driconf, glsl: Add a vs_position_always_invariant option
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "drm-uapi/drm_fourcc.h"
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "main/glthread.h"
38 #include "swrast/s_renderbuffer.h"
39 #include "util/ralloc.h"
40 #include "util/disk_cache.h"
41 #include "brw_defines.h"
42 #include "brw_state.h"
43 #include "compiler/nir/nir.h"
44
45 #include "utils.h"
46 #include "util/disk_cache.h"
47 #include "util/xmlpool.h"
48
49 #include "common/gen_defines.h"
50
51 static const __DRIconfigOptionsExtension brw_config_options = {
52 .base = { __DRI_CONFIG_OPTIONS, 1 },
53 .xml =
54 DRI_CONF_BEGIN
55 DRI_CONF_SECTION_PERFORMANCE
56 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
57 * DRI_CONF_BO_REUSE_ALL
58 */
59 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
60 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
61 DRI_CONF_ENUM(0, "Disable buffer object reuse")
62 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
63 DRI_CONF_DESC_END
64 DRI_CONF_OPT_END
65 DRI_CONF_MESA_NO_ERROR("false")
66 DRI_CONF_MESA_GLTHREAD("false")
67 DRI_CONF_SECTION_END
68
69 DRI_CONF_SECTION_QUALITY
70 DRI_CONF_PRECISE_TRIG("false")
71
72 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
73 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
74 "given integer. If negative, then do not clamp.")
75 DRI_CONF_OPT_END
76 DRI_CONF_SECTION_END
77
78 DRI_CONF_SECTION_DEBUG
79 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
80 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
81 DRI_CONF_DISABLE_THROTTLING("false")
82 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
83 DRI_CONF_FORCE_GLSL_VERSION(0)
84 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
85 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
86 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
87 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
88 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
89 DRI_CONF_ALLOW_GLSL_CROSS_STAGE_INTERPOLATION_MISMATCH("false")
90 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
91 DRI_CONF_FORCE_COMPAT_PROFILE("false")
92 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
93
94 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
95 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
96 DRI_CONF_OPT_END
97 DRI_CONF_SECTION_END
98
99 DRI_CONF_SECTION_MISCELLANEOUS
100 DRI_CONF_GLSL_ZERO_INIT("false")
101 DRI_CONF_VS_POSITION_ALWAYS_INVARIANT("false")
102 DRI_CONF_ALLOW_RGB10_CONFIGS("false")
103 DRI_CONF_ALLOW_RGB565_CONFIGS("true")
104 DRI_CONF_ALLOW_FP16_CONFIGS("false")
105 DRI_CONF_SECTION_END
106 DRI_CONF_END
107 };
108
109 #include "intel_batchbuffer.h"
110 #include "intel_buffers.h"
111 #include "brw_bufmgr.h"
112 #include "intel_fbo.h"
113 #include "intel_mipmap_tree.h"
114 #include "intel_screen.h"
115 #include "intel_tex.h"
116 #include "intel_image.h"
117
118 #include "brw_context.h"
119
120 #include "drm-uapi/i915_drm.h"
121
122 /**
123 * For debugging purposes, this returns a time in seconds.
124 */
125 double
126 get_time(void)
127 {
128 struct timespec tp;
129
130 clock_gettime(CLOCK_MONOTONIC, &tp);
131
132 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
133 }
134
135 static const __DRItexBufferExtension intelTexBufferExtension = {
136 .base = { __DRI_TEX_BUFFER, 3 },
137
138 .setTexBuffer = intelSetTexBuffer,
139 .setTexBuffer2 = intelSetTexBuffer2,
140 .releaseTexBuffer = intelReleaseTexBuffer,
141 };
142
143 static void
144 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
145 __DRIdrawable *dPriv,
146 unsigned flags,
147 enum __DRI2throttleReason reason)
148 {
149 struct brw_context *brw = cPriv->driverPrivate;
150
151 if (!brw)
152 return;
153
154 struct gl_context *ctx = &brw->ctx;
155
156 _mesa_glthread_finish(ctx);
157
158 FLUSH_VERTICES(ctx, 0);
159
160 if (flags & __DRI2_FLUSH_DRAWABLE)
161 intel_resolve_for_dri2_flush(brw, dPriv);
162
163 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
164 brw->need_swap_throttle = true;
165 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
166 brw->need_flush_throttle = true;
167
168 intel_batchbuffer_flush(brw);
169 }
170
171 /**
172 * Provides compatibility with loaders that only support the older (version
173 * 1-3) flush interface.
174 *
175 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
176 */
177 static void
178 intel_dri2_flush(__DRIdrawable *drawable)
179 {
180 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
181 __DRI2_FLUSH_DRAWABLE,
182 __DRI2_THROTTLE_SWAPBUFFER);
183 }
184
185 static const struct __DRI2flushExtensionRec intelFlushExtension = {
186 .base = { __DRI2_FLUSH, 4 },
187
188 .flush = intel_dri2_flush,
189 .invalidate = dri2InvalidateDrawable,
190 .flush_with_flags = intel_dri2_flush_with_flags,
191 };
192
193 static const struct intel_image_format intel_image_formats[] = {
194 { DRM_FORMAT_ABGR16161616F, __DRI_IMAGE_COMPONENTS_RGBA, 1,
195 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR16161616F, 8 } } },
196
197 { DRM_FORMAT_XBGR16161616F, __DRI_IMAGE_COMPONENTS_RGB, 1,
198 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR16161616F, 8 } } },
199
200 { DRM_FORMAT_ARGB2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
201 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB2101010, 4 } } },
202
203 { DRM_FORMAT_XRGB2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
204 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB2101010, 4 } } },
205
206 { DRM_FORMAT_ABGR2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
207 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR2101010, 4 } } },
208
209 { DRM_FORMAT_XBGR2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
210 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR2101010, 4 } } },
211
212 { DRM_FORMAT_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
213 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
214
215 { DRM_FORMAT_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
216 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
217
218 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
219 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
220
221 { DRM_FORMAT_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
222 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
223
224 { DRM_FORMAT_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
225 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
226
227 { DRM_FORMAT_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
228 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
229
230 { DRM_FORMAT_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
231 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
232
233 { DRM_FORMAT_R8, __DRI_IMAGE_COMPONENTS_R, 1,
234 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
235
236 { DRM_FORMAT_R16, __DRI_IMAGE_COMPONENTS_R, 1,
237 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
238
239 { DRM_FORMAT_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
240 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
241
242 { DRM_FORMAT_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
243 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
244
245 { DRM_FORMAT_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
246 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
247 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
248 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
249
250 { DRM_FORMAT_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
251 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
252 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
253 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
254
255 { DRM_FORMAT_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
256 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
257 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
258 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
259
260 { DRM_FORMAT_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
261 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
262 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
263 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
264
265 { DRM_FORMAT_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
266 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
267 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
268 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
269
270 { DRM_FORMAT_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
271 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
272 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
273 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
274
275 { DRM_FORMAT_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
276 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
277 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
278 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
279
280 { DRM_FORMAT_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
281 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
282 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
283 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
284
285 { DRM_FORMAT_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
286 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
287 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
288 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
289
290 { DRM_FORMAT_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
291 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
292 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
293 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
294
295 { DRM_FORMAT_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
296 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
297 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
298
299 { DRM_FORMAT_P010, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
300 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
301 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
302
303 { DRM_FORMAT_P012, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
304 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
305 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
306
307 { DRM_FORMAT_P016, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
308 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
309 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
310
311 { DRM_FORMAT_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
312 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
313 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
314
315 { DRM_FORMAT_AYUV, __DRI_IMAGE_COMPONENTS_AYUV, 1,
316 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
317
318 { DRM_FORMAT_XYUV8888, __DRI_IMAGE_COMPONENTS_XYUV, 1,
319 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 } } },
320
321 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
322 * and treat them as planar buffers in the compositors.
323 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
324 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
325 * clusters and places pairs and places U into the G component and
326 * V into A. This lets the texture sampler interpolate the Y
327 * components correctly when sampling from plane 0, and interpolate
328 * U and V correctly when sampling from plane 1. */
329 { DRM_FORMAT_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
330 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
331 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
332 { DRM_FORMAT_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
333 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
334 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
335 };
336
337 static const struct {
338 uint64_t modifier;
339 unsigned since_gen;
340 } supported_modifiers[] = {
341 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
342 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
343 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
344 { .modifier = I915_FORMAT_MOD_Y_TILED_CCS , .since_gen = 9 },
345 };
346
347 static bool
348 modifier_is_supported(const struct gen_device_info *devinfo,
349 const struct intel_image_format *fmt, int dri_format,
350 uint64_t modifier)
351 {
352 const struct isl_drm_modifier_info *modinfo =
353 isl_drm_modifier_get_info(modifier);
354 int i;
355
356 /* ISL had better know about the modifier */
357 if (!modinfo)
358 return false;
359
360 if (modinfo->aux_usage == ISL_AUX_USAGE_CCS_E) {
361 /* If INTEL_DEBUG=norbc is set, don't support any CCS_E modifiers */
362 if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
363 return false;
364
365 /* CCS_E is not supported for planar images */
366 if (fmt && fmt->nplanes > 1)
367 return false;
368
369 if (fmt) {
370 assert(dri_format == 0);
371 dri_format = fmt->planes[0].dri_format;
372 }
373
374 mesa_format format = driImageFormatToGLFormat(dri_format);
375 /* Whether or not we support compression is based on the RGBA non-sRGB
376 * version of the format.
377 */
378 format = _mesa_format_fallback_rgbx_to_rgba(format);
379 format = _mesa_get_srgb_format_linear(format);
380 if (!isl_format_supports_ccs_e(devinfo,
381 brw_isl_format_for_mesa_format(format)))
382 return false;
383 }
384
385 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
386 if (supported_modifiers[i].modifier != modifier)
387 continue;
388
389 return supported_modifiers[i].since_gen <= devinfo->gen;
390 }
391
392 return false;
393 }
394
395 static uint64_t
396 tiling_to_modifier(uint32_t tiling)
397 {
398 static const uint64_t map[] = {
399 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
400 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
401 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
402 };
403
404 assert(tiling < ARRAY_SIZE(map));
405
406 return map[tiling];
407 }
408
409 static void
410 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
411 {
412 uint32_t tiling, swizzle;
413 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
414
415 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
416 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
417 func, image->offset);
418 }
419 }
420
421 static const struct intel_image_format *
422 intel_image_format_lookup(int fourcc)
423 {
424 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
425 if (intel_image_formats[i].fourcc == fourcc)
426 return &intel_image_formats[i];
427 }
428
429 return NULL;
430 }
431
432 static bool
433 intel_image_get_fourcc(__DRIimage *image, int *fourcc)
434 {
435 if (image->planar_format) {
436 *fourcc = image->planar_format->fourcc;
437 return true;
438 }
439
440 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
441 if (intel_image_formats[i].planes[0].dri_format == image->dri_format) {
442 *fourcc = intel_image_formats[i].fourcc;
443 return true;
444 }
445 }
446 return false;
447 }
448
449 static __DRIimage *
450 intel_allocate_image(struct intel_screen *screen, int dri_format,
451 void *loaderPrivate)
452 {
453 __DRIimage *image;
454
455 image = calloc(1, sizeof *image);
456 if (image == NULL)
457 return NULL;
458
459 image->screen = screen;
460 image->dri_format = dri_format;
461 image->offset = 0;
462
463 image->format = driImageFormatToGLFormat(dri_format);
464 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
465 image->format == MESA_FORMAT_NONE) {
466 free(image);
467 return NULL;
468 }
469
470 image->internal_format = _mesa_get_format_base_format(image->format);
471 image->data = loaderPrivate;
472
473 return image;
474 }
475
476 /**
477 * Sets up a DRIImage structure to point to a slice out of a miptree.
478 */
479 static void
480 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
481 struct intel_mipmap_tree *mt, GLuint level,
482 GLuint zoffset)
483 {
484 intel_miptree_make_shareable(brw, mt);
485
486 intel_miptree_check_level_layer(mt, level, zoffset);
487
488 image->width = minify(mt->surf.phys_level0_sa.width,
489 level - mt->first_level);
490 image->height = minify(mt->surf.phys_level0_sa.height,
491 level - mt->first_level);
492 image->pitch = mt->surf.row_pitch_B;
493
494 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
495 &image->tile_x,
496 &image->tile_y);
497
498 brw_bo_unreference(image->bo);
499 image->bo = mt->bo;
500 brw_bo_reference(mt->bo);
501 }
502
503 static __DRIimage *
504 intel_create_image_from_name(__DRIscreen *dri_screen,
505 int width, int height, int format,
506 int name, int pitch, void *loaderPrivate)
507 {
508 struct intel_screen *screen = dri_screen->driverPrivate;
509 __DRIimage *image;
510 int cpp;
511
512 image = intel_allocate_image(screen, format, loaderPrivate);
513 if (image == NULL)
514 return NULL;
515
516 if (image->format == MESA_FORMAT_NONE)
517 cpp = 1;
518 else
519 cpp = _mesa_get_format_bytes(image->format);
520
521 image->width = width;
522 image->height = height;
523 image->pitch = pitch * cpp;
524 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
525 name);
526 if (!image->bo) {
527 free(image);
528 return NULL;
529 }
530 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
531
532 return image;
533 }
534
535 static __DRIimage *
536 intel_create_image_from_renderbuffer(__DRIcontext *context,
537 int renderbuffer, void *loaderPrivate)
538 {
539 __DRIimage *image;
540 struct brw_context *brw = context->driverPrivate;
541 struct gl_context *ctx = &brw->ctx;
542 struct gl_renderbuffer *rb;
543 struct intel_renderbuffer *irb;
544
545 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
546 if (!rb) {
547 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
548 return NULL;
549 }
550
551 irb = intel_renderbuffer(rb);
552 intel_miptree_make_shareable(brw, irb->mt);
553 image = calloc(1, sizeof *image);
554 if (image == NULL)
555 return NULL;
556
557 image->internal_format = rb->InternalFormat;
558 image->format = rb->Format;
559 image->modifier = tiling_to_modifier(
560 isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
561 image->offset = 0;
562 image->data = loaderPrivate;
563 brw_bo_unreference(image->bo);
564 image->bo = irb->mt->bo;
565 brw_bo_reference(irb->mt->bo);
566 image->width = rb->Width;
567 image->height = rb->Height;
568 image->pitch = irb->mt->surf.row_pitch_B;
569 image->dri_format = driGLFormatToImageFormat(image->format);
570 image->has_depthstencil = irb->mt->stencil_mt? true : false;
571
572 rb->NeedsFinishRenderTexture = true;
573 return image;
574 }
575
576 static __DRIimage *
577 intel_create_image_from_texture(__DRIcontext *context, int target,
578 unsigned texture, int zoffset,
579 int level,
580 unsigned *error,
581 void *loaderPrivate)
582 {
583 __DRIimage *image;
584 struct brw_context *brw = context->driverPrivate;
585 struct gl_texture_object *obj;
586 struct intel_texture_object *iobj;
587 GLuint face = 0;
588
589 obj = _mesa_lookup_texture(&brw->ctx, texture);
590 if (!obj || obj->Target != target) {
591 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
592 return NULL;
593 }
594
595 if (target == GL_TEXTURE_CUBE_MAP)
596 face = zoffset;
597
598 _mesa_test_texobj_completeness(&brw->ctx, obj);
599 iobj = intel_texture_object(obj);
600 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
601 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
602 return NULL;
603 }
604
605 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
606 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
607 return NULL;
608 }
609
610 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
611 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
612 return NULL;
613 }
614 image = calloc(1, sizeof *image);
615 if (image == NULL) {
616 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
617 return NULL;
618 }
619
620 image->internal_format = obj->Image[face][level]->InternalFormat;
621 image->format = obj->Image[face][level]->TexFormat;
622 image->modifier = tiling_to_modifier(
623 isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
624 image->data = loaderPrivate;
625 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
626 image->dri_format = driGLFormatToImageFormat(image->format);
627 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
628 image->planar_format = iobj->planar_format;
629 if (image->dri_format == __DRI_IMAGE_FORMAT_NONE) {
630 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
631 free(image);
632 return NULL;
633 }
634
635 *error = __DRI_IMAGE_ERROR_SUCCESS;
636 return image;
637 }
638
639 static void
640 intel_destroy_image(__DRIimage *image)
641 {
642 brw_bo_unreference(image->bo);
643 free(image);
644 }
645
646 enum modifier_priority {
647 MODIFIER_PRIORITY_INVALID = 0,
648 MODIFIER_PRIORITY_LINEAR,
649 MODIFIER_PRIORITY_X,
650 MODIFIER_PRIORITY_Y,
651 MODIFIER_PRIORITY_Y_CCS,
652 };
653
654 const uint64_t priority_to_modifier[] = {
655 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
656 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
657 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
658 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
659 [MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
660 };
661
662 static uint64_t
663 select_best_modifier(struct gen_device_info *devinfo,
664 int dri_format,
665 const uint64_t *modifiers,
666 const unsigned count)
667 {
668 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
669
670 for (int i = 0; i < count; i++) {
671 if (!modifier_is_supported(devinfo, NULL, dri_format, modifiers[i]))
672 continue;
673
674 switch (modifiers[i]) {
675 case I915_FORMAT_MOD_Y_TILED_CCS:
676 prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
677 break;
678 case I915_FORMAT_MOD_Y_TILED:
679 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
680 break;
681 case I915_FORMAT_MOD_X_TILED:
682 prio = MAX2(prio, MODIFIER_PRIORITY_X);
683 break;
684 case DRM_FORMAT_MOD_LINEAR:
685 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
686 break;
687 case DRM_FORMAT_MOD_INVALID:
688 default:
689 break;
690 }
691 }
692
693 return priority_to_modifier[prio];
694 }
695
696 static __DRIimage *
697 intel_create_image_common(__DRIscreen *dri_screen,
698 int width, int height, int format,
699 unsigned int use,
700 const uint64_t *modifiers,
701 unsigned count,
702 void *loaderPrivate)
703 {
704 __DRIimage *image;
705 struct intel_screen *screen = dri_screen->driverPrivate;
706 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
707 bool ok;
708
709 /* Callers of this may specify a modifier, or a dri usage, but not both. The
710 * newer modifier interface deprecates the older usage flags newer modifier
711 * interface deprecates the older usage flags.
712 */
713 assert(!(use && count));
714
715 if (use & __DRI_IMAGE_USE_CURSOR) {
716 if (width != 64 || height != 64)
717 return NULL;
718 modifier = DRM_FORMAT_MOD_LINEAR;
719 }
720
721 if (use & __DRI_IMAGE_USE_LINEAR)
722 modifier = DRM_FORMAT_MOD_LINEAR;
723
724 if (modifier == DRM_FORMAT_MOD_INVALID) {
725 if (modifiers) {
726 /* User requested specific modifiers */
727 modifier = select_best_modifier(&screen->devinfo, format,
728 modifiers, count);
729 if (modifier == DRM_FORMAT_MOD_INVALID)
730 return NULL;
731 } else {
732 /* Historically, X-tiled was the default, and so lack of modifier means
733 * X-tiled.
734 */
735 modifier = I915_FORMAT_MOD_X_TILED;
736 }
737 }
738
739 image = intel_allocate_image(screen, format, loaderPrivate);
740 if (image == NULL)
741 return NULL;
742
743 const struct isl_drm_modifier_info *mod_info =
744 isl_drm_modifier_get_info(modifier);
745
746 struct isl_surf surf;
747 ok = isl_surf_init(&screen->isl_dev, &surf,
748 .dim = ISL_SURF_DIM_2D,
749 .format = brw_isl_format_for_mesa_format(image->format),
750 .width = width,
751 .height = height,
752 .depth = 1,
753 .levels = 1,
754 .array_len = 1,
755 .samples = 1,
756 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
757 ISL_SURF_USAGE_TEXTURE_BIT |
758 ISL_SURF_USAGE_STORAGE_BIT |
759 ((use & __DRI_IMAGE_USE_SCANOUT) ?
760 ISL_SURF_USAGE_DISPLAY_BIT : 0),
761 .tiling_flags = (1 << mod_info->tiling));
762 assert(ok);
763 if (!ok) {
764 free(image);
765 return NULL;
766 }
767
768 struct isl_surf aux_surf = {0,};
769 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
770 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, NULL, 0);
771 if (!ok) {
772 free(image);
773 return NULL;
774 }
775 } else {
776 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
777 aux_surf.size_B = 0;
778 }
779
780 /* We request that the bufmgr zero the buffer for us for two reasons:
781 *
782 * 1) If a buffer gets re-used from the pool, we don't want to leak random
783 * garbage from our process to some other.
784 *
785 * 2) For images with CCS_E, we want to ensure that the CCS starts off in
786 * a valid state. A CCS value of 0 indicates that the given block is
787 * in the pass-through state which is what we want.
788 */
789 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
790 surf.size_B + aux_surf.size_B,
791 BRW_MEMZONE_OTHER,
792 isl_tiling_to_i915_tiling(mod_info->tiling),
793 surf.row_pitch_B, BO_ALLOC_ZEROED);
794 if (image->bo == NULL) {
795 free(image);
796 return NULL;
797 }
798 image->width = width;
799 image->height = height;
800 image->pitch = surf.row_pitch_B;
801 image->modifier = modifier;
802
803 if (aux_surf.size_B) {
804 image->aux_offset = surf.size_B;
805 image->aux_pitch = aux_surf.row_pitch_B;
806 image->aux_size = aux_surf.size_B;
807 }
808
809 return image;
810 }
811
812 static __DRIimage *
813 intel_create_image(__DRIscreen *dri_screen,
814 int width, int height, int format,
815 unsigned int use,
816 void *loaderPrivate)
817 {
818 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
819 loaderPrivate);
820 }
821
822 static void *
823 intel_map_image(__DRIcontext *context, __DRIimage *image,
824 int x0, int y0, int width, int height,
825 unsigned int flags, int *stride, void **map_info)
826 {
827 struct brw_context *brw = NULL;
828 struct brw_bo *bo = NULL;
829 void *raw_data = NULL;
830 GLuint pix_w = 1;
831 GLuint pix_h = 1;
832 GLint pix_bytes = 1;
833
834 if (!context || !image || !stride || !map_info || *map_info)
835 return NULL;
836
837 if (x0 < 0 || x0 >= image->width || width > image->width - x0)
838 return NULL;
839
840 if (y0 < 0 || y0 >= image->height || height > image->height - y0)
841 return NULL;
842
843 if (flags & MAP_INTERNAL_MASK)
844 return NULL;
845
846 brw = context->driverPrivate;
847 bo = image->bo;
848
849 assert(brw);
850 assert(bo);
851
852 /* DRI flags and GL_MAP.*_BIT flags are the same, so just pass them on. */
853 raw_data = brw_bo_map(brw, bo, flags);
854 if (!raw_data)
855 return NULL;
856
857 _mesa_get_format_block_size(image->format, &pix_w, &pix_h);
858 pix_bytes = _mesa_get_format_bytes(image->format);
859
860 assert(pix_w);
861 assert(pix_h);
862 assert(pix_bytes > 0);
863
864 raw_data += (x0 / pix_w) * pix_bytes + (y0 / pix_h) * image->pitch;
865
866 brw_bo_reference(bo);
867
868 *stride = image->pitch;
869 *map_info = bo;
870
871 return raw_data;
872 }
873
874 static void
875 intel_unmap_image(__DRIcontext *context, __DRIimage *image, void *map_info)
876 {
877 struct brw_bo *bo = map_info;
878
879 brw_bo_unmap(bo);
880 brw_bo_unreference(bo);
881 }
882
883 static __DRIimage *
884 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
885 int width, int height, int format,
886 const uint64_t *modifiers,
887 const unsigned count,
888 void *loaderPrivate)
889 {
890 return intel_create_image_common(dri_screen, width, height, format, 0,
891 modifiers, count, loaderPrivate);
892 }
893
894 static GLboolean
895 intel_query_image(__DRIimage *image, int attrib, int *value)
896 {
897 switch (attrib) {
898 case __DRI_IMAGE_ATTRIB_STRIDE:
899 *value = image->pitch;
900 return true;
901 case __DRI_IMAGE_ATTRIB_HANDLE:
902 *value = brw_bo_export_gem_handle(image->bo);
903 return true;
904 case __DRI_IMAGE_ATTRIB_NAME:
905 return !brw_bo_flink(image->bo, (uint32_t *) value);
906 case __DRI_IMAGE_ATTRIB_FORMAT:
907 *value = image->dri_format;
908 return true;
909 case __DRI_IMAGE_ATTRIB_WIDTH:
910 *value = image->width;
911 return true;
912 case __DRI_IMAGE_ATTRIB_HEIGHT:
913 *value = image->height;
914 return true;
915 case __DRI_IMAGE_ATTRIB_COMPONENTS:
916 if (image->planar_format == NULL)
917 return false;
918 *value = image->planar_format->components;
919 return true;
920 case __DRI_IMAGE_ATTRIB_FD:
921 return !brw_bo_gem_export_to_prime(image->bo, value);
922 case __DRI_IMAGE_ATTRIB_FOURCC:
923 return intel_image_get_fourcc(image, value);
924 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
925 if (isl_drm_modifier_has_aux(image->modifier)) {
926 assert(!image->planar_format || image->planar_format->nplanes == 1);
927 *value = 2;
928 } else if (image->planar_format) {
929 *value = image->planar_format->nplanes;
930 } else {
931 *value = 1;
932 }
933 return true;
934 case __DRI_IMAGE_ATTRIB_OFFSET:
935 *value = image->offset;
936 return true;
937 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
938 *value = (image->modifier & 0xffffffff);
939 return true;
940 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
941 *value = ((image->modifier >> 32) & 0xffffffff);
942 return true;
943
944 default:
945 return false;
946 }
947 }
948
949 static GLboolean
950 intel_query_format_modifier_attribs(__DRIscreen *dri_screen,
951 uint32_t fourcc, uint64_t modifier,
952 int attrib, uint64_t *value)
953 {
954 struct intel_screen *screen = dri_screen->driverPrivate;
955 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
956
957 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
958 return false;
959
960 switch (attrib) {
961 case __DRI_IMAGE_FORMAT_MODIFIER_ATTRIB_PLANE_COUNT:
962 *value = isl_drm_modifier_has_aux(modifier) ? 2 : f->nplanes;
963 return true;
964
965 default:
966 return false;
967 }
968 }
969
970 static __DRIimage *
971 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
972 {
973 __DRIimage *image;
974
975 image = calloc(1, sizeof *image);
976 if (image == NULL)
977 return NULL;
978
979 brw_bo_reference(orig_image->bo);
980 image->bo = orig_image->bo;
981 image->internal_format = orig_image->internal_format;
982 image->planar_format = orig_image->planar_format;
983 image->dri_format = orig_image->dri_format;
984 image->format = orig_image->format;
985 image->modifier = orig_image->modifier;
986 image->offset = orig_image->offset;
987 image->width = orig_image->width;
988 image->height = orig_image->height;
989 image->pitch = orig_image->pitch;
990 image->tile_x = orig_image->tile_x;
991 image->tile_y = orig_image->tile_y;
992 image->has_depthstencil = orig_image->has_depthstencil;
993 image->data = loaderPrivate;
994 image->aux_offset = orig_image->aux_offset;
995 image->aux_pitch = orig_image->aux_pitch;
996
997 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
998 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
999
1000 return image;
1001 }
1002
1003 static GLboolean
1004 intel_validate_usage(__DRIimage *image, unsigned int use)
1005 {
1006 if (use & __DRI_IMAGE_USE_CURSOR) {
1007 if (image->width != 64 || image->height != 64)
1008 return GL_FALSE;
1009 }
1010
1011 return GL_TRUE;
1012 }
1013
1014 static __DRIimage *
1015 intel_create_image_from_names(__DRIscreen *dri_screen,
1016 int width, int height, int fourcc,
1017 int *names, int num_names,
1018 int *strides, int *offsets,
1019 void *loaderPrivate)
1020 {
1021 const struct intel_image_format *f = NULL;
1022 __DRIimage *image;
1023 int i, index;
1024
1025 if (dri_screen == NULL || names == NULL || num_names != 1)
1026 return NULL;
1027
1028 f = intel_image_format_lookup(fourcc);
1029 if (f == NULL)
1030 return NULL;
1031
1032 image = intel_create_image_from_name(dri_screen, width, height,
1033 __DRI_IMAGE_FORMAT_NONE,
1034 names[0], strides[0],
1035 loaderPrivate);
1036
1037 if (image == NULL)
1038 return NULL;
1039
1040 image->planar_format = f;
1041 for (i = 0; i < f->nplanes; i++) {
1042 index = f->planes[i].buffer_index;
1043 image->offsets[index] = offsets[index];
1044 image->strides[index] = strides[index];
1045 }
1046
1047 return image;
1048 }
1049
1050 static __DRIimage *
1051 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
1052 int width, int height, int fourcc,
1053 uint64_t modifier, int *fds, int num_fds,
1054 int *strides, int *offsets,
1055 void *loaderPrivate)
1056 {
1057 struct intel_screen *screen = dri_screen->driverPrivate;
1058 const struct intel_image_format *f;
1059 __DRIimage *image;
1060 int i, index;
1061 bool ok;
1062
1063 if (fds == NULL || num_fds < 1)
1064 return NULL;
1065
1066 f = intel_image_format_lookup(fourcc);
1067 if (f == NULL)
1068 return NULL;
1069
1070 if (modifier != DRM_FORMAT_MOD_INVALID &&
1071 !modifier_is_supported(&screen->devinfo, f, 0, modifier))
1072 return NULL;
1073
1074 if (f->nplanes == 1)
1075 image = intel_allocate_image(screen, f->planes[0].dri_format,
1076 loaderPrivate);
1077 else
1078 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
1079 loaderPrivate);
1080
1081 if (image == NULL)
1082 return NULL;
1083
1084 image->width = width;
1085 image->height = height;
1086 image->pitch = strides[0];
1087
1088 image->planar_format = f;
1089
1090 if (modifier != DRM_FORMAT_MOD_INVALID) {
1091 const struct isl_drm_modifier_info *mod_info =
1092 isl_drm_modifier_get_info(modifier);
1093 uint32_t tiling = isl_tiling_to_i915_tiling(mod_info->tiling);
1094 image->bo = brw_bo_gem_create_from_prime_tiled(screen->bufmgr, fds[0],
1095 tiling, strides[0]);
1096 } else {
1097 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
1098 }
1099
1100 if (image->bo == NULL) {
1101 free(image);
1102 return NULL;
1103 }
1104
1105 /* We only support all planes from the same bo.
1106 * brw_bo_gem_create_from_prime() should return the same pointer for all
1107 * fds received here */
1108 for (i = 1; i < num_fds; i++) {
1109 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
1110 brw_bo_unreference(aux);
1111 if (aux != image->bo) {
1112 brw_bo_unreference(image->bo);
1113 free(image);
1114 return NULL;
1115 }
1116 }
1117
1118 if (modifier != DRM_FORMAT_MOD_INVALID)
1119 image->modifier = modifier;
1120 else
1121 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
1122
1123 const struct isl_drm_modifier_info *mod_info =
1124 isl_drm_modifier_get_info(image->modifier);
1125
1126 int size = 0;
1127 struct isl_surf surf;
1128 for (i = 0; i < f->nplanes; i++) {
1129 index = f->planes[i].buffer_index;
1130 image->offsets[index] = offsets[index];
1131 image->strides[index] = strides[index];
1132
1133 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
1134 /* The images we will create are actually based on the RGBA non-sRGB
1135 * version of the format.
1136 */
1137 format = _mesa_format_fallback_rgbx_to_rgba(format);
1138 format = _mesa_get_srgb_format_linear(format);
1139
1140 ok = isl_surf_init(&screen->isl_dev, &surf,
1141 .dim = ISL_SURF_DIM_2D,
1142 .format = brw_isl_format_for_mesa_format(format),
1143 .width = image->width >> f->planes[i].width_shift,
1144 .height = image->height >> f->planes[i].height_shift,
1145 .depth = 1,
1146 .levels = 1,
1147 .array_len = 1,
1148 .samples = 1,
1149 .row_pitch_B = strides[index],
1150 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
1151 ISL_SURF_USAGE_TEXTURE_BIT |
1152 ISL_SURF_USAGE_STORAGE_BIT,
1153 .tiling_flags = (1 << mod_info->tiling));
1154 if (!ok) {
1155 brw_bo_unreference(image->bo);
1156 free(image);
1157 return NULL;
1158 }
1159
1160 const int end = offsets[index] + surf.size_B;
1161 if (size < end)
1162 size = end;
1163 }
1164
1165 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
1166 /* Even though we initialize surf in the loop above, we know that
1167 * anything with CCS_E will have exactly one plane so surf is properly
1168 * initialized when we get here.
1169 */
1170 assert(f->nplanes == 1);
1171
1172 image->aux_offset = offsets[1];
1173 image->aux_pitch = strides[1];
1174
1175 /* Scanout hardware requires that the CCS be placed after the main
1176 * surface in memory. We consider any CCS that is placed any earlier in
1177 * memory to be invalid and reject it.
1178 *
1179 * At some point in the future, this restriction may be relaxed if the
1180 * hardware becomes less strict but we may need a new modifier for that.
1181 */
1182 assert(size > 0);
1183 if (image->aux_offset < size) {
1184 brw_bo_unreference(image->bo);
1185 free(image);
1186 return NULL;
1187 }
1188
1189 struct isl_surf aux_surf = {0,};
1190 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, NULL,
1191 image->aux_pitch);
1192 if (!ok) {
1193 brw_bo_unreference(image->bo);
1194 free(image);
1195 return NULL;
1196 }
1197
1198 image->aux_size = aux_surf.size_B;
1199
1200 const int end = image->aux_offset + aux_surf.size_B;
1201 if (size < end)
1202 size = end;
1203 } else {
1204 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
1205 }
1206
1207 /* Check that the requested image actually fits within the BO. 'size'
1208 * is already relative to the offsets, so we don't need to add that. */
1209 if (image->bo->size == 0) {
1210 image->bo->size = size;
1211 } else if (size > image->bo->size) {
1212 brw_bo_unreference(image->bo);
1213 free(image);
1214 return NULL;
1215 }
1216
1217 if (f->nplanes == 1) {
1218 image->offset = image->offsets[0];
1219 intel_image_warn_if_unaligned(image, __func__);
1220 }
1221
1222 return image;
1223 }
1224
1225 static __DRIimage *
1226 intel_create_image_from_fds(__DRIscreen *dri_screen,
1227 int width, int height, int fourcc,
1228 int *fds, int num_fds, int *strides, int *offsets,
1229 void *loaderPrivate)
1230 {
1231 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
1232 DRM_FORMAT_MOD_INVALID,
1233 fds, num_fds, strides, offsets,
1234 loaderPrivate);
1235 }
1236
1237 static __DRIimage *
1238 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
1239 int width, int height,
1240 int fourcc, uint64_t modifier,
1241 int *fds, int num_fds,
1242 int *strides, int *offsets,
1243 enum __DRIYUVColorSpace yuv_color_space,
1244 enum __DRISampleRange sample_range,
1245 enum __DRIChromaSiting horizontal_siting,
1246 enum __DRIChromaSiting vertical_siting,
1247 unsigned *error,
1248 void *loaderPrivate)
1249 {
1250 __DRIimage *image;
1251 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
1252
1253 if (!f) {
1254 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
1255 return NULL;
1256 }
1257
1258 image = intel_create_image_from_fds_common(dri_screen, width, height,
1259 fourcc, modifier,
1260 fds, num_fds, strides, offsets,
1261 loaderPrivate);
1262
1263 /*
1264 * Invalid parameters and any inconsistencies between are assumed to be
1265 * checked by the caller. Therefore besides unsupported formats one can fail
1266 * only in allocation.
1267 */
1268 if (!image) {
1269 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1270 return NULL;
1271 }
1272
1273 image->yuv_color_space = yuv_color_space;
1274 image->sample_range = sample_range;
1275 image->horizontal_siting = horizontal_siting;
1276 image->vertical_siting = vertical_siting;
1277
1278 *error = __DRI_IMAGE_ERROR_SUCCESS;
1279 return image;
1280 }
1281
1282 static __DRIimage *
1283 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1284 int width, int height, int fourcc,
1285 int *fds, int num_fds,
1286 int *strides, int *offsets,
1287 enum __DRIYUVColorSpace yuv_color_space,
1288 enum __DRISampleRange sample_range,
1289 enum __DRIChromaSiting horizontal_siting,
1290 enum __DRIChromaSiting vertical_siting,
1291 unsigned *error,
1292 void *loaderPrivate)
1293 {
1294 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1295 fourcc, DRM_FORMAT_MOD_INVALID,
1296 fds, num_fds, strides, offsets,
1297 yuv_color_space,
1298 sample_range,
1299 horizontal_siting,
1300 vertical_siting,
1301 error,
1302 loaderPrivate);
1303 }
1304
1305 static bool
1306 intel_image_format_is_supported(const struct gen_device_info *devinfo,
1307 const struct intel_image_format *fmt)
1308 {
1309 /* Currently, all formats with an intel_image_format are available on all
1310 * platforms so there's really nothing to check there.
1311 */
1312
1313 #ifndef NDEBUG
1314 if (fmt->nplanes == 1) {
1315 mesa_format format = driImageFormatToGLFormat(fmt->planes[0].dri_format);
1316 /* The images we will create are actually based on the RGBA non-sRGB
1317 * version of the format.
1318 */
1319 format = _mesa_format_fallback_rgbx_to_rgba(format);
1320 format = _mesa_get_srgb_format_linear(format);
1321 enum isl_format isl_format = brw_isl_format_for_mesa_format(format);
1322 assert(isl_format_supports_rendering(devinfo, isl_format));
1323 }
1324 #endif
1325
1326 return true;
1327 }
1328
1329 static GLboolean
1330 intel_query_dma_buf_formats(__DRIscreen *_screen, int max,
1331 int *formats, int *count)
1332 {
1333 struct intel_screen *screen = _screen->driverPrivate;
1334 int num_formats = 0, i;
1335
1336 for (i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
1337 /* These two formats are valid DRI formats but do not exist in
1338 * drm_fourcc.h in the Linux kernel. We don't want to accidentally
1339 * advertise them through the EGL layer.
1340 */
1341 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888 ||
1342 intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SABGR8888)
1343 continue;
1344
1345 if (!intel_image_format_is_supported(&screen->devinfo,
1346 &intel_image_formats[i]))
1347 continue;
1348
1349 num_formats++;
1350 if (max == 0)
1351 continue;
1352
1353 formats[num_formats - 1] = intel_image_formats[i].fourcc;
1354 if (num_formats >= max)
1355 break;
1356 }
1357
1358 *count = num_formats;
1359 return true;
1360 }
1361
1362 static GLboolean
1363 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1364 uint64_t *modifiers,
1365 unsigned int *external_only,
1366 int *count)
1367 {
1368 struct intel_screen *screen = _screen->driverPrivate;
1369 const struct intel_image_format *f;
1370 int num_mods = 0, i;
1371
1372 f = intel_image_format_lookup(fourcc);
1373 if (f == NULL)
1374 return false;
1375
1376 if (!intel_image_format_is_supported(&screen->devinfo, f))
1377 return false;
1378
1379 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1380 uint64_t modifier = supported_modifiers[i].modifier;
1381 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
1382 continue;
1383
1384 num_mods++;
1385 if (max == 0)
1386 continue;
1387
1388 modifiers[num_mods - 1] = modifier;
1389 if (num_mods >= max)
1390 break;
1391 }
1392
1393 if (external_only != NULL) {
1394 for (i = 0; i < num_mods && i < max; i++) {
1395 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1396 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1397 f->components == __DRI_IMAGE_COMPONENTS_AYUV ||
1398 f->components == __DRI_IMAGE_COMPONENTS_XYUV ||
1399 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV ||
1400 f->components == __DRI_IMAGE_COMPONENTS_Y_UXVX) {
1401 external_only[i] = GL_TRUE;
1402 }
1403 else {
1404 external_only[i] = GL_FALSE;
1405 }
1406 }
1407 }
1408
1409 *count = num_mods;
1410 return true;
1411 }
1412
1413 static __DRIimage *
1414 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1415 {
1416 int width, height, offset, stride, size, dri_format;
1417 __DRIimage *image;
1418
1419 if (parent == NULL)
1420 return NULL;
1421
1422 width = parent->width;
1423 height = parent->height;
1424
1425 const struct intel_image_format *f = parent->planar_format;
1426
1427 if (f && plane < f->nplanes) {
1428 /* Use the planar format definition. */
1429 width >>= f->planes[plane].width_shift;
1430 height >>= f->planes[plane].height_shift;
1431 dri_format = f->planes[plane].dri_format;
1432 int index = f->planes[plane].buffer_index;
1433 offset = parent->offsets[index];
1434 stride = parent->strides[index];
1435 size = height * stride;
1436 } else if (plane == 0) {
1437 /* The only plane of a non-planar image: copy the parent definition
1438 * directly. */
1439 dri_format = parent->dri_format;
1440 offset = parent->offset;
1441 stride = parent->pitch;
1442 size = height * stride;
1443 } else if (plane == 1 && parent->modifier != DRM_FORMAT_MOD_INVALID &&
1444 isl_drm_modifier_has_aux(parent->modifier)) {
1445 /* Auxiliary plane */
1446 dri_format = parent->dri_format;
1447 offset = parent->aux_offset;
1448 stride = parent->aux_pitch;
1449 size = parent->aux_size;
1450 } else {
1451 return NULL;
1452 }
1453
1454 if (offset + size > parent->bo->size) {
1455 _mesa_warning(NULL, "intel_from_planar: subimage out of bounds");
1456 return NULL;
1457 }
1458
1459 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1460 if (image == NULL)
1461 return NULL;
1462
1463 image->bo = parent->bo;
1464 brw_bo_reference(parent->bo);
1465 image->modifier = parent->modifier;
1466
1467 image->width = width;
1468 image->height = height;
1469 image->pitch = stride;
1470 image->offset = offset;
1471
1472 intel_image_warn_if_unaligned(image, __func__);
1473
1474 return image;
1475 }
1476
1477 static const __DRIimageExtension intelImageExtension = {
1478 .base = { __DRI_IMAGE, 16 },
1479
1480 .createImageFromName = intel_create_image_from_name,
1481 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1482 .destroyImage = intel_destroy_image,
1483 .createImage = intel_create_image,
1484 .queryImage = intel_query_image,
1485 .dupImage = intel_dup_image,
1486 .validateUsage = intel_validate_usage,
1487 .createImageFromNames = intel_create_image_from_names,
1488 .fromPlanar = intel_from_planar,
1489 .createImageFromTexture = intel_create_image_from_texture,
1490 .createImageFromFds = intel_create_image_from_fds,
1491 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1492 .blitImage = NULL,
1493 .getCapabilities = NULL,
1494 .mapImage = intel_map_image,
1495 .unmapImage = intel_unmap_image,
1496 .createImageWithModifiers = intel_create_image_with_modifiers,
1497 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1498 .queryDmaBufFormats = intel_query_dma_buf_formats,
1499 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1500 .queryDmaBufFormatModifierAttribs = intel_query_format_modifier_attribs,
1501 };
1502
1503 static uint64_t
1504 get_aperture_size(int fd)
1505 {
1506 struct drm_i915_gem_get_aperture aperture;
1507
1508 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1509 return 0;
1510
1511 return aperture.aper_size;
1512 }
1513
1514 static int
1515 brw_query_renderer_integer(__DRIscreen *dri_screen,
1516 int param, unsigned int *value)
1517 {
1518 const struct intel_screen *const screen =
1519 (struct intel_screen *) dri_screen->driverPrivate;
1520
1521 switch (param) {
1522 case __DRI2_RENDERER_VENDOR_ID:
1523 value[0] = 0x8086;
1524 return 0;
1525 case __DRI2_RENDERER_DEVICE_ID:
1526 value[0] = screen->deviceID;
1527 return 0;
1528 case __DRI2_RENDERER_ACCELERATED:
1529 value[0] = 1;
1530 return 0;
1531 case __DRI2_RENDERER_VIDEO_MEMORY: {
1532 /* Once a batch uses more than 75% of the maximum mappable size, we
1533 * assume that there's some fragmentation, and we start doing extra
1534 * flushing, etc. That's the big cliff apps will care about.
1535 */
1536 const unsigned gpu_mappable_megabytes =
1537 screen->aperture_threshold / (1024 * 1024);
1538
1539 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1540 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1541
1542 if (system_memory_pages <= 0 || system_page_size <= 0)
1543 return -1;
1544
1545 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1546 * (uint64_t) system_page_size;
1547
1548 const unsigned system_memory_megabytes =
1549 (unsigned) (system_memory_bytes / (1024 * 1024));
1550
1551 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1552 return 0;
1553 }
1554 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1555 value[0] = 1;
1556 return 0;
1557 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1558 value[0] = 1;
1559 return 0;
1560 case __DRI2_RENDERER_HAS_CONTEXT_PRIORITY:
1561 value[0] = 0;
1562 if (brw_hw_context_set_priority(screen->bufmgr,
1563 0, GEN_CONTEXT_HIGH_PRIORITY) == 0)
1564 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_HIGH;
1565 if (brw_hw_context_set_priority(screen->bufmgr,
1566 0, GEN_CONTEXT_LOW_PRIORITY) == 0)
1567 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_LOW;
1568 /* reset to default last, just in case */
1569 if (brw_hw_context_set_priority(screen->bufmgr,
1570 0, GEN_CONTEXT_MEDIUM_PRIORITY) == 0)
1571 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_MEDIUM;
1572 return 0;
1573 case __DRI2_RENDERER_HAS_FRAMEBUFFER_SRGB:
1574 value[0] = 1;
1575 return 0;
1576 default:
1577 return driQueryRendererIntegerCommon(dri_screen, param, value);
1578 }
1579
1580 return -1;
1581 }
1582
1583 static int
1584 brw_query_renderer_string(__DRIscreen *dri_screen,
1585 int param, const char **value)
1586 {
1587 const struct intel_screen *screen =
1588 (struct intel_screen *) dri_screen->driverPrivate;
1589
1590 switch (param) {
1591 case __DRI2_RENDERER_VENDOR_ID:
1592 value[0] = brw_vendor_string;
1593 return 0;
1594 case __DRI2_RENDERER_DEVICE_ID:
1595 value[0] = brw_get_renderer_string(screen);
1596 return 0;
1597 default:
1598 break;
1599 }
1600
1601 return -1;
1602 }
1603
1604 static void
1605 brw_set_cache_funcs(__DRIscreen *dri_screen,
1606 __DRIblobCacheSet set, __DRIblobCacheGet get)
1607 {
1608 const struct intel_screen *const screen =
1609 (struct intel_screen *) dri_screen->driverPrivate;
1610
1611 if (!screen->disk_cache)
1612 return;
1613
1614 disk_cache_set_callbacks(screen->disk_cache, set, get);
1615 }
1616
1617 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1618 .base = { __DRI2_RENDERER_QUERY, 1 },
1619
1620 .queryInteger = brw_query_renderer_integer,
1621 .queryString = brw_query_renderer_string
1622 };
1623
1624 static const __DRIrobustnessExtension dri2Robustness = {
1625 .base = { __DRI2_ROBUSTNESS, 1 }
1626 };
1627
1628 static const __DRI2blobExtension intelBlobExtension = {
1629 .base = { __DRI2_BLOB, 1 },
1630 .set_cache_funcs = brw_set_cache_funcs
1631 };
1632
1633 static const __DRImutableRenderBufferDriverExtension intelMutableRenderBufferExtension = {
1634 .base = { __DRI_MUTABLE_RENDER_BUFFER_DRIVER, 1 },
1635 };
1636
1637 static const __DRIextension *screenExtensions[] = {
1638 &intelTexBufferExtension.base,
1639 &intelFenceExtension.base,
1640 &intelFlushExtension.base,
1641 &intelImageExtension.base,
1642 &intelRendererQueryExtension.base,
1643 &intelMutableRenderBufferExtension.base,
1644 &dri2ConfigQueryExtension.base,
1645 &dri2NoErrorExtension.base,
1646 &intelBlobExtension.base,
1647 NULL
1648 };
1649
1650 static const __DRIextension *intelRobustScreenExtensions[] = {
1651 &intelTexBufferExtension.base,
1652 &intelFenceExtension.base,
1653 &intelFlushExtension.base,
1654 &intelImageExtension.base,
1655 &intelRendererQueryExtension.base,
1656 &intelMutableRenderBufferExtension.base,
1657 &dri2ConfigQueryExtension.base,
1658 &dri2Robustness.base,
1659 &dri2NoErrorExtension.base,
1660 &intelBlobExtension.base,
1661 NULL
1662 };
1663
1664 static int
1665 intel_get_param(struct intel_screen *screen, int param, int *value)
1666 {
1667 int ret = 0;
1668 struct drm_i915_getparam gp;
1669
1670 memset(&gp, 0, sizeof(gp));
1671 gp.param = param;
1672 gp.value = value;
1673
1674 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1675 ret = -errno;
1676 if (ret != -EINVAL)
1677 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1678 }
1679
1680 return ret;
1681 }
1682
1683 static bool
1684 intel_get_boolean(struct intel_screen *screen, int param)
1685 {
1686 int value = 0;
1687 return (intel_get_param(screen, param, &value) == 0) && value;
1688 }
1689
1690 static int
1691 intel_get_integer(struct intel_screen *screen, int param)
1692 {
1693 int value = -1;
1694
1695 if (intel_get_param(screen, param, &value) == 0)
1696 return value;
1697
1698 return -1;
1699 }
1700
1701 static void
1702 intelDestroyScreen(__DRIscreen * sPriv)
1703 {
1704 struct intel_screen *screen = sPriv->driverPrivate;
1705
1706 brw_bufmgr_destroy(screen->bufmgr);
1707 driDestroyOptionInfo(&screen->optionCache);
1708
1709 disk_cache_destroy(screen->disk_cache);
1710
1711 ralloc_free(screen);
1712 sPriv->driverPrivate = NULL;
1713 }
1714
1715
1716 /**
1717 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1718 *
1719 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1720 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1721 * this does not allocate GPU memory.
1722 */
1723 static GLboolean
1724 intelCreateBuffer(__DRIscreen *dri_screen,
1725 __DRIdrawable * driDrawPriv,
1726 const struct gl_config * mesaVis, GLboolean isPixmap)
1727 {
1728 struct intel_renderbuffer *rb;
1729 struct intel_screen *screen = (struct intel_screen *)
1730 dri_screen->driverPrivate;
1731 mesa_format rgbFormat;
1732 unsigned num_samples =
1733 intel_quantize_num_samples(screen, mesaVis->samples);
1734
1735 if (isPixmap)
1736 return false;
1737
1738 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1739 if (!fb)
1740 return false;
1741
1742 _mesa_initialize_window_framebuffer(fb, mesaVis);
1743
1744 if (screen->winsys_msaa_samples_override != -1) {
1745 num_samples = screen->winsys_msaa_samples_override;
1746 fb->Visual.samples = num_samples;
1747 }
1748
1749 if (mesaVis->redBits == 16 && mesaVis->alphaBits > 0 && mesaVis->floatMode) {
1750 rgbFormat = MESA_FORMAT_RGBA_FLOAT16;
1751 } else if (mesaVis->redBits == 16 && mesaVis->floatMode) {
1752 rgbFormat = MESA_FORMAT_RGBX_FLOAT16;
1753 } else if (mesaVis->redBits == 10 && mesaVis->alphaBits > 0) {
1754 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10A2_UNORM
1755 : MESA_FORMAT_R10G10B10A2_UNORM;
1756 } else if (mesaVis->redBits == 10) {
1757 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10X2_UNORM
1758 : MESA_FORMAT_R10G10B10X2_UNORM;
1759 } else if (mesaVis->redBits == 5) {
1760 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1761 : MESA_FORMAT_B5G6R5_UNORM;
1762 } else if (mesaVis->sRGBCapable) {
1763 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1764 : MESA_FORMAT_B8G8R8A8_SRGB;
1765 } else if (mesaVis->alphaBits == 0) {
1766 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1767 : MESA_FORMAT_B8G8R8X8_UNORM;
1768 } else {
1769 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1770 : MESA_FORMAT_B8G8R8A8_SRGB;
1771 fb->Visual.sRGBCapable = true;
1772 }
1773
1774 /* mesaVis->sRGBCapable was set, user is asking for sRGB */
1775 bool srgb_cap_set = mesaVis->redBits >= 8 && mesaVis->sRGBCapable;
1776
1777 /* setup the hardware-based renderbuffers */
1778 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1779 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1780 rb->need_srgb = srgb_cap_set;
1781
1782 if (mesaVis->doubleBufferMode) {
1783 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1784 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1785 rb->need_srgb = srgb_cap_set;
1786 }
1787
1788 /*
1789 * Assert here that the gl_config has an expected depth/stencil bit
1790 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1791 * which constructs the advertised configs.)
1792 */
1793 if (mesaVis->depthBits == 24) {
1794 assert(mesaVis->stencilBits == 8);
1795
1796 if (screen->devinfo.has_hiz_and_separate_stencil) {
1797 rb = intel_create_private_renderbuffer(screen,
1798 MESA_FORMAT_Z24_UNORM_X8_UINT,
1799 num_samples);
1800 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1801 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1802 num_samples);
1803 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1804 } else {
1805 /*
1806 * Use combined depth/stencil. Note that the renderbuffer is
1807 * attached to two attachment points.
1808 */
1809 rb = intel_create_private_renderbuffer(screen,
1810 MESA_FORMAT_Z24_UNORM_S8_UINT,
1811 num_samples);
1812 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1813 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1814 }
1815 }
1816 else if (mesaVis->depthBits == 16) {
1817 assert(mesaVis->stencilBits == 0);
1818 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1819 num_samples);
1820 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1821 }
1822 else {
1823 assert(mesaVis->depthBits == 0);
1824 assert(mesaVis->stencilBits == 0);
1825 }
1826
1827 /* now add any/all software-based renderbuffers we may need */
1828 _swrast_add_soft_renderbuffers(fb,
1829 false, /* never sw color */
1830 false, /* never sw depth */
1831 false, /* never sw stencil */
1832 mesaVis->accumRedBits > 0,
1833 false, /* never sw alpha */
1834 false /* never sw aux */ );
1835 driDrawPriv->driverPrivate = fb;
1836
1837 return true;
1838 }
1839
1840 static void
1841 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1842 {
1843 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1844
1845 _mesa_reference_framebuffer(&fb, NULL);
1846 }
1847
1848 static void
1849 intel_cs_timestamp_frequency(struct intel_screen *screen)
1850 {
1851 /* We shouldn't need to update gen_device_info.timestamp_frequency prior to
1852 * gen10, PCI-id is enough to figure it out.
1853 */
1854 assert(screen->devinfo.gen >= 10);
1855
1856 int ret, freq;
1857
1858 ret = intel_get_param(screen, I915_PARAM_CS_TIMESTAMP_FREQUENCY,
1859 &freq);
1860 if (ret < 0) {
1861 _mesa_warning(NULL,
1862 "Kernel 4.15 required to read the CS timestamp frequency.\n");
1863 return;
1864 }
1865
1866 screen->devinfo.timestamp_frequency = freq;
1867 }
1868
1869 static void
1870 intel_detect_sseu(struct intel_screen *screen)
1871 {
1872 assert(screen->devinfo.gen >= 8);
1873 int ret;
1874
1875 screen->subslice_total = -1;
1876 screen->eu_total = -1;
1877
1878 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1879 &screen->subslice_total);
1880 if (ret < 0 && ret != -EINVAL)
1881 goto err_out;
1882
1883 ret = intel_get_param(screen,
1884 I915_PARAM_EU_TOTAL, &screen->eu_total);
1885 if (ret < 0 && ret != -EINVAL)
1886 goto err_out;
1887
1888 /* Without this information, we cannot get the right Braswell brandstrings,
1889 * and we have to use conservative numbers for GPGPU on many platforms, but
1890 * otherwise, things will just work.
1891 */
1892 if (screen->subslice_total < 1 || screen->eu_total < 1)
1893 _mesa_warning(NULL,
1894 "Kernel 4.1 required to properly query GPU properties.\n");
1895
1896 return;
1897
1898 err_out:
1899 screen->subslice_total = -1;
1900 screen->eu_total = -1;
1901 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1902 }
1903
1904 static bool
1905 intel_init_bufmgr(struct intel_screen *screen)
1906 {
1907 __DRIscreen *dri_screen = screen->driScrnPriv;
1908
1909 if (getenv("INTEL_NO_HW") != NULL)
1910 screen->no_hw = true;
1911
1912 bool bo_reuse = false;
1913 int bo_reuse_mode = driQueryOptioni(&screen->optionCache, "bo_reuse");
1914 switch (bo_reuse_mode) {
1915 case DRI_CONF_BO_REUSE_DISABLED:
1916 break;
1917 case DRI_CONF_BO_REUSE_ALL:
1918 bo_reuse = true;
1919 break;
1920 }
1921
1922 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd, bo_reuse);
1923 if (screen->bufmgr == NULL) {
1924 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1925 __func__, __LINE__);
1926 return false;
1927 }
1928
1929 if (!intel_get_boolean(screen, I915_PARAM_HAS_EXEC_NO_RELOC)) {
1930 fprintf(stderr, "[%s: %u] Kernel 3.9 required.\n", __func__, __LINE__);
1931 return false;
1932 }
1933
1934 return true;
1935 }
1936
1937 static bool
1938 intel_detect_swizzling(struct intel_screen *screen)
1939 {
1940 /* Broadwell PRM says:
1941 *
1942 * "Before Gen8, there was a historical configuration control field to
1943 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
1944 * different places: TILECTL[1:0], ARB_MODE[5:4], and
1945 * DISP_ARB_CTL[14:13].
1946 *
1947 * For Gen8 and subsequent generations, the swizzle fields are all
1948 * reserved, and the CPU's memory controller performs all address
1949 * swizzling modifications."
1950 */
1951 if (screen->devinfo.gen >= 8)
1952 return false;
1953
1954 uint32_t tiling = I915_TILING_X;
1955 uint32_t swizzle_mode = 0;
1956 struct brw_bo *buffer =
1957 brw_bo_alloc_tiled(screen->bufmgr, "swizzle test", 32768,
1958 BRW_MEMZONE_OTHER, tiling, 512, 0);
1959 if (buffer == NULL)
1960 return false;
1961
1962 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1963 brw_bo_unreference(buffer);
1964
1965 return swizzle_mode != I915_BIT_6_SWIZZLE_NONE;
1966 }
1967
1968 static int
1969 intel_detect_timestamp(struct intel_screen *screen)
1970 {
1971 uint64_t dummy = 0, last = 0;
1972 int upper, lower, loops;
1973
1974 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1975 * TIMESTAMP register being shifted and the low 32bits always zero.
1976 *
1977 * More recent kernels offer an interface to read the full 36bits
1978 * everywhere.
1979 */
1980 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1981 return 3;
1982
1983 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1984 * upper 32bits for a rapidly changing timestamp.
1985 */
1986 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1987 return 0;
1988
1989 upper = lower = 0;
1990 for (loops = 0; loops < 10; loops++) {
1991 /* The TIMESTAMP should change every 80ns, so several round trips
1992 * through the kernel should be enough to advance it.
1993 */
1994 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1995 return 0;
1996
1997 upper += (dummy >> 32) != (last >> 32);
1998 if (upper > 1) /* beware 32bit counter overflow */
1999 return 2; /* upper dword holds the low 32bits of the timestamp */
2000
2001 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
2002 if (lower > 1)
2003 return 1; /* timestamp is unshifted */
2004
2005 last = dummy;
2006 }
2007
2008 /* No advancement? No timestamp! */
2009 return 0;
2010 }
2011
2012 /**
2013 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
2014 *
2015 * Some combinations of hardware and kernel versions allow this feature,
2016 * while others don't. Instead of trying to enumerate every case, just
2017 * try and write a register and see if works.
2018 */
2019 static bool
2020 intel_detect_pipelined_register(struct intel_screen *screen,
2021 int reg, uint32_t expected_value, bool reset)
2022 {
2023 if (screen->no_hw)
2024 return false;
2025
2026 struct brw_bo *results, *bo;
2027 uint32_t *batch;
2028 uint32_t offset = 0;
2029 void *map;
2030 bool success = false;
2031
2032 /* Create a zero'ed temporary buffer for reading our results */
2033 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, BRW_MEMZONE_OTHER);
2034 if (results == NULL)
2035 goto err;
2036
2037 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, BRW_MEMZONE_OTHER);
2038 if (bo == NULL)
2039 goto err_results;
2040
2041 map = brw_bo_map(NULL, bo, MAP_WRITE);
2042 if (!map)
2043 goto err_batch;
2044
2045 batch = map;
2046
2047 /* Write the register. */
2048 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
2049 *batch++ = reg;
2050 *batch++ = expected_value;
2051
2052 /* Save the register's value back to the buffer. */
2053 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
2054 *batch++ = reg;
2055 struct drm_i915_gem_relocation_entry reloc = {
2056 .offset = (char *) batch - (char *) map,
2057 .delta = offset * sizeof(uint32_t),
2058 .target_handle = results->gem_handle,
2059 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
2060 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
2061 };
2062 *batch++ = reloc.presumed_offset + reloc.delta;
2063
2064 /* And afterwards clear the register */
2065 if (reset) {
2066 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
2067 *batch++ = reg;
2068 *batch++ = 0;
2069 }
2070
2071 *batch++ = MI_BATCH_BUFFER_END;
2072
2073 struct drm_i915_gem_exec_object2 exec_objects[2] = {
2074 {
2075 .handle = results->gem_handle,
2076 },
2077 {
2078 .handle = bo->gem_handle,
2079 .relocation_count = 1,
2080 .relocs_ptr = (uintptr_t) &reloc,
2081 }
2082 };
2083
2084 struct drm_i915_gem_execbuffer2 execbuf = {
2085 .buffers_ptr = (uintptr_t) exec_objects,
2086 .buffer_count = 2,
2087 .batch_len = ALIGN((char *) batch - (char *) map, 8),
2088 .flags = I915_EXEC_RENDER,
2089 };
2090
2091 /* Don't bother with error checking - if the execbuf fails, the
2092 * value won't be written and we'll just report that there's no access.
2093 */
2094 __DRIscreen *dri_screen = screen->driScrnPriv;
2095 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
2096
2097 /* Check whether the value got written. */
2098 void *results_map = brw_bo_map(NULL, results, MAP_READ);
2099 if (results_map) {
2100 success = *((uint32_t *)results_map + offset) == expected_value;
2101 brw_bo_unmap(results);
2102 }
2103
2104 err_batch:
2105 brw_bo_unreference(bo);
2106 err_results:
2107 brw_bo_unreference(results);
2108 err:
2109 return success;
2110 }
2111
2112 static bool
2113 intel_detect_pipelined_so(struct intel_screen *screen)
2114 {
2115 const struct gen_device_info *devinfo = &screen->devinfo;
2116
2117 /* Supposedly, Broadwell just works. */
2118 if (devinfo->gen >= 8)
2119 return true;
2120
2121 if (devinfo->gen <= 6)
2122 return false;
2123
2124 /* See the big explanation about command parser versions below */
2125 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
2126 return true;
2127
2128 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
2129 * statistics registers), and we already reset it to zero before using it.
2130 */
2131 return intel_detect_pipelined_register(screen,
2132 GEN7_SO_WRITE_OFFSET(0),
2133 0x1337d0d0,
2134 false);
2135 }
2136
2137 /**
2138 * Return array of MSAA modes supported by the hardware. The array is
2139 * zero-terminated and sorted in decreasing order.
2140 */
2141 const int*
2142 intel_supported_msaa_modes(const struct intel_screen *screen)
2143 {
2144 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
2145 static const int gen8_modes[] = {8, 4, 2, 0, -1};
2146 static const int gen7_modes[] = {8, 4, 0, -1};
2147 static const int gen6_modes[] = {4, 0, -1};
2148 static const int gen4_modes[] = {0, -1};
2149
2150 if (screen->devinfo.gen >= 9) {
2151 return gen9_modes;
2152 } else if (screen->devinfo.gen >= 8) {
2153 return gen8_modes;
2154 } else if (screen->devinfo.gen >= 7) {
2155 return gen7_modes;
2156 } else if (screen->devinfo.gen == 6) {
2157 return gen6_modes;
2158 } else {
2159 return gen4_modes;
2160 }
2161 }
2162
2163 static unsigned
2164 intel_loader_get_cap(const __DRIscreen *dri_screen, enum dri_loader_cap cap)
2165 {
2166 if (dri_screen->dri2.loader && dri_screen->dri2.loader->base.version >= 4 &&
2167 dri_screen->dri2.loader->getCapability)
2168 return dri_screen->dri2.loader->getCapability(dri_screen->loaderPrivate, cap);
2169
2170 if (dri_screen->image.loader && dri_screen->image.loader->base.version >= 2 &&
2171 dri_screen->image.loader->getCapability)
2172 return dri_screen->image.loader->getCapability(dri_screen->loaderPrivate, cap);
2173
2174 return 0;
2175 }
2176
2177 static bool
2178 intel_allowed_format(__DRIscreen *dri_screen, mesa_format format)
2179 {
2180 struct intel_screen *screen = dri_screen->driverPrivate;
2181
2182 /* Expose only BGRA ordering if the loader doesn't support RGBA ordering. */
2183 bool allow_rgba_ordering = intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_RGBA_ORDERING);
2184 if (!allow_rgba_ordering &&
2185 (format == MESA_FORMAT_R8G8B8A8_UNORM ||
2186 format == MESA_FORMAT_R8G8B8X8_UNORM ||
2187 format == MESA_FORMAT_R8G8B8A8_SRGB))
2188 return false;
2189
2190 /* Shall we expose 10 bpc formats? */
2191 bool allow_rgb10_configs = driQueryOptionb(&screen->optionCache,
2192 "allow_rgb10_configs");
2193 if (!allow_rgb10_configs &&
2194 (format == MESA_FORMAT_B10G10R10A2_UNORM ||
2195 format == MESA_FORMAT_B10G10R10X2_UNORM))
2196 return false;
2197
2198 /* Shall we expose 565 formats? */
2199 bool allow_rgb565_configs = driQueryOptionb(&screen->optionCache,
2200 "allow_rgb565_configs");
2201 if (!allow_rgb565_configs && format == MESA_FORMAT_B5G6R5_UNORM)
2202 return false;
2203
2204 /* Shall we expose fp16 formats? */
2205 bool allow_fp16_configs = driQueryOptionb(&screen->optionCache,
2206 "allow_fp16_configs");
2207 allow_fp16_configs &= intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_FP16);
2208 if (!allow_fp16_configs &&
2209 (format == MESA_FORMAT_RGBA_FLOAT16 ||
2210 format == MESA_FORMAT_RGBX_FLOAT16))
2211 return false;
2212
2213 return true;
2214 }
2215
2216 static __DRIconfig**
2217 intel_screen_make_configs(__DRIscreen *dri_screen)
2218 {
2219 static const mesa_format formats[] = {
2220 MESA_FORMAT_B5G6R5_UNORM,
2221 MESA_FORMAT_B8G8R8A8_UNORM,
2222 MESA_FORMAT_B8G8R8X8_UNORM,
2223
2224 MESA_FORMAT_B8G8R8A8_SRGB,
2225
2226 /* For 10 bpc, 30 bit depth framebuffers. */
2227 MESA_FORMAT_B10G10R10A2_UNORM,
2228 MESA_FORMAT_B10G10R10X2_UNORM,
2229
2230 MESA_FORMAT_RGBA_FLOAT16,
2231 MESA_FORMAT_RGBX_FLOAT16,
2232
2233 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
2234 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
2235 * server may disagree on which format the GLXFBConfig represents,
2236 * resulting in swapped color channels.
2237 *
2238 * The problem, as of 2017-05-30:
2239 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
2240 * order and chooses the first __DRIconfig with the expected channel
2241 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
2242 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
2243 *
2244 * EGL does not suffer from this problem. It correctly compares the
2245 * channel masks when matching EGLConfig to __DRIconfig.
2246 */
2247
2248 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
2249 MESA_FORMAT_R8G8B8A8_UNORM,
2250
2251 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
2252 MESA_FORMAT_R8G8B8X8_UNORM,
2253
2254 MESA_FORMAT_R8G8B8A8_SRGB,
2255 };
2256
2257 /* __DRI_ATTRIB_SWAP_COPY is not supported due to page flipping. */
2258 static const GLenum back_buffer_modes[] = {
2259 __DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
2260 };
2261
2262 static const uint8_t singlesample_samples[1] = {0};
2263
2264 struct intel_screen *screen = dri_screen->driverPrivate;
2265 const struct gen_device_info *devinfo = &screen->devinfo;
2266 uint8_t depth_bits[4], stencil_bits[4];
2267 __DRIconfig **configs = NULL;
2268
2269 unsigned num_formats = ARRAY_SIZE(formats);
2270
2271 /* Generate singlesample configs, each without accumulation buffer
2272 * and with EGL_MUTABLE_RENDER_BUFFER_BIT_KHR.
2273 */
2274 for (unsigned i = 0; i < num_formats; i++) {
2275 __DRIconfig **new_configs;
2276 int num_depth_stencil_bits = 2;
2277
2278 if (!intel_allowed_format(dri_screen, formats[i]))
2279 continue;
2280
2281 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
2282 * buffer that has a different number of bits per pixel than the color
2283 * buffer, gen >= 6 supports this.
2284 */
2285 depth_bits[0] = 0;
2286 stencil_bits[0] = 0;
2287
2288 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2289 depth_bits[1] = 16;
2290 stencil_bits[1] = 0;
2291 if (devinfo->gen >= 6) {
2292 depth_bits[2] = 24;
2293 stencil_bits[2] = 8;
2294 num_depth_stencil_bits = 3;
2295 }
2296 } else {
2297 depth_bits[1] = 24;
2298 stencil_bits[1] = 8;
2299 }
2300
2301 new_configs = driCreateConfigs(formats[i],
2302 depth_bits,
2303 stencil_bits,
2304 num_depth_stencil_bits,
2305 back_buffer_modes, 2,
2306 singlesample_samples, 1,
2307 false, false,
2308 /*mutable_render_buffer*/ true);
2309 configs = driConcatConfigs(configs, new_configs);
2310 }
2311
2312 /* Generate the minimum possible set of configs that include an
2313 * accumulation buffer.
2314 */
2315 for (unsigned i = 0; i < num_formats; i++) {
2316 __DRIconfig **new_configs;
2317
2318 if (!intel_allowed_format(dri_screen, formats[i]))
2319 continue;
2320
2321 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2322 depth_bits[0] = 16;
2323 stencil_bits[0] = 0;
2324 } else {
2325 depth_bits[0] = 24;
2326 stencil_bits[0] = 8;
2327 }
2328
2329 new_configs = driCreateConfigs(formats[i],
2330 depth_bits, stencil_bits, 1,
2331 back_buffer_modes, 1,
2332 singlesample_samples, 1,
2333 true, false, false);
2334 configs = driConcatConfigs(configs, new_configs);
2335 }
2336
2337 /* Generate multisample configs.
2338 *
2339 * This loop breaks early, and hence is a no-op, on gen < 6.
2340 *
2341 * Multisample configs must follow the singlesample configs in order to
2342 * work around an X server bug present in 1.12. The X server chooses to
2343 * associate the first listed RGBA888-Z24S8 config, regardless of its
2344 * sample count, with the 32-bit depth visual used for compositing.
2345 *
2346 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
2347 * supported. Singlebuffer configs are not supported because no one wants
2348 * them.
2349 */
2350 for (unsigned i = 0; i < num_formats; i++) {
2351 if (devinfo->gen < 6)
2352 break;
2353
2354 if (!intel_allowed_format(dri_screen, formats[i]))
2355 continue;
2356
2357 __DRIconfig **new_configs;
2358 const int num_depth_stencil_bits = 2;
2359 int num_msaa_modes = 0;
2360 const uint8_t *multisample_samples = NULL;
2361
2362 depth_bits[0] = 0;
2363 stencil_bits[0] = 0;
2364
2365 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2366 depth_bits[1] = 16;
2367 stencil_bits[1] = 0;
2368 } else {
2369 depth_bits[1] = 24;
2370 stencil_bits[1] = 8;
2371 }
2372
2373 if (devinfo->gen >= 9) {
2374 static const uint8_t multisample_samples_gen9[] = {2, 4, 8, 16};
2375 multisample_samples = multisample_samples_gen9;
2376 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen9);
2377 } else if (devinfo->gen == 8) {
2378 static const uint8_t multisample_samples_gen8[] = {2, 4, 8};
2379 multisample_samples = multisample_samples_gen8;
2380 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen8);
2381 } else if (devinfo->gen == 7) {
2382 static const uint8_t multisample_samples_gen7[] = {4, 8};
2383 multisample_samples = multisample_samples_gen7;
2384 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen7);
2385 } else if (devinfo->gen == 6) {
2386 static const uint8_t multisample_samples_gen6[] = {4};
2387 multisample_samples = multisample_samples_gen6;
2388 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen6);
2389 }
2390
2391 new_configs = driCreateConfigs(formats[i],
2392 depth_bits,
2393 stencil_bits,
2394 num_depth_stencil_bits,
2395 back_buffer_modes, 1,
2396 multisample_samples,
2397 num_msaa_modes,
2398 false, false, false);
2399 configs = driConcatConfigs(configs, new_configs);
2400 }
2401
2402 if (configs == NULL) {
2403 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
2404 __LINE__);
2405 return NULL;
2406 }
2407
2408 return configs;
2409 }
2410
2411 static void
2412 set_max_gl_versions(struct intel_screen *screen)
2413 {
2414 __DRIscreen *dri_screen = screen->driScrnPriv;
2415 const bool has_astc = screen->devinfo.gen >= 9;
2416
2417 switch (screen->devinfo.gen) {
2418 case 11:
2419 case 10:
2420 case 9:
2421 case 8:
2422 dri_screen->max_gl_core_version = 46;
2423 dri_screen->max_gl_compat_version = 30;
2424 dri_screen->max_gl_es1_version = 11;
2425 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
2426 break;
2427 case 7:
2428 dri_screen->max_gl_core_version = 33;
2429 if (can_do_pipelined_register_writes(screen)) {
2430 dri_screen->max_gl_core_version = 42;
2431 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
2432 dri_screen->max_gl_core_version = 43;
2433 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
2434 dri_screen->max_gl_core_version = 45;
2435 }
2436 dri_screen->max_gl_compat_version = 30;
2437 dri_screen->max_gl_es1_version = 11;
2438 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
2439 break;
2440 case 6:
2441 dri_screen->max_gl_core_version = 33;
2442 dri_screen->max_gl_compat_version = 30;
2443 dri_screen->max_gl_es1_version = 11;
2444 dri_screen->max_gl_es2_version = 30;
2445 break;
2446 case 5:
2447 case 4:
2448 dri_screen->max_gl_core_version = 0;
2449 dri_screen->max_gl_compat_version = 21;
2450 dri_screen->max_gl_es1_version = 11;
2451 dri_screen->max_gl_es2_version = 20;
2452 break;
2453 default:
2454 unreachable("unrecognized intel_screen::gen");
2455 }
2456 }
2457
2458 static void
2459 shader_debug_log_mesa(void *data, const char *fmt, ...)
2460 {
2461 struct brw_context *brw = (struct brw_context *)data;
2462 va_list args;
2463
2464 va_start(args, fmt);
2465 GLuint msg_id = 0;
2466 _mesa_gl_vdebugf(&brw->ctx, &msg_id,
2467 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2468 MESA_DEBUG_TYPE_OTHER,
2469 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
2470 va_end(args);
2471 }
2472
2473 static void
2474 shader_perf_log_mesa(void *data, const char *fmt, ...)
2475 {
2476 struct brw_context *brw = (struct brw_context *)data;
2477
2478 va_list args;
2479 va_start(args, fmt);
2480
2481 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2482 va_list args_copy;
2483 va_copy(args_copy, args);
2484 vfprintf(stderr, fmt, args_copy);
2485 va_end(args_copy);
2486 }
2487
2488 if (brw->perf_debug) {
2489 GLuint msg_id = 0;
2490 _mesa_gl_vdebugf(&brw->ctx, &msg_id,
2491 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2492 MESA_DEBUG_TYPE_PERFORMANCE,
2493 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2494 }
2495 va_end(args);
2496 }
2497
2498 /**
2499 * This is the driver specific part of the createNewScreen entry point.
2500 * Called when using DRI2.
2501 *
2502 * \return the struct gl_config supported by this driver
2503 */
2504 static const
2505 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2506 {
2507 struct intel_screen *screen;
2508
2509 if (dri_screen->image.loader) {
2510 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2511 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2512 fprintf(stderr,
2513 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2514 "support required\n");
2515 return NULL;
2516 }
2517
2518 /* Allocate the private area */
2519 screen = rzalloc(NULL, struct intel_screen);
2520 if (!screen) {
2521 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2522 return NULL;
2523 }
2524 /* parse information in __driConfigOptions */
2525 driOptionCache options;
2526 memset(&options, 0, sizeof(options));
2527
2528 driParseOptionInfo(&options, brw_config_options.xml);
2529 driParseConfigFiles(&screen->optionCache, &options, dri_screen->myNum,
2530 "i965", NULL, NULL, 0);
2531 driDestroyOptionCache(&options);
2532
2533 screen->driScrnPriv = dri_screen;
2534 dri_screen->driverPrivate = (void *) screen;
2535
2536 if (!gen_get_device_info_from_fd(dri_screen->fd, &screen->devinfo))
2537 return NULL;
2538
2539 const struct gen_device_info *devinfo = &screen->devinfo;
2540 screen->deviceID = devinfo->chipset_id;
2541 screen->no_hw = devinfo->no_hw;
2542
2543 if (devinfo->gen >= 12) {
2544 fprintf(stderr, "gen12 and newer are not supported on i965\n");
2545 return NULL;
2546 }
2547
2548 if (!intel_init_bufmgr(screen))
2549 return NULL;
2550
2551 brw_process_intel_debug_variable();
2552
2553 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2554 fprintf(stderr,
2555 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2556 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2557 }
2558
2559 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2560 /* Theorectically unlimited! At least for individual objects...
2561 *
2562 * Currently the entire (global) address space for all GTT maps is
2563 * limited to 64bits. That is all objects on the system that are
2564 * setup for GTT mmapping must fit within 64bits. An attempt to use
2565 * one that exceeds the limit with fail in brw_bo_map_gtt().
2566 *
2567 * Long before we hit that limit, we will be practically limited by
2568 * that any single object must fit in physical memory (RAM). The upper
2569 * limit on the CPU's address space is currently 48bits (Skylake), of
2570 * which only 39bits can be physical memory. (The GPU itself also has
2571 * a 48bit addressable virtual space.) We can fit over 32 million
2572 * objects of the current maximum allocable size before running out
2573 * of mmap space.
2574 */
2575 screen->max_gtt_map_object_size = UINT64_MAX;
2576 } else {
2577 /* Estimate the size of the mappable aperture into the GTT. There's an
2578 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2579 * It turns out it's basically always 256MB, though some ancient hardware
2580 * was smaller.
2581 */
2582 uint32_t gtt_size = 256 * 1024 * 1024;
2583
2584 /* We don't want to map two objects such that a memcpy between them would
2585 * just fault one mapping in and then the other over and over forever. So
2586 * we would need to divide the GTT size by 2. Additionally, some GTT is
2587 * taken up by things like the framebuffer and the ringbuffer and such, so
2588 * be more conservative.
2589 */
2590 screen->max_gtt_map_object_size = gtt_size / 4;
2591 }
2592
2593 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
2594
2595 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2596 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2597
2598 isl_device_init(&screen->isl_dev, &screen->devinfo,
2599 screen->hw_has_swizzling);
2600
2601 if (devinfo->gen >= 10)
2602 intel_cs_timestamp_frequency(screen);
2603
2604 /* GENs prior to 8 do not support EU/Subslice info */
2605 if (devinfo->gen >= 8) {
2606 intel_detect_sseu(screen);
2607 } else if (devinfo->gen == 7) {
2608 screen->subslice_total = 1 << (devinfo->gt - 1);
2609 }
2610
2611 /* Gen7-7.5 kernel requirements / command parser saga:
2612 *
2613 * - pre-v3.16:
2614 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2615 *
2616 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2617 * all batches secure, allowing them to use any feature with no checking.
2618 * This is effectively equivalent to a command parser version of
2619 * \infinity - everything is possible.
2620 *
2621 * The command parser does not exist, and querying the version will
2622 * return -EINVAL.
2623 *
2624 * - v3.16:
2625 * The kernel enables the command parser by default, for systems with
2626 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2627 * hardware checker is still enabled, so Haswell and Baytrail cannot
2628 * do anything.
2629 *
2630 * Ivybridge goes from "everything is possible" to "only what the
2631 * command parser allows" (if the user boots with i915.cmd_parser=0,
2632 * then everything is possible again). We can only safely use features
2633 * allowed by the supported command parser version.
2634 *
2635 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2636 * implemented by the kernel, even if it's turned off. So, checking
2637 * for version > 0 does not mean that you can write registers. We have
2638 * to try it and see. The version does, however, indicate the age of
2639 * the kernel.
2640 *
2641 * Instead of matching the hardware checker's behavior of converting
2642 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2643 * -EINVAL, making it dangerous to try and use privileged features.
2644 *
2645 * Effective command parser versions:
2646 * - Haswell: 0 (reporting 1, writes don't work)
2647 * - Baytrail: 0 (reporting 1, writes don't work)
2648 * - Ivybridge: 1 (enabled) or infinite (disabled)
2649 *
2650 * - v3.17:
2651 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2652 * effectively version 1 (enabled) or infinite (disabled).
2653 *
2654 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2655 * Command parser v2 supports predicate writes.
2656 *
2657 * - Haswell: 0 (reporting 1, writes don't work)
2658 * - Baytrail: 2 (enabled) or infinite (disabled)
2659 * - Ivybridge: 2 (enabled) or infinite (disabled)
2660 *
2661 * So version >= 2 is enough to know that Ivybridge and Baytrail
2662 * will work. Haswell still can't do anything.
2663 *
2664 * - v4.0: Version 3 happened. Largely not relevant.
2665 *
2666 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2667 * L3 config registers are properly saved and restored as part
2668 * of the hardware context. We can approximately detect this point
2669 * in time by checking if I915_PARAM_REVISION is recognized - it
2670 * landed in a later commit, but in the same release cycle.
2671 *
2672 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2673 * Command parser finally gains secure batch promotion. On Haswell,
2674 * the hardware checker gets disabled, which finally allows it to do
2675 * privileged commands.
2676 *
2677 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2678 * - Haswell: 3 (enabled) or 0 (disabled)
2679 * - Baytrail: 3 (enabled) or infinite (disabled)
2680 * - Ivybridge: 3 (enabled) or infinite (disabled)
2681 *
2682 * Unfortunately, detecting this point in time is tricky, because
2683 * no version bump happened when this important change occurred.
2684 * On Haswell, if we can write any register, then the kernel is at
2685 * least this new, and we can start trusting the version number.
2686 *
2687 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2688 * Command parser reaches version 4, allowing access to Haswell
2689 * atomic scratch and chicken3 registers. If version >= 4, we know
2690 * the kernel is new enough to support privileged features on all
2691 * hardware. However, the user might have disabled it...and the
2692 * kernel will still report version 4. So we still have to guess
2693 * and check.
2694 *
2695 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2696 * Command parser v5 whitelists indirect compute shader dispatch
2697 * registers, needed for OpenGL 4.3 and later.
2698 *
2699 * - v4.8:
2700 * Command parser v7 lets us use MI_MATH on Haswell.
2701 *
2702 * Additionally, the kernel begins reporting version 0 when
2703 * the command parser is disabled, allowing us to skip the
2704 * guess-and-check step on Haswell. Unfortunately, this also
2705 * means that we can no longer use it as an indicator of the
2706 * age of the kernel.
2707 */
2708 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2709 &screen->cmd_parser_version) < 0) {
2710 /* Command parser does not exist - getparam is unrecognized */
2711 screen->cmd_parser_version = 0;
2712 }
2713
2714 /* Kernel 4.13 retuired for exec object capture */
2715 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2716 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2717 }
2718
2719 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
2720 screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
2721 }
2722
2723 if (!intel_detect_pipelined_so(screen)) {
2724 /* We can't do anything, so the effective version is 0. */
2725 screen->cmd_parser_version = 0;
2726 } else {
2727 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2728 }
2729
2730 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2731 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2732
2733 /* Haswell requires command parser version 4 in order to have L3
2734 * atomic scratch1 and chicken3 bits
2735 */
2736 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2737 screen->kernel_features |=
2738 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2739 }
2740
2741 /* Haswell requires command parser version 6 in order to write to the
2742 * MI_MATH GPR registers, and version 7 in order to use
2743 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2744 */
2745 if (devinfo->gen >= 8 ||
2746 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2747 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2748 }
2749
2750 /* Gen7 needs at least command parser version 5 to support compute */
2751 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2752 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2753
2754 if (intel_get_boolean(screen, I915_PARAM_HAS_CONTEXT_ISOLATION))
2755 screen->kernel_features |= KERNEL_ALLOWS_CONTEXT_ISOLATION;
2756
2757 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2758 if (force_msaa) {
2759 screen->winsys_msaa_samples_override =
2760 intel_quantize_num_samples(screen, atoi(force_msaa));
2761 printf("Forcing winsys sample count to %d\n",
2762 screen->winsys_msaa_samples_override);
2763 } else {
2764 screen->winsys_msaa_samples_override = -1;
2765 }
2766
2767 set_max_gl_versions(screen);
2768
2769 /* Notification of GPU resets requires hardware contexts and a kernel new
2770 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2771 * supported, calling it with a context of 0 will either generate EPERM or
2772 * no error. If the ioctl is not supported, it always generate EINVAL.
2773 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2774 * extension to the loader.
2775 *
2776 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2777 */
2778 if (devinfo->gen >= 6) {
2779 struct drm_i915_reset_stats stats;
2780 memset(&stats, 0, sizeof(stats));
2781
2782 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2783
2784 screen->has_context_reset_notification =
2785 (ret != -1 || errno != EINVAL);
2786 }
2787
2788 dri_screen->extensions = !screen->has_context_reset_notification
2789 ? screenExtensions : intelRobustScreenExtensions;
2790
2791 screen->compiler = brw_compiler_create(screen, devinfo);
2792 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2793 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2794
2795 /* Changing the meaning of constant buffer pointers from a dynamic state
2796 * offset to an absolute address is only safe if the kernel isolates other
2797 * contexts from our changes.
2798 */
2799 screen->compiler->constant_buffer_0_is_relative = devinfo->gen < 8 ||
2800 !(screen->kernel_features & KERNEL_ALLOWS_CONTEXT_ISOLATION);
2801
2802 screen->compiler->glsl_compiler_options[MESA_SHADER_VERTEX].PositionAlwaysInvariant = driQueryOptionb(&screen->optionCache, "vs_position_always_invariant");
2803
2804 screen->compiler->supports_pull_constants = true;
2805 screen->compiler->compact_params = true;
2806
2807 screen->has_exec_fence =
2808 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2809
2810 intel_screen_init_surface_formats(screen);
2811
2812 if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
2813 unsigned int caps = intel_get_integer(screen, I915_PARAM_HAS_SCHEDULER);
2814 if (caps) {
2815 fprintf(stderr, "Kernel scheduler detected: %08x\n", caps);
2816 if (caps & I915_SCHEDULER_CAP_PRIORITY)
2817 fprintf(stderr, " - User priority sorting enabled\n");
2818 if (caps & I915_SCHEDULER_CAP_PREEMPTION)
2819 fprintf(stderr, " - Preemption enabled\n");
2820 }
2821 }
2822
2823 brw_disk_cache_init(screen);
2824
2825 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2826 }
2827
2828 struct intel_buffer {
2829 __DRIbuffer base;
2830 struct brw_bo *bo;
2831 };
2832
2833 static __DRIbuffer *
2834 intelAllocateBuffer(__DRIscreen *dri_screen,
2835 unsigned attachment, unsigned format,
2836 int width, int height)
2837 {
2838 struct intel_buffer *intelBuffer;
2839 struct intel_screen *screen = dri_screen->driverPrivate;
2840
2841 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2842 attachment == __DRI_BUFFER_BACK_LEFT);
2843
2844 intelBuffer = calloc(1, sizeof *intelBuffer);
2845 if (intelBuffer == NULL)
2846 return NULL;
2847
2848 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2849 * supports Y tiled and compressed buffers, but there is no way to plumb that
2850 * through to here. */
2851 uint32_t pitch;
2852 int cpp = format / 8;
2853 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2854 "intelAllocateBuffer",
2855 width,
2856 height,
2857 cpp,
2858 BRW_MEMZONE_OTHER,
2859 I915_TILING_X, &pitch,
2860 BO_ALLOC_BUSY);
2861
2862 if (intelBuffer->bo == NULL) {
2863 free(intelBuffer);
2864 return NULL;
2865 }
2866
2867 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2868
2869 intelBuffer->base.attachment = attachment;
2870 intelBuffer->base.cpp = cpp;
2871 intelBuffer->base.pitch = pitch;
2872
2873 return &intelBuffer->base;
2874 }
2875
2876 static void
2877 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2878 {
2879 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2880
2881 brw_bo_unreference(intelBuffer->bo);
2882 free(intelBuffer);
2883 }
2884
2885 static const struct __DriverAPIRec brw_driver_api = {
2886 .InitScreen = intelInitScreen2,
2887 .DestroyScreen = intelDestroyScreen,
2888 .CreateContext = brwCreateContext,
2889 .DestroyContext = intelDestroyContext,
2890 .CreateBuffer = intelCreateBuffer,
2891 .DestroyBuffer = intelDestroyBuffer,
2892 .MakeCurrent = intelMakeCurrent,
2893 .UnbindContext = intelUnbindContext,
2894 .AllocateBuffer = intelAllocateBuffer,
2895 .ReleaseBuffer = intelReleaseBuffer
2896 };
2897
2898 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2899 .base = { __DRI_DRIVER_VTABLE, 1 },
2900 .vtable = &brw_driver_api,
2901 };
2902
2903 static const __DRIextension *brw_driver_extensions[] = {
2904 &driCoreExtension.base,
2905 &driImageDriverExtension.base,
2906 &driDRI2Extension.base,
2907 &brw_vtable.base,
2908 &brw_config_options.base,
2909 NULL
2910 };
2911
2912 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2913 {
2914 globalDriverAPI = &brw_driver_api;
2915
2916 return brw_driver_extensions;
2917 }