 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1763 rb->need_srgb = srgb_cap_set;
1764
1765 if (mesaVis->doubleBufferMode) {
1766 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1767 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1768 rb->need_srgb = srgb_cap_set;
1769 }
1770
1771 /*
1772 * Assert here that the gl_config has an expected depth/stencil bit
1773 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1774 * which constructs the advertised configs.)
1775 */
1776 if (mesaVis->depthBits == 24) {
1777 assert(mesaVis->stencilBits == 8);
1778
1779 if (screen->devinfo.has_hiz_and_separate_stencil) {
1780 rb = intel_create_private_renderbuffer(screen,
1781 MESA_FORMAT_Z24_UNORM_X8_UINT,
1782 num_samples);
1783 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1784 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1785 num_samples);
1786 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1787 } else {
1788 /*
1789 * Use combined depth/stencil. Note that the renderbuffer is
1790 * attached to two attachment points.
1791 */
1792 rb = intel_create_private_renderbuffer(screen,
1793 MESA_FORMAT_Z24_UNORM_S8_UINT,
1794 num_samples);
1795 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1796 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1797 }
1798 }
1799 else if (mesaVis->depthBits == 16) {
1800 assert(mesaVis->stencilBits == 0);
1801 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1802 num_samples);
1803 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1804 }
1805 else {
1806 assert(mesaVis->depthBits == 0);
1807 assert(mesaVis->stencilBits == 0);
1808 }
1809
1810 /* now add any/all software-based renderbuffers we may need */
1811 _swrast_add_soft_renderbuffers(fb,
1812 false, /* never sw color */
1813 false, /* never sw depth */
1814 false, /* never sw stencil */
1815 mesaVis->accumRedBits > 0,
1816 false, /* never sw alpha */
1817 false /* never sw aux */ );
1818 driDrawPriv->driverPrivate = fb;
1819
1820 return true;
1821 }
1822
1823 static void
1824 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1825 {
1826 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1827
1828 _mesa_reference_framebuffer(&fb, NULL);
1829 }
1830
1831 static void
1832 intel_cs_timestamp_frequency(struct intel_screen *screen)
1833 {
1834 /* We shouldn't need to update gen_device_info.timestamp_frequency prior to
1835 * gen10, PCI-id is enough to figure it out.
1836 */
1837 assert(screen->devinfo.gen >= 10);
1838
1839 int ret, freq;
1840
1841 ret = intel_get_param(screen, I915_PARAM_CS_TIMESTAMP_FREQUENCY,
1842 &freq);
1843 if (ret < 0) {
1844 _mesa_warning(NULL,
1845 "Kernel 4.15 required to read the CS timestamp frequency.\n");
1846 return;
1847 }
1848
1849 screen->devinfo.timestamp_frequency = freq;
1850 }
1851
1852 static void
1853 intel_detect_sseu(struct intel_screen *screen)
1854 {
1855 assert(screen->devinfo.gen >= 8);
1856 int ret;
1857
1858 screen->subslice_total = -1;
1859 screen->eu_total = -1;
1860
1861 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1862 &screen->subslice_total);
1863 if (ret < 0 && ret != -EINVAL)
1864 goto err_out;
1865
1866 ret = intel_get_param(screen,
1867 I915_PARAM_EU_TOTAL, &screen->eu_total);
1868 if (ret < 0 && ret != -EINVAL)
1869 goto err_out;
1870
1871 /* Without this information, we cannot get the right Braswell brandstrings,
1872 * and we have to use conservative numbers for GPGPU on many platforms, but
1873 * otherwise, things will just work.
1874 */
1875 if (screen->subslice_total < 1 || screen->eu_total < 1)
1876 _mesa_warning(NULL,
1877 "Kernel 4.1 required to properly query GPU properties.\n");
1878
1879 return;
1880
1881 err_out:
1882 screen->subslice_total = -1;
1883 screen->eu_total = -1;
1884 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1885 }
1886
1887 static bool
1888 intel_init_bufmgr(struct intel_screen *screen)
1889 {
1890 __DRIscreen *dri_screen = screen->driScrnPriv;
1891
1892 if (getenv("INTEL_NO_HW") != NULL)
1893 screen->no_hw = true;
1894
1895 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd);
1896 if (screen->bufmgr == NULL) {
1897 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1898 __func__, __LINE__);
1899 return false;
1900 }
1901
1902 if (!intel_get_boolean(screen, I915_PARAM_HAS_EXEC_NO_RELOC)) {
1903 fprintf(stderr, "[%s: %u] Kernel 3.9 required.\n", __func__, __LINE__);
1904 return false;
1905 }
1906
1907 return true;
1908 }
1909
1910 static bool
1911 intel_detect_swizzling(struct intel_screen *screen)
1912 {
1913 /* Broadwell PRM says:
1914 *
1915 * "Before Gen8, there was a historical configuration control field to
1916 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
1917 * different places: TILECTL[1:0], ARB_MODE[5:4], and
1918 * DISP_ARB_CTL[14:13].
1919 *
1920 * For Gen8 and subsequent generations, the swizzle fields are all
1921 * reserved, and the CPU's memory controller performs all address
1922 * swizzling modifications."
1923 */
1924 if (screen->devinfo.gen >= 8)
1925 return false;
1926
1927 uint32_t tiling = I915_TILING_X;
1928 uint32_t swizzle_mode = 0;
1929 struct brw_bo *buffer =
1930 brw_bo_alloc_tiled(screen->bufmgr, "swizzle test", 32768,
1931 BRW_MEMZONE_OTHER, tiling, 512, 0);
1932 if (buffer == NULL)
1933 return false;
1934
1935 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1936 brw_bo_unreference(buffer);
1937
1938 return swizzle_mode != I915_BIT_6_SWIZZLE_NONE;
1939 }
1940
1941 static int
1942 intel_detect_timestamp(struct intel_screen *screen)
1943 {
1944 uint64_t dummy = 0, last = 0;
1945 int upper, lower, loops;
1946
1947 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1948 * TIMESTAMP register being shifted and the low 32bits always zero.
1949 *
1950 * More recent kernels offer an interface to read the full 36bits
1951 * everywhere.
1952 */
1953 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1954 return 3;
1955
1956 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1957 * upper 32bits for a rapidly changing timestamp.
1958 */
1959 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1960 return 0;
1961
1962 upper = lower = 0;
1963 for (loops = 0; loops < 10; loops++) {
1964 /* The TIMESTAMP should change every 80ns, so several round trips
1965 * through the kernel should be enough to advance it.
1966 */
1967 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1968 return 0;
1969
1970 upper += (dummy >> 32) != (last >> 32);
1971 if (upper > 1) /* beware 32bit counter overflow */
1972 return 2; /* upper dword holds the low 32bits of the timestamp */
1973
1974 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1975 if (lower > 1)
1976 return 1; /* timestamp is unshifted */
1977
1978 last = dummy;
1979 }
1980
1981 /* No advancement? No timestamp! */
1982 return 0;
1983 }
1984
1985 /**
1986 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1987 *
1988 * Some combinations of hardware and kernel versions allow this feature,
1989 * while others don't. Instead of trying to enumerate every case, just
1990 * try and write a register and see if works.
1991 */
1992 static bool
1993 intel_detect_pipelined_register(struct intel_screen *screen,
1994 int reg, uint32_t expected_value, bool reset)
1995 {
1996 if (screen->no_hw)
1997 return false;
1998
1999 struct brw_bo *results, *bo;
2000 uint32_t *batch;
2001 uint32_t offset = 0;
2002 void *map;
2003 bool success = false;
2004
2005 /* Create a zero'ed temporary buffer for reading our results */
2006 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, BRW_MEMZONE_OTHER);
2007 if (results == NULL)
2008 goto err;
2009
2010 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, BRW_MEMZONE_OTHER);
2011 if (bo == NULL)
2012 goto err_results;
2013
2014 map = brw_bo_map(NULL, bo, MAP_WRITE);
2015 if (!map)
2016 goto err_batch;
2017
2018 batch = map;
2019
2020 /* Write the register. */
2021 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
2022 *batch++ = reg;
2023 *batch++ = expected_value;
2024
2025 /* Save the register's value back to the buffer. */
2026 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
2027 *batch++ = reg;
2028 struct drm_i915_gem_relocation_entry reloc = {
2029 .offset = (char *) batch - (char *) map,
2030 .delta = offset * sizeof(uint32_t),
2031 .target_handle = results->gem_handle,
2032 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
2033 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
2034 };
2035 *batch++ = reloc.presumed_offset + reloc.delta;
2036
2037 /* And afterwards clear the register */
2038 if (reset) {
2039 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
2040 *batch++ = reg;
2041 *batch++ = 0;
2042 }
2043
2044 *batch++ = MI_BATCH_BUFFER_END;
2045
2046 struct drm_i915_gem_exec_object2 exec_objects[2] = {
2047 {
2048 .handle = results->gem_handle,
2049 },
2050 {
2051 .handle = bo->gem_handle,
2052 .relocation_count = 1,
2053 .relocs_ptr = (uintptr_t) &reloc,
2054 }
2055 };
2056
2057 struct drm_i915_gem_execbuffer2 execbuf = {
2058 .buffers_ptr = (uintptr_t) exec_objects,
2059 .buffer_count = 2,
2060 .batch_len = ALIGN((char *) batch - (char *) map, 8),
2061 .flags = I915_EXEC_RENDER,
2062 };
2063
2064 /* Don't bother with error checking - if the execbuf fails, the
2065 * value won't be written and we'll just report that there's no access.
2066 */
2067 __DRIscreen *dri_screen = screen->driScrnPriv;
2068 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
2069
2070 /* Check whether the value got written. */
2071 void *results_map = brw_bo_map(NULL, results, MAP_READ);
2072 if (results_map) {
2073 success = *((uint32_t *)results_map + offset) == expected_value;
2074 brw_bo_unmap(results);
2075 }
2076
2077 err_batch:
2078 brw_bo_unreference(bo);
2079 err_results:
2080 brw_bo_unreference(results);
2081 err:
2082 return success;
2083 }
2084
2085 static bool
2086 intel_detect_pipelined_so(struct intel_screen *screen)
2087 {
2088 const struct gen_device_info *devinfo = &screen->devinfo;
2089
2090 /* Supposedly, Broadwell just works. */
2091 if (devinfo->gen >= 8)
2092 return true;
2093
2094 if (devinfo->gen <= 6)
2095 return false;
2096
2097 /* See the big explanation about command parser versions below */
2098 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
2099 return true;
2100
2101 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
2102 * statistics registers), and we already reset it to zero before using it.
2103 */
2104 return intel_detect_pipelined_register(screen,
2105 GEN7_SO_WRITE_OFFSET(0),
2106 0x1337d0d0,
2107 false);
2108 }
2109
2110 /**
2111 * Return array of MSAA modes supported by the hardware. The array is
2112 * zero-terminated and sorted in decreasing order.
2113 */
2114 const int*
2115 intel_supported_msaa_modes(const struct intel_screen *screen)
2116 {
2117 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
2118 static const int gen8_modes[] = {8, 4, 2, 0, -1};
2119 static const int gen7_modes[] = {8, 4, 0, -1};
2120 static const int gen6_modes[] = {4, 0, -1};
2121 static const int gen4_modes[] = {0, -1};
2122
2123 if (screen->devinfo.gen >= 9) {
2124 return gen9_modes;
2125 } else if (screen->devinfo.gen >= 8) {
2126 return gen8_modes;
2127 } else if (screen->devinfo.gen >= 7) {
2128 return gen7_modes;
2129 } else if (screen->devinfo.gen == 6) {
2130 return gen6_modes;
2131 } else {
2132 return gen4_modes;
2133 }
2134 }
2135
2136 static unsigned
2137 intel_loader_get_cap(const __DRIscreen *dri_screen, enum dri_loader_cap cap)
2138 {
2139 if (dri_screen->dri2.loader && dri_screen->dri2.loader->base.version >= 4 &&
2140 dri_screen->dri2.loader->getCapability)
2141 return dri_screen->dri2.loader->getCapability(dri_screen->loaderPrivate, cap);
2142
2143 if (dri_screen->image.loader && dri_screen->image.loader->base.version >= 2 &&
2144 dri_screen->image.loader->getCapability)
2145 return dri_screen->image.loader->getCapability(dri_screen->loaderPrivate, cap);
2146
2147 return 0;
2148 }
2149
2150 static __DRIconfig**
2151 intel_screen_make_configs(__DRIscreen *dri_screen)
2152 {
2153 static const mesa_format formats[] = {
2154 MESA_FORMAT_B5G6R5_UNORM,
2155 MESA_FORMAT_B8G8R8A8_UNORM,
2156 MESA_FORMAT_B8G8R8X8_UNORM,
2157
2158 MESA_FORMAT_B8G8R8A8_SRGB,
2159
2160 /* For 10 bpc, 30 bit depth framebuffers. */
2161 MESA_FORMAT_B10G10R10A2_UNORM,
2162 MESA_FORMAT_B10G10R10X2_UNORM,
2163
2164 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
2165 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
2166 * server may disagree on which format the GLXFBConfig represents,
2167 * resulting in swapped color channels.
2168 *
2169 * The problem, as of 2017-05-30:
2170 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
2171 * order and chooses the first __DRIconfig with the expected channel
2172 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
2173 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
2174 *
2175 * EGL does not suffer from this problem. It correctly compares the
2176 * channel masks when matching EGLConfig to __DRIconfig.
2177 */
2178
2179 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
2180 MESA_FORMAT_R8G8B8A8_UNORM,
2181
2182 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
2183 MESA_FORMAT_R8G8B8X8_UNORM,
2184
2185 MESA_FORMAT_R8G8B8A8_SRGB,
2186 };
2187
2188 /* __DRI_ATTRIB_SWAP_COPY is not supported due to page flipping. */
2189 static const GLenum back_buffer_modes[] = {
2190 __DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
2191 };
2192
2193 static const uint8_t singlesample_samples[1] = {0};
2194
2195 struct intel_screen *screen = dri_screen->driverPrivate;
2196 const struct gen_device_info *devinfo = &screen->devinfo;
2197 uint8_t depth_bits[4], stencil_bits[4];
2198 __DRIconfig **configs = NULL;
2199
2200 /* Expose only BGRA ordering if the loader doesn't support RGBA ordering. */
2201 unsigned num_formats;
2202 if (intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_RGBA_ORDERING))
2203 num_formats = ARRAY_SIZE(formats);
2204 else
2205 num_formats = ARRAY_SIZE(formats) - 3; /* all - RGBA_ORDERING formats */
2206
2207 /* Shall we expose 10 bpc formats? */
2208 bool allow_rgb10_configs = driQueryOptionb(&screen->optionCache,
2209 "allow_rgb10_configs");
2210 /* Shall we expose 565 formats? */
2211 bool allow_rgb565_configs = driQueryOptionb(&screen->optionCache,
2212 "allow_rgb565_configs");
2213
2214 /* Generate singlesample configs, each without accumulation buffer
2215 * and with EGL_MUTABLE_RENDER_BUFFER_BIT_KHR.
2216 */
2217 for (unsigned i = 0; i < num_formats; i++) {
2218 __DRIconfig **new_configs;
2219 int num_depth_stencil_bits = 2;
2220
2221 if (!allow_rgb10_configs &&
2222 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2223 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2224 continue;
2225
2226 if (!allow_rgb565_configs && formats[i] == MESA_FORMAT_B5G6R5_UNORM)
2227 continue;
2228
2229 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
2230 * buffer that has a different number of bits per pixel than the color
2231 * buffer, gen >= 6 supports this.
2232 */
2233 depth_bits[0] = 0;
2234 stencil_bits[0] = 0;
2235
2236 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2237 depth_bits[1] = 16;
2238 stencil_bits[1] = 0;
2239 if (devinfo->gen >= 6) {
2240 depth_bits[2] = 24;
2241 stencil_bits[2] = 8;
2242 num_depth_stencil_bits = 3;
2243 }
2244 } else {
2245 depth_bits[1] = 24;
2246 stencil_bits[1] = 8;
2247 }
2248
2249 new_configs = driCreateConfigs(formats[i],
2250 depth_bits,
2251 stencil_bits,
2252 num_depth_stencil_bits,
2253 back_buffer_modes, 2,
2254 singlesample_samples, 1,
2255 false, false,
2256 /*mutable_render_buffer*/ true);
2257 configs = driConcatConfigs(configs, new_configs);
2258 }
2259
2260 /* Generate the minimum possible set of configs that include an
2261 * accumulation buffer.
2262 */
2263 for (unsigned i = 0; i < num_formats; i++) {
2264 __DRIconfig **new_configs;
2265
2266 if (!allow_rgb10_configs &&
2267 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2268 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2269 continue;
2270
2271 if (!allow_rgb565_configs && formats[i] == MESA_FORMAT_B5G6R5_UNORM)
2272 continue;
2273
2274 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2275 depth_bits[0] = 16;
2276 stencil_bits[0] = 0;
2277 } else {
2278 depth_bits[0] = 24;
2279 stencil_bits[0] = 8;
2280 }
2281
2282 new_configs = driCreateConfigs(formats[i],
2283 depth_bits, stencil_bits, 1,
2284 back_buffer_modes, 1,
2285 singlesample_samples, 1,
2286 true, false, false);
2287 configs = driConcatConfigs(configs, new_configs);
2288 }
2289
2290 /* Generate multisample configs.
2291 *
2292 * This loop breaks early, and hence is a no-op, on gen < 6.
2293 *
2294 * Multisample configs must follow the singlesample configs in order to
2295 * work around an X server bug present in 1.12. The X server chooses to
2296 * associate the first listed RGBA888-Z24S8 config, regardless of its
2297 * sample count, with the 32-bit depth visual used for compositing.
2298 *
2299 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
2300 * supported. Singlebuffer configs are not supported because no one wants
2301 * them.
2302 */
2303 for (unsigned i = 0; i < num_formats; i++) {
2304 if (devinfo->gen < 6)
2305 break;
2306
2307 if (!allow_rgb10_configs &&
2308 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2309 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2310 continue;
2311
2312 if (!allow_rgb565_configs && formats[i] == MESA_FORMAT_B5G6R5_UNORM)
2313 continue;
2314
2315 __DRIconfig **new_configs;
2316 const int num_depth_stencil_bits = 2;
2317 int num_msaa_modes = 0;
2318 const uint8_t *multisample_samples = NULL;
2319
2320 depth_bits[0] = 0;
2321 stencil_bits[0] = 0;
2322
2323 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2324 depth_bits[1] = 16;
2325 stencil_bits[1] = 0;
2326 } else {
2327 depth_bits[1] = 24;
2328 stencil_bits[1] = 8;
2329 }
2330
2331 if (devinfo->gen >= 9) {
2332 static const uint8_t multisample_samples_gen9[] = {2, 4, 8, 16};
2333 multisample_samples = multisample_samples_gen9;
2334 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen9);
2335 } else if (devinfo->gen == 8) {
2336 static const uint8_t multisample_samples_gen8[] = {2, 4, 8};
2337 multisample_samples = multisample_samples_gen8;
2338 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen8);
2339 } else if (devinfo->gen == 7) {
2340 static const uint8_t multisample_samples_gen7[] = {4, 8};
2341 multisample_samples = multisample_samples_gen7;
2342 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen7);
2343 } else if (devinfo->gen == 6) {
2344 static const uint8_t multisample_samples_gen6[] = {4};
2345 multisample_samples = multisample_samples_gen6;
2346 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen6);
2347 }
2348
2349 new_configs = driCreateConfigs(formats[i],
2350 depth_bits,
2351 stencil_bits,
2352 num_depth_stencil_bits,
2353 back_buffer_modes, 1,
2354 multisample_samples,
2355 num_msaa_modes,
2356 false, false, false);
2357 configs = driConcatConfigs(configs, new_configs);
2358 }
2359
2360 if (configs == NULL) {
2361 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
2362 __LINE__);
2363 return NULL;
2364 }
2365
2366 return configs;
2367 }
2368
2369 static void
2370 set_max_gl_versions(struct intel_screen *screen)
2371 {
2372 __DRIscreen *dri_screen = screen->driScrnPriv;
2373 const bool has_astc = screen->devinfo.gen >= 9;
2374
2375 switch (screen->devinfo.gen) {
2376 case 11:
2377 case 10:
2378 case 9:
2379 case 8:
2380 dri_screen->max_gl_core_version = 45;
2381 dri_screen->max_gl_compat_version = 30;
2382 dri_screen->max_gl_es1_version = 11;
2383 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
2384 break;
2385 case 7:
2386 dri_screen->max_gl_core_version = 33;
2387 if (can_do_pipelined_register_writes(screen)) {
2388 dri_screen->max_gl_core_version = 42;
2389 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
2390 dri_screen->max_gl_core_version = 43;
2391 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
2392 dri_screen->max_gl_core_version = 45;
2393 }
2394 dri_screen->max_gl_compat_version = 30;
2395 dri_screen->max_gl_es1_version = 11;
2396 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
2397 break;
2398 case 6:
2399 dri_screen->max_gl_core_version = 33;
2400 dri_screen->max_gl_compat_version = 30;
2401 dri_screen->max_gl_es1_version = 11;
2402 dri_screen->max_gl_es2_version = 30;
2403 break;
2404 case 5:
2405 case 4:
2406 dri_screen->max_gl_core_version = 0;
2407 dri_screen->max_gl_compat_version = 21;
2408 dri_screen->max_gl_es1_version = 11;
2409 dri_screen->max_gl_es2_version = 20;
2410 break;
2411 default:
2412 unreachable("unrecognized intel_screen::gen");
2413 }
2414 }
2415
2416 /**
2417 * Return the revision (generally the revid field of the PCI header) of the
2418 * graphics device.
2419 */
2420 static int
2421 intel_device_get_revision(int fd)
2422 {
2423 struct drm_i915_getparam gp;
2424 int revision;
2425 int ret;
2426
2427 memset(&gp, 0, sizeof(gp));
2428 gp.param = I915_PARAM_REVISION;
2429 gp.value = &revision;
2430
2431 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
2432 if (ret)
2433 revision = -1;
2434
2435 return revision;
2436 }
2437
2438 static void
2439 shader_debug_log_mesa(void *data, const char *fmt, ...)
2440 {
2441 struct brw_context *brw = (struct brw_context *)data;
2442 va_list args;
2443
2444 va_start(args, fmt);
2445 GLuint msg_id = 0;
2446 _mesa_gl_vdebugf(&brw->ctx, &msg_id,
2447 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2448 MESA_DEBUG_TYPE_OTHER,
2449 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
2450 va_end(args);
2451 }
2452
2453 static void
2454 shader_perf_log_mesa(void *data, const char *fmt, ...)
2455 {
2456 struct brw_context *brw = (struct brw_context *)data;
2457
2458 va_list args;
2459 va_start(args, fmt);
2460
2461 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2462 va_list args_copy;
2463 va_copy(args_copy, args);
2464 vfprintf(stderr, fmt, args_copy);
2465 va_end(args_copy);
2466 }
2467
2468 if (brw->perf_debug) {
2469 GLuint msg_id = 0;
2470 _mesa_gl_vdebugf(&brw->ctx, &msg_id,
2471 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2472 MESA_DEBUG_TYPE_PERFORMANCE,
2473 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2474 }
2475 va_end(args);
2476 }
2477
2478 /**
2479 * This is the driver specific part of the createNewScreen entry point.
2480 * Called when using DRI2.
2481 *
2482 * \return the struct gl_config supported by this driver
2483 */
2484 static const
2485 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2486 {
2487 struct intel_screen *screen;
2488
2489 if (dri_screen->image.loader) {
2490 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2491 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2492 fprintf(stderr,
2493 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2494 "support required\n");
2495 return NULL;
2496 }
2497
2498 /* Allocate the private area */
2499 screen = rzalloc(NULL, struct intel_screen);
2500 if (!screen) {
2501 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2502 return NULL;
2503 }
2504 /* parse information in __driConfigOptions */
2505 driOptionCache options;
2506 memset(&options, 0, sizeof(options));
2507
2508 driParseOptionInfo(&options, brw_config_options.xml);
2509 driParseConfigFiles(&screen->optionCache, &options, dri_screen->myNum,
2510 "i965", NULL);
2511 driDestroyOptionCache(&options);
2512
2513 screen->driScrnPriv = dri_screen;
2514 dri_screen->driverPrivate = (void *) screen;
2515
2516 screen->deviceID = gen_get_pci_device_id_override();
2517 if (screen->deviceID < 0)
2518 screen->deviceID = intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
2519 else
2520 screen->no_hw = true;
2521
2522 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
2523 return NULL;
2524
2525 screen->devinfo.revision = intel_device_get_revision(dri_screen->fd);
2526
2527 if (!intel_init_bufmgr(screen))
2528 return NULL;
2529
2530 const struct gen_device_info *devinfo = &screen->devinfo;
2531
2532 brw_process_intel_debug_variable();
2533
2534 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2535 fprintf(stderr,
2536 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2537 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2538 }
2539
2540 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2541 /* Theorectically unlimited! At least for individual objects...
2542 *
2543 * Currently the entire (global) address space for all GTT maps is
2544 * limited to 64bits. That is all objects on the system that are
2545 * setup for GTT mmapping must fit within 64bits. An attempt to use
2546 * one that exceeds the limit with fail in brw_bo_map_gtt().
2547 *
2548 * Long before we hit that limit, we will be practically limited by
2549 * that any single object must fit in physical memory (RAM). The upper
2550 * limit on the CPU's address space is currently 48bits (Skylake), of
2551 * which only 39bits can be physical memory. (The GPU itself also has
2552 * a 48bit addressable virtual space.) We can fit over 32 million
2553 * objects of the current maximum allocable size before running out
2554 * of mmap space.
2555 */
2556 screen->max_gtt_map_object_size = UINT64_MAX;
2557 } else {
2558 /* Estimate the size of the mappable aperture into the GTT. There's an
2559 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2560 * It turns out it's basically always 256MB, though some ancient hardware
2561 * was smaller.
2562 */
2563 uint32_t gtt_size = 256 * 1024 * 1024;
2564
2565 /* We don't want to map two objects such that a memcpy between them would
2566 * just fault one mapping in and then the other over and over forever. So
2567 * we would need to divide the GTT size by 2. Additionally, some GTT is
2568 * taken up by things like the framebuffer and the ringbuffer and such, so
2569 * be more conservative.
2570 */
2571 screen->max_gtt_map_object_size = gtt_size / 4;
2572 }
2573
2574 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
2575
2576 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2577 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2578
2579 isl_device_init(&screen->isl_dev, &screen->devinfo,
2580 screen->hw_has_swizzling);
2581
2582 if (devinfo->gen >= 10)
2583 intel_cs_timestamp_frequency(screen);
2584
2585 /* GENs prior to 8 do not support EU/Subslice info */
2586 if (devinfo->gen >= 8) {
2587 intel_detect_sseu(screen);
2588 } else if (devinfo->gen == 7) {
2589 screen->subslice_total = 1 << (devinfo->gt - 1);
2590 }
2591
2592 /* Gen7-7.5 kernel requirements / command parser saga:
2593 *
2594 * - pre-v3.16:
2595 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2596 *
2597 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2598 * all batches secure, allowing them to use any feature with no checking.
2599 * This is effectively equivalent to a command parser version of
2600 * \infinity - everything is possible.
2601 *
2602 * The command parser does not exist, and querying the version will
2603 * return -EINVAL.
2604 *
2605 * - v3.16:
2606 * The kernel enables the command parser by default, for systems with
2607 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2608 * hardware checker is still enabled, so Haswell and Baytrail cannot
2609 * do anything.
2610 *
2611 * Ivybridge goes from "everything is possible" to "only what the
2612 * command parser allows" (if the user boots with i915.cmd_parser=0,
2613 * then everything is possible again). We can only safely use features
2614 * allowed by the supported command parser version.
2615 *
2616 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2617 * implemented by the kernel, even if it's turned off. So, checking
2618 * for version > 0 does not mean that you can write registers. We have
2619 * to try it and see. The version does, however, indicate the age of
2620 * the kernel.
2621 *
2622 * Instead of matching the hardware checker's behavior of converting
2623 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2624 * -EINVAL, making it dangerous to try and use privileged features.
2625 *
2626 * Effective command parser versions:
2627 * - Haswell: 0 (reporting 1, writes don't work)
2628 * - Baytrail: 0 (reporting 1, writes don't work)
2629 * - Ivybridge: 1 (enabled) or infinite (disabled)
2630 *
2631 * - v3.17:
2632 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2633 * effectively version 1 (enabled) or infinite (disabled).
2634 *
2635 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2636 * Command parser v2 supports predicate writes.
2637 *
2638 * - Haswell: 0 (reporting 1, writes don't work)
2639 * - Baytrail: 2 (enabled) or infinite (disabled)
2640 * - Ivybridge: 2 (enabled) or infinite (disabled)
2641 *
2642 * So version >= 2 is enough to know that Ivybridge and Baytrail
2643 * will work. Haswell still can't do anything.
2644 *
2645 * - v4.0: Version 3 happened. Largely not relevant.
2646 *
2647 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2648 * L3 config registers are properly saved and restored as part
2649 * of the hardware context. We can approximately detect this point
2650 * in time by checking if I915_PARAM_REVISION is recognized - it
2651 * landed in a later commit, but in the same release cycle.
2652 *
2653 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2654 * Command parser finally gains secure batch promotion. On Haswell,
2655 * the hardware checker gets disabled, which finally allows it to do
2656 * privileged commands.
2657 *
2658 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2659 * - Haswell: 3 (enabled) or 0 (disabled)
2660 * - Baytrail: 3 (enabled) or infinite (disabled)
2661 * - Ivybridge: 3 (enabled) or infinite (disabled)
2662 *
2663 * Unfortunately, detecting this point in time is tricky, because
2664 * no version bump happened when this important change occurred.
2665 * On Haswell, if we can write any register, then the kernel is at
2666 * least this new, and we can start trusting the version number.
2667 *
2668 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2669 * Command parser reaches version 4, allowing access to Haswell
2670 * atomic scratch and chicken3 registers. If version >= 4, we know
2671 * the kernel is new enough to support privileged features on all
2672 * hardware. However, the user might have disabled it...and the
2673 * kernel will still report version 4. So we still have to guess
2674 * and check.
2675 *
2676 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2677 * Command parser v5 whitelists indirect compute shader dispatch
2678 * registers, needed for OpenGL 4.3 and later.
2679 *
2680 * - v4.8:
2681 * Command parser v7 lets us use MI_MATH on Haswell.
2682 *
2683 * Additionally, the kernel begins reporting version 0 when
2684 * the command parser is disabled, allowing us to skip the
2685 * guess-and-check step on Haswell. Unfortunately, this also
2686 * means that we can no longer use it as an indicator of the
2687 * age of the kernel.
2688 */
2689 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2690 &screen->cmd_parser_version) < 0) {
2691 /* Command parser does not exist - getparam is unrecognized */
2692 screen->cmd_parser_version = 0;
2693 }
2694
2695 /* Kernel 4.13 retuired for exec object capture */
2696 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2697 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2698 }
2699
2700 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
2701 screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
2702 }
2703
2704 if (!intel_detect_pipelined_so(screen)) {
2705 /* We can't do anything, so the effective version is 0. */
2706 screen->cmd_parser_version = 0;
2707 } else {
2708 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2709 }
2710
2711 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2712 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2713
2714 /* Haswell requires command parser version 4 in order to have L3
2715 * atomic scratch1 and chicken3 bits
2716 */
2717 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2718 screen->kernel_features |=
2719 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2720 }
2721
2722 /* Haswell requires command parser version 6 in order to write to the
2723 * MI_MATH GPR registers, and version 7 in order to use
2724 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2725 */
2726 if (devinfo->gen >= 8 ||
2727 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2728 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2729 }
2730
2731 /* Gen7 needs at least command parser version 5 to support compute */
2732 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2733 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2734
2735 if (intel_get_boolean(screen, I915_PARAM_HAS_CONTEXT_ISOLATION))
2736 screen->kernel_features |= KERNEL_ALLOWS_CONTEXT_ISOLATION;
2737
2738 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2739 if (force_msaa) {
2740 screen->winsys_msaa_samples_override =
2741 intel_quantize_num_samples(screen, atoi(force_msaa));
2742 printf("Forcing winsys sample count to %d\n",
2743 screen->winsys_msaa_samples_override);
2744 } else {
2745 screen->winsys_msaa_samples_override = -1;
2746 }
2747
2748 set_max_gl_versions(screen);
2749
2750 /* Notification of GPU resets requires hardware contexts and a kernel new
2751 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2752 * supported, calling it with a context of 0 will either generate EPERM or
2753 * no error. If the ioctl is not supported, it always generate EINVAL.
2754 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2755 * extension to the loader.
2756 *
2757 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2758 */
2759 if (devinfo->gen >= 6) {
2760 struct drm_i915_reset_stats stats;
2761 memset(&stats, 0, sizeof(stats));
2762
2763 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2764
2765 screen->has_context_reset_notification =
2766 (ret != -1 || errno != EINVAL);
2767 }
2768
2769 dri_screen->extensions = !screen->has_context_reset_notification
2770 ? screenExtensions : intelRobustScreenExtensions;
2771
2772 screen->compiler = brw_compiler_create(screen, devinfo);
2773 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2774 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2775
2776 /* Changing the meaning of constant buffer pointers from a dynamic state
2777 * offset to an absolute address is only safe if the kernel isolates other
2778 * contexts from our changes.
2779 */
2780 screen->compiler->constant_buffer_0_is_relative = devinfo->gen < 8 ||
2781 !(screen->kernel_features & KERNEL_ALLOWS_CONTEXT_ISOLATION);
2782
2783 screen->compiler->supports_pull_constants = true;
2784
2785 screen->has_exec_fence =
2786 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2787
2788 intel_screen_init_surface_formats(screen);
2789
2790 if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
2791 unsigned int caps = intel_get_integer(screen, I915_PARAM_HAS_SCHEDULER);
2792 if (caps) {
2793 fprintf(stderr, "Kernel scheduler detected: %08x\n", caps);
2794 if (caps & I915_SCHEDULER_CAP_PRIORITY)
2795 fprintf(stderr, " - User priority sorting enabled\n");
2796 if (caps & I915_SCHEDULER_CAP_PREEMPTION)
2797 fprintf(stderr, " - Preemption enabled\n");
2798 }
2799 }
2800
2801 brw_disk_cache_init(screen);
2802
2803 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2804 }
2805
2806 struct intel_buffer {
2807 __DRIbuffer base;
2808 struct brw_bo *bo;
2809 };
2810
2811 static __DRIbuffer *
2812 intelAllocateBuffer(__DRIscreen *dri_screen,
2813 unsigned attachment, unsigned format,
2814 int width, int height)
2815 {
2816 struct intel_buffer *intelBuffer;
2817 struct intel_screen *screen = dri_screen->driverPrivate;
2818
2819 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2820 attachment == __DRI_BUFFER_BACK_LEFT);
2821
2822 intelBuffer = calloc(1, sizeof *intelBuffer);
2823 if (intelBuffer == NULL)
2824 return NULL;
2825
2826 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2827 * supports Y tiled and compressed buffers, but there is no way to plumb that
2828 * through to here. */
2829 uint32_t pitch;
2830 int cpp = format / 8;
2831 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2832 "intelAllocateBuffer",
2833 width,
2834 height,
2835 cpp,
2836 BRW_MEMZONE_OTHER,
2837 I915_TILING_X, &pitch,
2838 BO_ALLOC_BUSY);
2839
2840 if (intelBuffer->bo == NULL) {
2841 free(intelBuffer);
2842 return NULL;
2843 }
2844
2845 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2846
2847 intelBuffer->base.attachment = attachment;
2848 intelBuffer->base.cpp = cpp;
2849 intelBuffer->base.pitch = pitch;
2850
2851 return &intelBuffer->base;
2852 }
2853
2854 static void
2855 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2856 {
2857 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2858
2859 brw_bo_unreference(intelBuffer->bo);
2860 free(intelBuffer);
2861 }
2862
2863 static const struct __DriverAPIRec brw_driver_api = {
2864 .InitScreen = intelInitScreen2,
2865 .DestroyScreen = intelDestroyScreen,
2866 .CreateContext = brwCreateContext,
2867 .DestroyContext = intelDestroyContext,
2868 .CreateBuffer = intelCreateBuffer,
2869 .DestroyBuffer = intelDestroyBuffer,
2870 .MakeCurrent = intelMakeCurrent,
2871 .UnbindContext = intelUnbindContext,
2872 .AllocateBuffer = intelAllocateBuffer,
2873 .ReleaseBuffer = intelReleaseBuffer
2874 };
2875
2876 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2877 .base = { __DRI_DRIVER_VTABLE, 1 },
2878 .vtable = &brw_driver_api,
2879 };
2880
2881 static const __DRIextension *brw_driver_extensions[] = {
2882 &driCoreExtension.base,
2883 &driImageDriverExtension.base,
2884 &driDRI2Extension.base,
2885 &brw_vtable.base,
2886 &brw_config_options.base,
2887 NULL
2888 };
2889
2890 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2891 {
2892 globalDriverAPI = &brw_driver_api;
2893
2894 return brw_driver_extensions;
2895 }