intel: Store the aperture size in devinfo.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "drm-uapi/drm_fourcc.h"
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "main/glthread.h"
38 #include "swrast/s_renderbuffer.h"
39 #include "util/ralloc.h"
40 #include "util/disk_cache.h"
41 #include "brw_defines.h"
42 #include "brw_state.h"
43 #include "compiler/nir/nir.h"
44
45 #include "utils.h"
46 #include "util/disk_cache.h"
47 #include "util/xmlpool.h"
48 #include "util/u_memory.h"
49
50 #include "common/gen_defines.h"
51
52 static const __DRIconfigOptionsExtension brw_config_options = {
53 .base = { __DRI_CONFIG_OPTIONS, 1 },
54 .xml =
55 DRI_CONF_BEGIN
56 DRI_CONF_SECTION_PERFORMANCE
57 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
58 * DRI_CONF_BO_REUSE_ALL
59 */
60 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
61 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
62 DRI_CONF_ENUM(0, "Disable buffer object reuse")
63 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
64 DRI_CONF_DESC_END
65 DRI_CONF_OPT_END
66 DRI_CONF_MESA_NO_ERROR("false")
67 DRI_CONF_MESA_GLTHREAD("false")
68 DRI_CONF_SECTION_END
69
70 DRI_CONF_SECTION_QUALITY
71 DRI_CONF_PRECISE_TRIG("false")
72
73 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
74 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
75 "given integer. If negative, then do not clamp.")
76 DRI_CONF_OPT_END
77 DRI_CONF_SECTION_END
78
79 DRI_CONF_SECTION_DEBUG
80 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
81 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
82 DRI_CONF_DISABLE_THROTTLING("false")
83 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
84 DRI_CONF_FORCE_GLSL_VERSION(0)
85 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
86 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
87 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
88 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
89 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
90 DRI_CONF_ALLOW_GLSL_CROSS_STAGE_INTERPOLATION_MISMATCH("false")
91 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
92 DRI_CONF_FORCE_COMPAT_PROFILE("false")
93 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
94
95 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
96 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
97 DRI_CONF_OPT_END
98 DRI_CONF_SECTION_END
99
100 DRI_CONF_SECTION_MISCELLANEOUS
101 DRI_CONF_GLSL_ZERO_INIT("false")
102 DRI_CONF_VS_POSITION_ALWAYS_INVARIANT("false")
103 DRI_CONF_ALLOW_RGB10_CONFIGS("false")
104 DRI_CONF_ALLOW_RGB565_CONFIGS("true")
105 DRI_CONF_ALLOW_FP16_CONFIGS("false")
106 DRI_CONF_SECTION_END
107 DRI_CONF_END
108 };
109
110 #include "intel_batchbuffer.h"
111 #include "intel_buffers.h"
112 #include "brw_bufmgr.h"
113 #include "intel_fbo.h"
114 #include "intel_mipmap_tree.h"
115 #include "intel_screen.h"
116 #include "intel_tex.h"
117 #include "intel_image.h"
118
119 #include "brw_context.h"
120
121 #include "drm-uapi/i915_drm.h"
122
123 /**
124 * For debugging purposes, this returns a time in seconds.
125 */
126 double
127 get_time(void)
128 {
129 struct timespec tp;
130
131 clock_gettime(CLOCK_MONOTONIC, &tp);
132
133 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
134 }
135
136 static const __DRItexBufferExtension intelTexBufferExtension = {
137 .base = { __DRI_TEX_BUFFER, 3 },
138
139 .setTexBuffer = intelSetTexBuffer,
140 .setTexBuffer2 = intelSetTexBuffer2,
141 .releaseTexBuffer = intelReleaseTexBuffer,
142 };
143
144 static void
145 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
146 __DRIdrawable *dPriv,
147 unsigned flags,
148 enum __DRI2throttleReason reason)
149 {
150 struct brw_context *brw = cPriv->driverPrivate;
151
152 if (!brw)
153 return;
154
155 struct gl_context *ctx = &brw->ctx;
156
157 _mesa_glthread_finish(ctx);
158
159 FLUSH_VERTICES(ctx, 0);
160
161 if (flags & __DRI2_FLUSH_DRAWABLE)
162 intel_resolve_for_dri2_flush(brw, dPriv);
163
164 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
165 brw->need_swap_throttle = true;
166 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
167 brw->need_flush_throttle = true;
168
169 intel_batchbuffer_flush(brw);
170 }
171
172 /**
173 * Provides compatibility with loaders that only support the older (version
174 * 1-3) flush interface.
175 *
176 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
177 */
178 static void
179 intel_dri2_flush(__DRIdrawable *drawable)
180 {
181 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
182 __DRI2_FLUSH_DRAWABLE,
183 __DRI2_THROTTLE_SWAPBUFFER);
184 }
185
186 static const struct __DRI2flushExtensionRec intelFlushExtension = {
187 .base = { __DRI2_FLUSH, 4 },
188
189 .flush = intel_dri2_flush,
190 .invalidate = dri2InvalidateDrawable,
191 .flush_with_flags = intel_dri2_flush_with_flags,
192 };
193
194 static const struct intel_image_format intel_image_formats[] = {
195 { DRM_FORMAT_ABGR16161616F, __DRI_IMAGE_COMPONENTS_RGBA, 1,
196 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR16161616F, 8 } } },
197
198 { DRM_FORMAT_XBGR16161616F, __DRI_IMAGE_COMPONENTS_RGB, 1,
199 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR16161616F, 8 } } },
200
201 { DRM_FORMAT_ARGB2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
202 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB2101010, 4 } } },
203
204 { DRM_FORMAT_XRGB2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
205 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB2101010, 4 } } },
206
207 { DRM_FORMAT_ABGR2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
208 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR2101010, 4 } } },
209
210 { DRM_FORMAT_XBGR2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
211 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR2101010, 4 } } },
212
213 { DRM_FORMAT_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
214 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
215
216 { DRM_FORMAT_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
217 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
218
219 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
220 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
221
222 { __DRI_IMAGE_FOURCC_SXRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
223 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SXRGB8, 4 } } },
224
225 { DRM_FORMAT_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
226 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
227
228 { DRM_FORMAT_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
229 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
230
231 { DRM_FORMAT_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
232 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
233
234 { DRM_FORMAT_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
235 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
236
237 { DRM_FORMAT_R8, __DRI_IMAGE_COMPONENTS_R, 1,
238 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
239
240 { DRM_FORMAT_R16, __DRI_IMAGE_COMPONENTS_R, 1,
241 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
242
243 { DRM_FORMAT_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
244 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
245
246 { DRM_FORMAT_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
247 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
248
249 { DRM_FORMAT_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
250 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
251 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
252 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
253
254 { DRM_FORMAT_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
255 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
256 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
257 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
258
259 { DRM_FORMAT_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
260 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
261 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
262 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
263
264 { DRM_FORMAT_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
265 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
266 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
267 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
268
269 { DRM_FORMAT_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
270 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
271 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
272 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
273
274 { DRM_FORMAT_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
275 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
276 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
277 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
278
279 { DRM_FORMAT_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
280 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
281 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
282 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
283
284 { DRM_FORMAT_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
285 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
286 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
287 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
288
289 { DRM_FORMAT_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
290 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
291 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
292 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
293
294 { DRM_FORMAT_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
295 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
296 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
297 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
298
299 { DRM_FORMAT_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
300 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
301 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
302
303 { DRM_FORMAT_P010, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
304 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
305 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
306
307 { DRM_FORMAT_P012, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
308 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
309 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
310
311 { DRM_FORMAT_P016, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
312 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
313 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
314
315 { DRM_FORMAT_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
316 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
317 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
318
319 { DRM_FORMAT_AYUV, __DRI_IMAGE_COMPONENTS_AYUV, 1,
320 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
321
322 { DRM_FORMAT_XYUV8888, __DRI_IMAGE_COMPONENTS_XYUV, 1,
323 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 } } },
324
325 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
326 * and treat them as planar buffers in the compositors.
327 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
328 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
329 * clusters and places pairs and places U into the G component and
330 * V into A. This lets the texture sampler interpolate the Y
331 * components correctly when sampling from plane 0, and interpolate
332 * U and V correctly when sampling from plane 1. */
333 { DRM_FORMAT_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
334 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
335 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
336 { DRM_FORMAT_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
337 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
338 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
339 };
340
341 static const struct {
342 uint64_t modifier;
343 unsigned since_gen;
344 } supported_modifiers[] = {
345 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
346 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
347 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
348 { .modifier = I915_FORMAT_MOD_Y_TILED_CCS , .since_gen = 9 },
349 };
350
351 static bool
352 modifier_is_supported(const struct gen_device_info *devinfo,
353 const struct intel_image_format *fmt, int dri_format,
354 uint64_t modifier)
355 {
356 const struct isl_drm_modifier_info *modinfo =
357 isl_drm_modifier_get_info(modifier);
358 int i;
359
360 /* ISL had better know about the modifier */
361 if (!modinfo)
362 return false;
363
364 if (modinfo->aux_usage == ISL_AUX_USAGE_CCS_E) {
365 /* If INTEL_DEBUG=norbc is set, don't support any CCS_E modifiers */
366 if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
367 return false;
368
369 /* CCS_E is not supported for planar images */
370 if (fmt && fmt->nplanes > 1)
371 return false;
372
373 if (fmt) {
374 assert(dri_format == 0);
375 dri_format = fmt->planes[0].dri_format;
376 }
377
378 mesa_format format = driImageFormatToGLFormat(dri_format);
379 /* Whether or not we support compression is based on the RGBA non-sRGB
380 * version of the format.
381 */
382 format = _mesa_format_fallback_rgbx_to_rgba(format);
383 format = _mesa_get_srgb_format_linear(format);
384 if (!isl_format_supports_ccs_e(devinfo,
385 brw_isl_format_for_mesa_format(format)))
386 return false;
387 }
388
389 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
390 if (supported_modifiers[i].modifier != modifier)
391 continue;
392
393 return supported_modifiers[i].since_gen <= devinfo->gen;
394 }
395
396 return false;
397 }
398
399 static uint64_t
400 tiling_to_modifier(uint32_t tiling)
401 {
402 static const uint64_t map[] = {
403 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
404 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
405 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
406 };
407
408 assert(tiling < ARRAY_SIZE(map));
409
410 return map[tiling];
411 }
412
413 static void
414 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
415 {
416 uint32_t tiling, swizzle;
417 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
418
419 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
420 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
421 func, image->offset);
422 }
423 }
424
425 static const struct intel_image_format *
426 intel_image_format_lookup(int fourcc)
427 {
428 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
429 if (intel_image_formats[i].fourcc == fourcc)
430 return &intel_image_formats[i];
431 }
432
433 return NULL;
434 }
435
436 static bool
437 intel_image_get_fourcc(__DRIimage *image, int *fourcc)
438 {
439 if (image->planar_format) {
440 *fourcc = image->planar_format->fourcc;
441 return true;
442 }
443
444 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
445 if (intel_image_formats[i].planes[0].dri_format == image->dri_format) {
446 *fourcc = intel_image_formats[i].fourcc;
447 return true;
448 }
449 }
450 return false;
451 }
452
453 static __DRIimage *
454 intel_allocate_image(struct intel_screen *screen, int dri_format,
455 void *loaderPrivate)
456 {
457 __DRIimage *image;
458
459 image = calloc(1, sizeof *image);
460 if (image == NULL)
461 return NULL;
462
463 image->screen = screen;
464 image->dri_format = dri_format;
465 image->offset = 0;
466
467 image->format = driImageFormatToGLFormat(dri_format);
468 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
469 image->format == MESA_FORMAT_NONE) {
470 free(image);
471 return NULL;
472 }
473
474 image->internal_format = _mesa_get_format_base_format(image->format);
475 image->data = loaderPrivate;
476
477 return image;
478 }
479
480 /**
481 * Sets up a DRIImage structure to point to a slice out of a miptree.
482 */
483 static void
484 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
485 struct intel_mipmap_tree *mt, GLuint level,
486 GLuint zoffset)
487 {
488 intel_miptree_make_shareable(brw, mt);
489
490 intel_miptree_check_level_layer(mt, level, zoffset);
491
492 image->width = minify(mt->surf.phys_level0_sa.width,
493 level - mt->first_level);
494 image->height = minify(mt->surf.phys_level0_sa.height,
495 level - mt->first_level);
496 image->pitch = mt->surf.row_pitch_B;
497
498 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
499 &image->tile_x,
500 &image->tile_y);
501
502 brw_bo_unreference(image->bo);
503 image->bo = mt->bo;
504 brw_bo_reference(mt->bo);
505 }
506
507 static __DRIimage *
508 intel_create_image_from_name(__DRIscreen *dri_screen,
509 int width, int height, int format,
510 int name, int pitch, void *loaderPrivate)
511 {
512 struct intel_screen *screen = dri_screen->driverPrivate;
513 __DRIimage *image;
514 int cpp;
515
516 image = intel_allocate_image(screen, format, loaderPrivate);
517 if (image == NULL)
518 return NULL;
519
520 if (image->format == MESA_FORMAT_NONE)
521 cpp = 1;
522 else
523 cpp = _mesa_get_format_bytes(image->format);
524
525 image->width = width;
526 image->height = height;
527 image->pitch = pitch * cpp;
528 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
529 name);
530 if (!image->bo) {
531 free(image);
532 return NULL;
533 }
534 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
535
536 return image;
537 }
538
539 static __DRIimage *
540 intel_create_image_from_renderbuffer(__DRIcontext *context,
541 int renderbuffer, void *loaderPrivate)
542 {
543 __DRIimage *image;
544 struct brw_context *brw = context->driverPrivate;
545 struct gl_context *ctx = &brw->ctx;
546 struct gl_renderbuffer *rb;
547 struct intel_renderbuffer *irb;
548
549 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
550 if (!rb) {
551 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
552 return NULL;
553 }
554
555 irb = intel_renderbuffer(rb);
556 intel_miptree_make_shareable(brw, irb->mt);
557 image = calloc(1, sizeof *image);
558 if (image == NULL)
559 return NULL;
560
561 image->internal_format = rb->InternalFormat;
562 image->format = rb->Format;
563 image->modifier = tiling_to_modifier(
564 isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
565 image->offset = 0;
566 image->data = loaderPrivate;
567 brw_bo_unreference(image->bo);
568 image->bo = irb->mt->bo;
569 brw_bo_reference(irb->mt->bo);
570 image->width = rb->Width;
571 image->height = rb->Height;
572 image->pitch = irb->mt->surf.row_pitch_B;
573 image->dri_format = driGLFormatToImageFormat(image->format);
574 image->has_depthstencil = irb->mt->stencil_mt? true : false;
575
576 rb->NeedsFinishRenderTexture = true;
577 return image;
578 }
579
580 static __DRIimage *
581 intel_create_image_from_texture(__DRIcontext *context, int target,
582 unsigned texture, int zoffset,
583 int level,
584 unsigned *error,
585 void *loaderPrivate)
586 {
587 __DRIimage *image;
588 struct brw_context *brw = context->driverPrivate;
589 struct gl_texture_object *obj;
590 struct intel_texture_object *iobj;
591 GLuint face = 0;
592
593 obj = _mesa_lookup_texture(&brw->ctx, texture);
594 if (!obj || obj->Target != target) {
595 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
596 return NULL;
597 }
598
599 if (target == GL_TEXTURE_CUBE_MAP)
600 face = zoffset;
601
602 _mesa_test_texobj_completeness(&brw->ctx, obj);
603 iobj = intel_texture_object(obj);
604 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
605 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
606 return NULL;
607 }
608
609 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
610 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
611 return NULL;
612 }
613
614 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
615 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
616 return NULL;
617 }
618 image = calloc(1, sizeof *image);
619 if (image == NULL) {
620 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
621 return NULL;
622 }
623
624 image->internal_format = obj->Image[face][level]->InternalFormat;
625 image->format = obj->Image[face][level]->TexFormat;
626 image->modifier = tiling_to_modifier(
627 isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
628 image->data = loaderPrivate;
629 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
630 image->dri_format = driGLFormatToImageFormat(image->format);
631 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
632 image->planar_format = iobj->planar_format;
633 if (image->dri_format == __DRI_IMAGE_FORMAT_NONE) {
634 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
635 free(image);
636 return NULL;
637 }
638
639 *error = __DRI_IMAGE_ERROR_SUCCESS;
640 return image;
641 }
642
643 static void
644 intel_destroy_image(__DRIimage *image)
645 {
646 brw_bo_unreference(image->bo);
647 free(image);
648 }
649
650 enum modifier_priority {
651 MODIFIER_PRIORITY_INVALID = 0,
652 MODIFIER_PRIORITY_LINEAR,
653 MODIFIER_PRIORITY_X,
654 MODIFIER_PRIORITY_Y,
655 MODIFIER_PRIORITY_Y_CCS,
656 };
657
658 const uint64_t priority_to_modifier[] = {
659 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
660 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
661 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
662 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
663 [MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
664 };
665
666 static uint64_t
667 select_best_modifier(struct gen_device_info *devinfo,
668 int dri_format,
669 const uint64_t *modifiers,
670 const unsigned count)
671 {
672 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
673
674 for (int i = 0; i < count; i++) {
675 if (!modifier_is_supported(devinfo, NULL, dri_format, modifiers[i]))
676 continue;
677
678 switch (modifiers[i]) {
679 case I915_FORMAT_MOD_Y_TILED_CCS:
680 prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
681 break;
682 case I915_FORMAT_MOD_Y_TILED:
683 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
684 break;
685 case I915_FORMAT_MOD_X_TILED:
686 prio = MAX2(prio, MODIFIER_PRIORITY_X);
687 break;
688 case DRM_FORMAT_MOD_LINEAR:
689 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
690 break;
691 case DRM_FORMAT_MOD_INVALID:
692 default:
693 break;
694 }
695 }
696
697 return priority_to_modifier[prio];
698 }
699
700 static __DRIimage *
701 intel_create_image_common(__DRIscreen *dri_screen,
702 int width, int height, int format,
703 unsigned int use,
704 const uint64_t *modifiers,
705 unsigned count,
706 void *loaderPrivate)
707 {
708 __DRIimage *image;
709 struct intel_screen *screen = dri_screen->driverPrivate;
710 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
711 bool ok;
712
713 /* Callers of this may specify a modifier, or a dri usage, but not both. The
714 * newer modifier interface deprecates the older usage flags.
715 */
716 assert(!(use && count));
717
718 if (use & __DRI_IMAGE_USE_CURSOR) {
719 if (width != 64 || height != 64)
720 return NULL;
721 modifier = DRM_FORMAT_MOD_LINEAR;
722 }
723
724 if (use & __DRI_IMAGE_USE_LINEAR)
725 modifier = DRM_FORMAT_MOD_LINEAR;
726
727 if (modifier == DRM_FORMAT_MOD_INVALID) {
728 if (modifiers) {
729 /* User requested specific modifiers */
730 modifier = select_best_modifier(&screen->devinfo, format,
731 modifiers, count);
732 if (modifier == DRM_FORMAT_MOD_INVALID)
733 return NULL;
734 } else {
735 /* Historically, X-tiled was the default, and so lack of modifier means
736 * X-tiled.
737 */
738 modifier = I915_FORMAT_MOD_X_TILED;
739 }
740 }
741
742 image = intel_allocate_image(screen, format, loaderPrivate);
743 if (image == NULL)
744 return NULL;
745
746 const struct isl_drm_modifier_info *mod_info =
747 isl_drm_modifier_get_info(modifier);
748
749 struct isl_surf surf;
750 ok = isl_surf_init(&screen->isl_dev, &surf,
751 .dim = ISL_SURF_DIM_2D,
752 .format = brw_isl_format_for_mesa_format(image->format),
753 .width = width,
754 .height = height,
755 .depth = 1,
756 .levels = 1,
757 .array_len = 1,
758 .samples = 1,
759 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
760 ISL_SURF_USAGE_TEXTURE_BIT |
761 ISL_SURF_USAGE_STORAGE_BIT |
762 ((use & __DRI_IMAGE_USE_SCANOUT) ?
763 ISL_SURF_USAGE_DISPLAY_BIT : 0),
764 .tiling_flags = (1 << mod_info->tiling));
765 assert(ok);
766 if (!ok) {
767 free(image);
768 return NULL;
769 }
770
771 struct isl_surf aux_surf = {0,};
772 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
773 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, NULL, 0);
774 if (!ok) {
775 free(image);
776 return NULL;
777 }
778 } else {
779 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
780 aux_surf.size_B = 0;
781 }
782
783 /* We request that the bufmgr zero the buffer for us for two reasons:
784 *
785 * 1) If a buffer gets re-used from the pool, we don't want to leak random
786 * garbage from our process to some other.
787 *
788 * 2) For images with CCS_E, we want to ensure that the CCS starts off in
789 * a valid state. A CCS value of 0 indicates that the given block is
790 * in the pass-through state which is what we want.
791 */
792 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
793 surf.size_B + aux_surf.size_B,
794 BRW_MEMZONE_OTHER,
795 isl_tiling_to_i915_tiling(mod_info->tiling),
796 surf.row_pitch_B, BO_ALLOC_ZEROED);
797 if (image->bo == NULL) {
798 free(image);
799 return NULL;
800 }
801 image->width = width;
802 image->height = height;
803 image->pitch = surf.row_pitch_B;
804 image->modifier = modifier;
805
806 if (aux_surf.size_B) {
807 image->aux_offset = surf.size_B;
808 image->aux_pitch = aux_surf.row_pitch_B;
809 image->aux_size = aux_surf.size_B;
810 }
811
812 return image;
813 }
814
815 static __DRIimage *
816 intel_create_image(__DRIscreen *dri_screen,
817 int width, int height, int format,
818 unsigned int use,
819 void *loaderPrivate)
820 {
821 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
822 loaderPrivate);
823 }
824
825 static void *
826 intel_map_image(__DRIcontext *context, __DRIimage *image,
827 int x0, int y0, int width, int height,
828 unsigned int flags, int *stride, void **map_info)
829 {
830 struct brw_context *brw = NULL;
831 struct brw_bo *bo = NULL;
832 void *raw_data = NULL;
833 GLuint pix_w = 1;
834 GLuint pix_h = 1;
835 GLint pix_bytes = 1;
836
837 if (!context || !image || !stride || !map_info || *map_info)
838 return NULL;
839
840 if (x0 < 0 || x0 >= image->width || width > image->width - x0)
841 return NULL;
842
843 if (y0 < 0 || y0 >= image->height || height > image->height - y0)
844 return NULL;
845
846 if (flags & MAP_INTERNAL_MASK)
847 return NULL;
848
849 brw = context->driverPrivate;
850 bo = image->bo;
851
852 assert(brw);
853 assert(bo);
854
855 /* DRI flags and GL_MAP.*_BIT flags are the same, so just pass them on. */
856 raw_data = brw_bo_map(brw, bo, flags);
857 if (!raw_data)
858 return NULL;
859
860 _mesa_get_format_block_size(image->format, &pix_w, &pix_h);
861 pix_bytes = _mesa_get_format_bytes(image->format);
862
863 assert(pix_w);
864 assert(pix_h);
865 assert(pix_bytes > 0);
866
867 raw_data += (x0 / pix_w) * pix_bytes + (y0 / pix_h) * image->pitch;
868
869 brw_bo_reference(bo);
870
871 *stride = image->pitch;
872 *map_info = bo;
873
874 return raw_data;
875 }
876
877 static void
878 intel_unmap_image(__DRIcontext *context, __DRIimage *image, void *map_info)
879 {
880 struct brw_bo *bo = map_info;
881
882 brw_bo_unmap(bo);
883 brw_bo_unreference(bo);
884 }
885
886 static __DRIimage *
887 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
888 int width, int height, int format,
889 const uint64_t *modifiers,
890 const unsigned count,
891 void *loaderPrivate)
892 {
893 return intel_create_image_common(dri_screen, width, height, format, 0,
894 modifiers, count, loaderPrivate);
895 }
896
897 static GLboolean
898 intel_query_image(__DRIimage *image, int attrib, int *value)
899 {
900 switch (attrib) {
901 case __DRI_IMAGE_ATTRIB_STRIDE:
902 *value = image->pitch;
903 return true;
904 case __DRI_IMAGE_ATTRIB_HANDLE:
905 *value = brw_bo_export_gem_handle(image->bo);
906 return true;
907 case __DRI_IMAGE_ATTRIB_NAME:
908 return !brw_bo_flink(image->bo, (uint32_t *) value);
909 case __DRI_IMAGE_ATTRIB_FORMAT:
910 *value = image->dri_format;
911 return true;
912 case __DRI_IMAGE_ATTRIB_WIDTH:
913 *value = image->width;
914 return true;
915 case __DRI_IMAGE_ATTRIB_HEIGHT:
916 *value = image->height;
917 return true;
918 case __DRI_IMAGE_ATTRIB_COMPONENTS:
919 if (image->planar_format == NULL)
920 return false;
921 *value = image->planar_format->components;
922 return true;
923 case __DRI_IMAGE_ATTRIB_FD:
924 return !brw_bo_gem_export_to_prime(image->bo, value);
925 case __DRI_IMAGE_ATTRIB_FOURCC:
926 return intel_image_get_fourcc(image, value);
927 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
928 if (isl_drm_modifier_has_aux(image->modifier)) {
929 assert(!image->planar_format || image->planar_format->nplanes == 1);
930 *value = 2;
931 } else if (image->planar_format) {
932 *value = image->planar_format->nplanes;
933 } else {
934 *value = 1;
935 }
936 return true;
937 case __DRI_IMAGE_ATTRIB_OFFSET:
938 *value = image->offset;
939 return true;
940 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
941 *value = (image->modifier & 0xffffffff);
942 return true;
943 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
944 *value = ((image->modifier >> 32) & 0xffffffff);
945 return true;
946
947 default:
948 return false;
949 }
950 }
951
952 static GLboolean
953 intel_query_format_modifier_attribs(__DRIscreen *dri_screen,
954 uint32_t fourcc, uint64_t modifier,
955 int attrib, uint64_t *value)
956 {
957 struct intel_screen *screen = dri_screen->driverPrivate;
958 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
959
960 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
961 return false;
962
963 switch (attrib) {
964 case __DRI_IMAGE_FORMAT_MODIFIER_ATTRIB_PLANE_COUNT:
965 *value = isl_drm_modifier_has_aux(modifier) ? 2 : f->nplanes;
966 return true;
967
968 default:
969 return false;
970 }
971 }
972
973 static __DRIimage *
974 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
975 {
976 __DRIimage *image;
977
978 image = calloc(1, sizeof *image);
979 if (image == NULL)
980 return NULL;
981
982 brw_bo_reference(orig_image->bo);
983 image->bo = orig_image->bo;
984 image->internal_format = orig_image->internal_format;
985 image->planar_format = orig_image->planar_format;
986 image->dri_format = orig_image->dri_format;
987 image->format = orig_image->format;
988 image->modifier = orig_image->modifier;
989 image->offset = orig_image->offset;
990 image->width = orig_image->width;
991 image->height = orig_image->height;
992 image->pitch = orig_image->pitch;
993 image->tile_x = orig_image->tile_x;
994 image->tile_y = orig_image->tile_y;
995 image->has_depthstencil = orig_image->has_depthstencil;
996 image->data = loaderPrivate;
997 image->aux_offset = orig_image->aux_offset;
998 image->aux_pitch = orig_image->aux_pitch;
999
1000 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
1001 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
1002
1003 return image;
1004 }
1005
1006 static GLboolean
1007 intel_validate_usage(__DRIimage *image, unsigned int use)
1008 {
1009 if (use & __DRI_IMAGE_USE_CURSOR) {
1010 if (image->width != 64 || image->height != 64)
1011 return GL_FALSE;
1012 }
1013
1014 return GL_TRUE;
1015 }
1016
1017 static __DRIimage *
1018 intel_create_image_from_names(__DRIscreen *dri_screen,
1019 int width, int height, int fourcc,
1020 int *names, int num_names,
1021 int *strides, int *offsets,
1022 void *loaderPrivate)
1023 {
1024 const struct intel_image_format *f = NULL;
1025 __DRIimage *image;
1026 int i, index;
1027
1028 if (dri_screen == NULL || names == NULL || num_names != 1)
1029 return NULL;
1030
1031 f = intel_image_format_lookup(fourcc);
1032 if (f == NULL)
1033 return NULL;
1034
1035 image = intel_create_image_from_name(dri_screen, width, height,
1036 __DRI_IMAGE_FORMAT_NONE,
1037 names[0], strides[0],
1038 loaderPrivate);
1039
1040 if (image == NULL)
1041 return NULL;
1042
1043 image->planar_format = f;
1044 for (i = 0; i < f->nplanes; i++) {
1045 index = f->planes[i].buffer_index;
1046 image->offsets[index] = offsets[index];
1047 image->strides[index] = strides[index];
1048 }
1049
1050 return image;
1051 }
1052
1053 static __DRIimage *
1054 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
1055 int width, int height, int fourcc,
1056 uint64_t modifier, int *fds, int num_fds,
1057 int *strides, int *offsets,
1058 void *loaderPrivate)
1059 {
1060 struct intel_screen *screen = dri_screen->driverPrivate;
1061 const struct intel_image_format *f;
1062 __DRIimage *image;
1063 int i, index;
1064 bool ok;
1065
1066 if (fds == NULL || num_fds < 1)
1067 return NULL;
1068
1069 f = intel_image_format_lookup(fourcc);
1070 if (f == NULL)
1071 return NULL;
1072
1073 if (modifier != DRM_FORMAT_MOD_INVALID &&
1074 !modifier_is_supported(&screen->devinfo, f, 0, modifier))
1075 return NULL;
1076
1077 if (f->nplanes == 1)
1078 image = intel_allocate_image(screen, f->planes[0].dri_format,
1079 loaderPrivate);
1080 else
1081 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
1082 loaderPrivate);
1083
1084 if (image == NULL)
1085 return NULL;
1086
1087 image->width = width;
1088 image->height = height;
1089 image->pitch = strides[0];
1090
1091 image->planar_format = f;
1092
1093 if (modifier != DRM_FORMAT_MOD_INVALID) {
1094 const struct isl_drm_modifier_info *mod_info =
1095 isl_drm_modifier_get_info(modifier);
1096 uint32_t tiling = isl_tiling_to_i915_tiling(mod_info->tiling);
1097 image->bo = brw_bo_gem_create_from_prime_tiled(screen->bufmgr, fds[0],
1098 tiling, strides[0]);
1099 } else {
1100 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
1101 }
1102
1103 if (image->bo == NULL) {
1104 free(image);
1105 return NULL;
1106 }
1107
1108 /* We only support all planes from the same bo.
1109 * brw_bo_gem_create_from_prime() should return the same pointer for all
1110 * fds received here */
1111 for (i = 1; i < num_fds; i++) {
1112 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
1113 brw_bo_unreference(aux);
1114 if (aux != image->bo) {
1115 brw_bo_unreference(image->bo);
1116 free(image);
1117 return NULL;
1118 }
1119 }
1120
1121 if (modifier != DRM_FORMAT_MOD_INVALID)
1122 image->modifier = modifier;
1123 else
1124 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
1125
1126 const struct isl_drm_modifier_info *mod_info =
1127 isl_drm_modifier_get_info(image->modifier);
1128
1129 int size = 0;
1130 struct isl_surf surf;
1131 for (i = 0; i < f->nplanes; i++) {
1132 index = f->planes[i].buffer_index;
1133 image->offsets[index] = offsets[index];
1134 image->strides[index] = strides[index];
1135
1136 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
1137 /* The images we will create are actually based on the RGBA non-sRGB
1138 * version of the format.
1139 */
1140 format = _mesa_format_fallback_rgbx_to_rgba(format);
1141 format = _mesa_get_srgb_format_linear(format);
1142
1143 ok = isl_surf_init(&screen->isl_dev, &surf,
1144 .dim = ISL_SURF_DIM_2D,
1145 .format = brw_isl_format_for_mesa_format(format),
1146 .width = image->width >> f->planes[i].width_shift,
1147 .height = image->height >> f->planes[i].height_shift,
1148 .depth = 1,
1149 .levels = 1,
1150 .array_len = 1,
1151 .samples = 1,
1152 .row_pitch_B = strides[index],
1153 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
1154 ISL_SURF_USAGE_TEXTURE_BIT |
1155 ISL_SURF_USAGE_STORAGE_BIT,
1156 .tiling_flags = (1 << mod_info->tiling));
1157 if (!ok) {
1158 brw_bo_unreference(image->bo);
1159 free(image);
1160 return NULL;
1161 }
1162
1163 const int end = offsets[index] + surf.size_B;
1164 if (size < end)
1165 size = end;
1166 }
1167
1168 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
1169 /* Even though we initialize surf in the loop above, we know that
1170 * anything with CCS_E will have exactly one plane so surf is properly
1171 * initialized when we get here.
1172 */
1173 assert(f->nplanes == 1);
1174
1175 image->aux_offset = offsets[1];
1176 image->aux_pitch = strides[1];
1177
1178 /* Scanout hardware requires that the CCS be placed after the main
1179 * surface in memory. We consider any CCS that is placed any earlier in
1180 * memory to be invalid and reject it.
1181 *
1182 * At some point in the future, this restriction may be relaxed if the
1183 * hardware becomes less strict but we may need a new modifier for that.
1184 */
1185 assert(size > 0);
1186 if (image->aux_offset < size) {
1187 brw_bo_unreference(image->bo);
1188 free(image);
1189 return NULL;
1190 }
1191
1192 struct isl_surf aux_surf = {0,};
1193 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, NULL,
1194 image->aux_pitch);
1195 if (!ok) {
1196 brw_bo_unreference(image->bo);
1197 free(image);
1198 return NULL;
1199 }
1200
1201 image->aux_size = aux_surf.size_B;
1202
1203 const int end = image->aux_offset + aux_surf.size_B;
1204 if (size < end)
1205 size = end;
1206 } else {
1207 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
1208 }
1209
1210 /* Check that the requested image actually fits within the BO. 'size'
1211 * is already relative to the offsets, so we don't need to add that. */
1212 if (image->bo->size == 0) {
1213 image->bo->size = size;
1214 } else if (size > image->bo->size) {
1215 brw_bo_unreference(image->bo);
1216 free(image);
1217 return NULL;
1218 }
1219
1220 if (f->nplanes == 1) {
1221 image->offset = image->offsets[0];
1222 intel_image_warn_if_unaligned(image, __func__);
1223 }
1224
1225 return image;
1226 }
1227
1228 static __DRIimage *
1229 intel_create_image_from_fds(__DRIscreen *dri_screen,
1230 int width, int height, int fourcc,
1231 int *fds, int num_fds, int *strides, int *offsets,
1232 void *loaderPrivate)
1233 {
1234 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
1235 DRM_FORMAT_MOD_INVALID,
1236 fds, num_fds, strides, offsets,
1237 loaderPrivate);
1238 }
1239
1240 static __DRIimage *
1241 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
1242 int width, int height,
1243 int fourcc, uint64_t modifier,
1244 int *fds, int num_fds,
1245 int *strides, int *offsets,
1246 enum __DRIYUVColorSpace yuv_color_space,
1247 enum __DRISampleRange sample_range,
1248 enum __DRIChromaSiting horizontal_siting,
1249 enum __DRIChromaSiting vertical_siting,
1250 unsigned *error,
1251 void *loaderPrivate)
1252 {
1253 __DRIimage *image;
1254 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
1255
1256 if (!f) {
1257 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
1258 return NULL;
1259 }
1260
1261 image = intel_create_image_from_fds_common(dri_screen, width, height,
1262 fourcc, modifier,
1263 fds, num_fds, strides, offsets,
1264 loaderPrivate);
1265
1266 /*
1267 * Invalid parameters and any inconsistencies between are assumed to be
1268 * checked by the caller. Therefore besides unsupported formats one can fail
1269 * only in allocation.
1270 */
1271 if (!image) {
1272 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1273 return NULL;
1274 }
1275
1276 image->yuv_color_space = yuv_color_space;
1277 image->sample_range = sample_range;
1278 image->horizontal_siting = horizontal_siting;
1279 image->vertical_siting = vertical_siting;
1280 image->imported_dmabuf = true;
1281
1282 *error = __DRI_IMAGE_ERROR_SUCCESS;
1283 return image;
1284 }
1285
1286 static __DRIimage *
1287 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1288 int width, int height, int fourcc,
1289 int *fds, int num_fds,
1290 int *strides, int *offsets,
1291 enum __DRIYUVColorSpace yuv_color_space,
1292 enum __DRISampleRange sample_range,
1293 enum __DRIChromaSiting horizontal_siting,
1294 enum __DRIChromaSiting vertical_siting,
1295 unsigned *error,
1296 void *loaderPrivate)
1297 {
1298 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1299 fourcc, DRM_FORMAT_MOD_INVALID,
1300 fds, num_fds, strides, offsets,
1301 yuv_color_space,
1302 sample_range,
1303 horizontal_siting,
1304 vertical_siting,
1305 error,
1306 loaderPrivate);
1307 }
1308
1309 static bool
1310 intel_image_format_is_supported(const struct gen_device_info *devinfo,
1311 const struct intel_image_format *fmt)
1312 {
1313 /* Currently, all formats with an intel_image_format are available on all
1314 * platforms so there's really nothing to check there.
1315 */
1316
1317 #ifndef NDEBUG
1318 if (fmt->nplanes == 1) {
1319 mesa_format format = driImageFormatToGLFormat(fmt->planes[0].dri_format);
1320 /* The images we will create are actually based on the RGBA non-sRGB
1321 * version of the format.
1322 */
1323 format = _mesa_format_fallback_rgbx_to_rgba(format);
1324 format = _mesa_get_srgb_format_linear(format);
1325 enum isl_format isl_format = brw_isl_format_for_mesa_format(format);
1326 assert(isl_format_supports_rendering(devinfo, isl_format));
1327 }
1328 #endif
1329
1330 return true;
1331 }
1332
1333 static GLboolean
1334 intel_query_dma_buf_formats(__DRIscreen *_screen, int max,
1335 int *formats, int *count)
1336 {
1337 struct intel_screen *screen = _screen->driverPrivate;
1338 int num_formats = 0, i;
1339
1340 for (i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
1341 /* These formats are valid DRI formats but do not exist in drm_fourcc.h
1342 * in the Linux kernel. We don't want to accidentally advertise them
1343 * them through the EGL layer.
1344 */
1345 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888 ||
1346 intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SABGR8888 ||
1347 intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SXRGB8888)
1348 continue;
1349
1350 if (!intel_image_format_is_supported(&screen->devinfo,
1351 &intel_image_formats[i]))
1352 continue;
1353
1354 num_formats++;
1355 if (max == 0)
1356 continue;
1357
1358 formats[num_formats - 1] = intel_image_formats[i].fourcc;
1359 if (num_formats >= max)
1360 break;
1361 }
1362
1363 *count = num_formats;
1364 return true;
1365 }
1366
1367 static GLboolean
1368 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1369 uint64_t *modifiers,
1370 unsigned int *external_only,
1371 int *count)
1372 {
1373 struct intel_screen *screen = _screen->driverPrivate;
1374 const struct intel_image_format *f;
1375 int num_mods = 0, i;
1376
1377 f = intel_image_format_lookup(fourcc);
1378 if (f == NULL)
1379 return false;
1380
1381 if (!intel_image_format_is_supported(&screen->devinfo, f))
1382 return false;
1383
1384 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1385 uint64_t modifier = supported_modifiers[i].modifier;
1386 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
1387 continue;
1388
1389 num_mods++;
1390 if (max == 0)
1391 continue;
1392
1393 modifiers[num_mods - 1] = modifier;
1394 if (num_mods >= max)
1395 break;
1396 }
1397
1398 if (external_only != NULL) {
1399 for (i = 0; i < num_mods && i < max; i++) {
1400 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1401 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1402 f->components == __DRI_IMAGE_COMPONENTS_AYUV ||
1403 f->components == __DRI_IMAGE_COMPONENTS_XYUV ||
1404 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV ||
1405 f->components == __DRI_IMAGE_COMPONENTS_Y_UXVX) {
1406 external_only[i] = GL_TRUE;
1407 }
1408 else {
1409 external_only[i] = GL_FALSE;
1410 }
1411 }
1412 }
1413
1414 *count = num_mods;
1415 return true;
1416 }
1417
1418 static __DRIimage *
1419 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1420 {
1421 int width, height, offset, stride, size, dri_format;
1422 __DRIimage *image;
1423
1424 if (parent == NULL)
1425 return NULL;
1426
1427 width = parent->width;
1428 height = parent->height;
1429
1430 const struct intel_image_format *f = parent->planar_format;
1431
1432 if (f && plane < f->nplanes) {
1433 /* Use the planar format definition. */
1434 width >>= f->planes[plane].width_shift;
1435 height >>= f->planes[plane].height_shift;
1436 dri_format = f->planes[plane].dri_format;
1437 int index = f->planes[plane].buffer_index;
1438 offset = parent->offsets[index];
1439 stride = parent->strides[index];
1440 size = height * stride;
1441 } else if (plane == 0) {
1442 /* The only plane of a non-planar image: copy the parent definition
1443 * directly. */
1444 dri_format = parent->dri_format;
1445 offset = parent->offset;
1446 stride = parent->pitch;
1447 size = height * stride;
1448 } else if (plane == 1 && parent->modifier != DRM_FORMAT_MOD_INVALID &&
1449 isl_drm_modifier_has_aux(parent->modifier)) {
1450 /* Auxiliary plane */
1451 dri_format = parent->dri_format;
1452 offset = parent->aux_offset;
1453 stride = parent->aux_pitch;
1454 size = parent->aux_size;
1455 } else {
1456 return NULL;
1457 }
1458
1459 if (offset + size > parent->bo->size) {
1460 _mesa_warning(NULL, "intel_from_planar: subimage out of bounds");
1461 return NULL;
1462 }
1463
1464 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1465 if (image == NULL)
1466 return NULL;
1467
1468 image->bo = parent->bo;
1469 brw_bo_reference(parent->bo);
1470 image->modifier = parent->modifier;
1471
1472 image->width = width;
1473 image->height = height;
1474 image->pitch = stride;
1475 image->offset = offset;
1476
1477 intel_image_warn_if_unaligned(image, __func__);
1478
1479 return image;
1480 }
1481
1482 static const __DRIimageExtension intelImageExtension = {
1483 .base = { __DRI_IMAGE, 16 },
1484
1485 .createImageFromName = intel_create_image_from_name,
1486 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1487 .destroyImage = intel_destroy_image,
1488 .createImage = intel_create_image,
1489 .queryImage = intel_query_image,
1490 .dupImage = intel_dup_image,
1491 .validateUsage = intel_validate_usage,
1492 .createImageFromNames = intel_create_image_from_names,
1493 .fromPlanar = intel_from_planar,
1494 .createImageFromTexture = intel_create_image_from_texture,
1495 .createImageFromFds = intel_create_image_from_fds,
1496 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1497 .blitImage = NULL,
1498 .getCapabilities = NULL,
1499 .mapImage = intel_map_image,
1500 .unmapImage = intel_unmap_image,
1501 .createImageWithModifiers = intel_create_image_with_modifiers,
1502 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1503 .queryDmaBufFormats = intel_query_dma_buf_formats,
1504 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1505 .queryDmaBufFormatModifierAttribs = intel_query_format_modifier_attribs,
1506 };
1507
1508 static int
1509 brw_query_renderer_integer(__DRIscreen *dri_screen,
1510 int param, unsigned int *value)
1511 {
1512 const struct intel_screen *const screen =
1513 (struct intel_screen *) dri_screen->driverPrivate;
1514
1515 switch (param) {
1516 case __DRI2_RENDERER_VENDOR_ID:
1517 value[0] = 0x8086;
1518 return 0;
1519 case __DRI2_RENDERER_DEVICE_ID:
1520 value[0] = screen->deviceID;
1521 return 0;
1522 case __DRI2_RENDERER_ACCELERATED:
1523 value[0] = 1;
1524 return 0;
1525 case __DRI2_RENDERER_VIDEO_MEMORY: {
1526 /* Once a batch uses more than 75% of the maximum mappable size, we
1527 * assume that there's some fragmentation, and we start doing extra
1528 * flushing, etc. That's the big cliff apps will care about.
1529 */
1530 const unsigned gpu_mappable_megabytes =
1531 screen->aperture_threshold / (1024 * 1024);
1532
1533 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1534 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1535
1536 if (system_memory_pages <= 0 || system_page_size <= 0)
1537 return -1;
1538
1539 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1540 * (uint64_t) system_page_size;
1541
1542 const unsigned system_memory_megabytes =
1543 (unsigned) (system_memory_bytes / (1024 * 1024));
1544
1545 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1546 return 0;
1547 }
1548 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1549 value[0] = 1;
1550 return 0;
1551 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1552 value[0] = 1;
1553 return 0;
1554 case __DRI2_RENDERER_HAS_CONTEXT_PRIORITY:
1555 value[0] = 0;
1556 if (brw_hw_context_set_priority(screen->bufmgr,
1557 0, GEN_CONTEXT_HIGH_PRIORITY) == 0)
1558 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_HIGH;
1559 if (brw_hw_context_set_priority(screen->bufmgr,
1560 0, GEN_CONTEXT_LOW_PRIORITY) == 0)
1561 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_LOW;
1562 /* reset to default last, just in case */
1563 if (brw_hw_context_set_priority(screen->bufmgr,
1564 0, GEN_CONTEXT_MEDIUM_PRIORITY) == 0)
1565 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_MEDIUM;
1566 return 0;
1567 case __DRI2_RENDERER_HAS_FRAMEBUFFER_SRGB:
1568 value[0] = 1;
1569 return 0;
1570 default:
1571 return driQueryRendererIntegerCommon(dri_screen, param, value);
1572 }
1573
1574 return -1;
1575 }
1576
1577 static int
1578 brw_query_renderer_string(__DRIscreen *dri_screen,
1579 int param, const char **value)
1580 {
1581 const struct intel_screen *screen =
1582 (struct intel_screen *) dri_screen->driverPrivate;
1583
1584 switch (param) {
1585 case __DRI2_RENDERER_VENDOR_ID:
1586 value[0] = brw_vendor_string;
1587 return 0;
1588 case __DRI2_RENDERER_DEVICE_ID:
1589 value[0] = brw_get_renderer_string(screen);
1590 return 0;
1591 default:
1592 break;
1593 }
1594
1595 return -1;
1596 }
1597
1598 static void
1599 brw_set_cache_funcs(__DRIscreen *dri_screen,
1600 __DRIblobCacheSet set, __DRIblobCacheGet get)
1601 {
1602 const struct intel_screen *const screen =
1603 (struct intel_screen *) dri_screen->driverPrivate;
1604
1605 if (!screen->disk_cache)
1606 return;
1607
1608 disk_cache_set_callbacks(screen->disk_cache, set, get);
1609 }
1610
1611 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1612 .base = { __DRI2_RENDERER_QUERY, 1 },
1613
1614 .queryInteger = brw_query_renderer_integer,
1615 .queryString = brw_query_renderer_string
1616 };
1617
1618 static const __DRIrobustnessExtension dri2Robustness = {
1619 .base = { __DRI2_ROBUSTNESS, 1 }
1620 };
1621
1622 static const __DRI2blobExtension intelBlobExtension = {
1623 .base = { __DRI2_BLOB, 1 },
1624 .set_cache_funcs = brw_set_cache_funcs
1625 };
1626
1627 static const __DRImutableRenderBufferDriverExtension intelMutableRenderBufferExtension = {
1628 .base = { __DRI_MUTABLE_RENDER_BUFFER_DRIVER, 1 },
1629 };
1630
1631 static const __DRIextension *screenExtensions[] = {
1632 &intelTexBufferExtension.base,
1633 &intelFenceExtension.base,
1634 &intelFlushExtension.base,
1635 &intelImageExtension.base,
1636 &intelRendererQueryExtension.base,
1637 &intelMutableRenderBufferExtension.base,
1638 &dri2ConfigQueryExtension.base,
1639 &dri2NoErrorExtension.base,
1640 &intelBlobExtension.base,
1641 NULL
1642 };
1643
1644 static const __DRIextension *intelRobustScreenExtensions[] = {
1645 &intelTexBufferExtension.base,
1646 &intelFenceExtension.base,
1647 &intelFlushExtension.base,
1648 &intelImageExtension.base,
1649 &intelRendererQueryExtension.base,
1650 &intelMutableRenderBufferExtension.base,
1651 &dri2ConfigQueryExtension.base,
1652 &dri2Robustness.base,
1653 &dri2NoErrorExtension.base,
1654 &intelBlobExtension.base,
1655 NULL
1656 };
1657
1658 static int
1659 intel_get_param(struct intel_screen *screen, int param, int *value)
1660 {
1661 int ret = 0;
1662 struct drm_i915_getparam gp;
1663
1664 memset(&gp, 0, sizeof(gp));
1665 gp.param = param;
1666 gp.value = value;
1667
1668 if (drmIoctl(screen->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1669 ret = -errno;
1670 if (ret != -EINVAL)
1671 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1672 }
1673
1674 return ret;
1675 }
1676
1677 static bool
1678 intel_get_boolean(struct intel_screen *screen, int param)
1679 {
1680 int value = 0;
1681 return (intel_get_param(screen, param, &value) == 0) && value;
1682 }
1683
1684 static int
1685 intel_get_integer(struct intel_screen *screen, int param)
1686 {
1687 int value = -1;
1688
1689 if (intel_get_param(screen, param, &value) == 0)
1690 return value;
1691
1692 return -1;
1693 }
1694
1695 static void
1696 intelDestroyScreen(__DRIscreen * sPriv)
1697 {
1698 struct intel_screen *screen = sPriv->driverPrivate;
1699
1700 brw_bufmgr_unref(screen->bufmgr);
1701 driDestroyOptionInfo(&screen->optionCache);
1702
1703 disk_cache_destroy(screen->disk_cache);
1704
1705 ralloc_free(screen);
1706 sPriv->driverPrivate = NULL;
1707 }
1708
1709
1710 /**
1711 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1712 *
1713 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1714 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1715 * this does not allocate GPU memory.
1716 */
1717 static GLboolean
1718 intelCreateBuffer(__DRIscreen *dri_screen,
1719 __DRIdrawable * driDrawPriv,
1720 const struct gl_config * mesaVis, GLboolean isPixmap)
1721 {
1722 struct intel_renderbuffer *rb;
1723 struct intel_screen *screen = (struct intel_screen *)
1724 dri_screen->driverPrivate;
1725 mesa_format rgbFormat;
1726 unsigned num_samples =
1727 intel_quantize_num_samples(screen, mesaVis->samples);
1728
1729 if (isPixmap)
1730 return false;
1731
1732 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1733 if (!fb)
1734 return false;
1735
1736 _mesa_initialize_window_framebuffer(fb, mesaVis);
1737
1738 if (screen->winsys_msaa_samples_override != -1) {
1739 num_samples = screen->winsys_msaa_samples_override;
1740 fb->Visual.samples = num_samples;
1741 }
1742
1743 if (mesaVis->redBits == 16 && mesaVis->alphaBits > 0 && mesaVis->floatMode) {
1744 rgbFormat = MESA_FORMAT_RGBA_FLOAT16;
1745 } else if (mesaVis->redBits == 16 && mesaVis->floatMode) {
1746 rgbFormat = MESA_FORMAT_RGBX_FLOAT16;
1747 } else if (mesaVis->redBits == 10 && mesaVis->alphaBits > 0) {
1748 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10A2_UNORM
1749 : MESA_FORMAT_R10G10B10A2_UNORM;
1750 } else if (mesaVis->redBits == 10) {
1751 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10X2_UNORM
1752 : MESA_FORMAT_R10G10B10X2_UNORM;
1753 } else if (mesaVis->redBits == 5) {
1754 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1755 : MESA_FORMAT_B5G6R5_UNORM;
1756 } else if (mesaVis->alphaBits == 0) {
1757 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_SRGB
1758 : MESA_FORMAT_B8G8R8X8_SRGB;
1759 fb->Visual.sRGBCapable = true;
1760 } else if (mesaVis->sRGBCapable) {
1761 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1762 : MESA_FORMAT_B8G8R8A8_SRGB;
1763 fb->Visual.sRGBCapable = true;
1764 } else {
1765 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1766 : MESA_FORMAT_B8G8R8A8_SRGB;
1767 fb->Visual.sRGBCapable = true;
1768 }
1769
1770 /* mesaVis->sRGBCapable was set, user is asking for sRGB */
1771 bool srgb_cap_set = mesaVis->redBits >= 8 && mesaVis->sRGBCapable;
1772
1773 /* setup the hardware-based renderbuffers */
1774 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1775 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1776 rb->need_srgb = srgb_cap_set;
1777
1778 if (mesaVis->doubleBufferMode) {
1779 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1780 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1781 rb->need_srgb = srgb_cap_set;
1782 }
1783
1784 /*
1785 * Assert here that the gl_config has an expected depth/stencil bit
1786 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1787 * which constructs the advertised configs.)
1788 */
1789 if (mesaVis->depthBits == 24) {
1790 assert(mesaVis->stencilBits == 8);
1791
1792 if (screen->devinfo.has_hiz_and_separate_stencil) {
1793 rb = intel_create_private_renderbuffer(screen,
1794 MESA_FORMAT_Z24_UNORM_X8_UINT,
1795 num_samples);
1796 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1797 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1798 num_samples);
1799 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1800 } else {
1801 /*
1802 * Use combined depth/stencil. Note that the renderbuffer is
1803 * attached to two attachment points.
1804 */
1805 rb = intel_create_private_renderbuffer(screen,
1806 MESA_FORMAT_Z24_UNORM_S8_UINT,
1807 num_samples);
1808 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1809 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1810 }
1811 }
1812 else if (mesaVis->depthBits == 16) {
1813 assert(mesaVis->stencilBits == 0);
1814 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1815 num_samples);
1816 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1817 }
1818 else {
1819 assert(mesaVis->depthBits == 0);
1820 assert(mesaVis->stencilBits == 0);
1821 }
1822
1823 /* now add any/all software-based renderbuffers we may need */
1824 _swrast_add_soft_renderbuffers(fb,
1825 false, /* never sw color */
1826 false, /* never sw depth */
1827 false, /* never sw stencil */
1828 mesaVis->accumRedBits > 0,
1829 false, /* never sw alpha */
1830 false /* never sw aux */ );
1831 driDrawPriv->driverPrivate = fb;
1832
1833 return true;
1834 }
1835
1836 static void
1837 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1838 {
1839 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1840
1841 _mesa_reference_framebuffer(&fb, NULL);
1842 }
1843
1844 static void
1845 intel_cs_timestamp_frequency(struct intel_screen *screen)
1846 {
1847 /* We shouldn't need to update gen_device_info.timestamp_frequency prior to
1848 * gen10, PCI-id is enough to figure it out.
1849 */
1850 assert(screen->devinfo.gen >= 10);
1851
1852 int ret, freq;
1853
1854 ret = intel_get_param(screen, I915_PARAM_CS_TIMESTAMP_FREQUENCY,
1855 &freq);
1856 if (ret < 0) {
1857 _mesa_warning(NULL,
1858 "Kernel 4.15 required to read the CS timestamp frequency.\n");
1859 return;
1860 }
1861
1862 screen->devinfo.timestamp_frequency = freq;
1863 }
1864
1865 static void
1866 intel_detect_sseu(struct intel_screen *screen)
1867 {
1868 assert(screen->devinfo.gen >= 8);
1869 int ret;
1870
1871 screen->subslice_total = -1;
1872 screen->eu_total = -1;
1873
1874 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1875 &screen->subslice_total);
1876 if (ret < 0 && ret != -EINVAL)
1877 goto err_out;
1878
1879 ret = intel_get_param(screen,
1880 I915_PARAM_EU_TOTAL, &screen->eu_total);
1881 if (ret < 0 && ret != -EINVAL)
1882 goto err_out;
1883
1884 /* Without this information, we cannot get the right Braswell brandstrings,
1885 * and we have to use conservative numbers for GPGPU on many platforms, but
1886 * otherwise, things will just work.
1887 */
1888 if (screen->subslice_total < 1 || screen->eu_total < 1)
1889 _mesa_warning(NULL,
1890 "Kernel 4.1 required to properly query GPU properties.\n");
1891
1892 return;
1893
1894 err_out:
1895 screen->subslice_total = -1;
1896 screen->eu_total = -1;
1897 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1898 }
1899
1900 static bool
1901 intel_init_bufmgr(struct intel_screen *screen)
1902 {
1903 __DRIscreen *dri_screen = screen->driScrnPriv;
1904
1905 if (getenv("INTEL_NO_HW") != NULL)
1906 screen->no_hw = true;
1907
1908 bool bo_reuse = false;
1909 int bo_reuse_mode = driQueryOptioni(&screen->optionCache, "bo_reuse");
1910 switch (bo_reuse_mode) {
1911 case DRI_CONF_BO_REUSE_DISABLED:
1912 break;
1913 case DRI_CONF_BO_REUSE_ALL:
1914 bo_reuse = true;
1915 break;
1916 }
1917
1918 screen->bufmgr = brw_bufmgr_get_for_fd(&screen->devinfo, dri_screen->fd, bo_reuse);
1919 if (screen->bufmgr == NULL) {
1920 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1921 __func__, __LINE__);
1922 return false;
1923 }
1924 screen->fd = brw_bufmgr_get_fd(screen->bufmgr);
1925
1926 if (!intel_get_boolean(screen, I915_PARAM_HAS_EXEC_NO_RELOC)) {
1927 fprintf(stderr, "[%s: %u] Kernel 3.9 required.\n", __func__, __LINE__);
1928 return false;
1929 }
1930
1931 return true;
1932 }
1933
1934 static bool
1935 intel_detect_swizzling(struct intel_screen *screen)
1936 {
1937 /* Broadwell PRM says:
1938 *
1939 * "Before Gen8, there was a historical configuration control field to
1940 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
1941 * different places: TILECTL[1:0], ARB_MODE[5:4], and
1942 * DISP_ARB_CTL[14:13].
1943 *
1944 * For Gen8 and subsequent generations, the swizzle fields are all
1945 * reserved, and the CPU's memory controller performs all address
1946 * swizzling modifications."
1947 */
1948 if (screen->devinfo.gen >= 8)
1949 return false;
1950
1951 uint32_t tiling = I915_TILING_X;
1952 uint32_t swizzle_mode = 0;
1953 struct brw_bo *buffer =
1954 brw_bo_alloc_tiled(screen->bufmgr, "swizzle test", 32768,
1955 BRW_MEMZONE_OTHER, tiling, 512, 0);
1956 if (buffer == NULL)
1957 return false;
1958
1959 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1960 brw_bo_unreference(buffer);
1961
1962 return swizzle_mode != I915_BIT_6_SWIZZLE_NONE;
1963 }
1964
1965 static int
1966 intel_detect_timestamp(struct intel_screen *screen)
1967 {
1968 uint64_t dummy = 0, last = 0;
1969 int upper, lower, loops;
1970
1971 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1972 * TIMESTAMP register being shifted and the low 32bits always zero.
1973 *
1974 * More recent kernels offer an interface to read the full 36bits
1975 * everywhere.
1976 */
1977 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1978 return 3;
1979
1980 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1981 * upper 32bits for a rapidly changing timestamp.
1982 */
1983 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1984 return 0;
1985
1986 upper = lower = 0;
1987 for (loops = 0; loops < 10; loops++) {
1988 /* The TIMESTAMP should change every 80ns, so several round trips
1989 * through the kernel should be enough to advance it.
1990 */
1991 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1992 return 0;
1993
1994 upper += (dummy >> 32) != (last >> 32);
1995 if (upper > 1) /* beware 32bit counter overflow */
1996 return 2; /* upper dword holds the low 32bits of the timestamp */
1997
1998 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1999 if (lower > 1)
2000 return 1; /* timestamp is unshifted */
2001
2002 last = dummy;
2003 }
2004
2005 /* No advancement? No timestamp! */
2006 return 0;
2007 }
2008
2009 /**
2010 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
2011 *
2012 * Some combinations of hardware and kernel versions allow this feature,
2013 * while others don't. Instead of trying to enumerate every case, just
2014 * try and write a register and see if works.
2015 */
2016 static bool
2017 intel_detect_pipelined_register(struct intel_screen *screen,
2018 int reg, uint32_t expected_value, bool reset)
2019 {
2020 if (screen->no_hw)
2021 return false;
2022
2023 struct brw_bo *results, *bo;
2024 uint32_t *batch;
2025 uint32_t offset = 0;
2026 void *map;
2027 bool success = false;
2028
2029 /* Create a zero'ed temporary buffer for reading our results */
2030 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, BRW_MEMZONE_OTHER);
2031 if (results == NULL)
2032 goto err;
2033
2034 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, BRW_MEMZONE_OTHER);
2035 if (bo == NULL)
2036 goto err_results;
2037
2038 map = brw_bo_map(NULL, bo, MAP_WRITE);
2039 if (!map)
2040 goto err_batch;
2041
2042 batch = map;
2043
2044 /* Write the register. */
2045 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
2046 *batch++ = reg;
2047 *batch++ = expected_value;
2048
2049 /* Save the register's value back to the buffer. */
2050 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
2051 *batch++ = reg;
2052 struct drm_i915_gem_relocation_entry reloc = {
2053 .offset = (char *) batch - (char *) map,
2054 .delta = offset * sizeof(uint32_t),
2055 .target_handle = results->gem_handle,
2056 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
2057 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
2058 };
2059 *batch++ = reloc.presumed_offset + reloc.delta;
2060
2061 /* And afterwards clear the register */
2062 if (reset) {
2063 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
2064 *batch++ = reg;
2065 *batch++ = 0;
2066 }
2067
2068 *batch++ = MI_BATCH_BUFFER_END;
2069
2070 struct drm_i915_gem_exec_object2 exec_objects[2] = {
2071 {
2072 .handle = results->gem_handle,
2073 },
2074 {
2075 .handle = bo->gem_handle,
2076 .relocation_count = 1,
2077 .relocs_ptr = (uintptr_t) &reloc,
2078 }
2079 };
2080
2081 struct drm_i915_gem_execbuffer2 execbuf = {
2082 .buffers_ptr = (uintptr_t) exec_objects,
2083 .buffer_count = 2,
2084 .batch_len = ALIGN((char *) batch - (char *) map, 8),
2085 .flags = I915_EXEC_RENDER,
2086 };
2087
2088 /* Don't bother with error checking - if the execbuf fails, the
2089 * value won't be written and we'll just report that there's no access.
2090 */
2091 drmIoctl(screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
2092
2093 /* Check whether the value got written. */
2094 void *results_map = brw_bo_map(NULL, results, MAP_READ);
2095 if (results_map) {
2096 success = *((uint32_t *)results_map + offset) == expected_value;
2097 brw_bo_unmap(results);
2098 }
2099
2100 err_batch:
2101 brw_bo_unreference(bo);
2102 err_results:
2103 brw_bo_unreference(results);
2104 err:
2105 return success;
2106 }
2107
2108 static bool
2109 intel_detect_pipelined_so(struct intel_screen *screen)
2110 {
2111 const struct gen_device_info *devinfo = &screen->devinfo;
2112
2113 /* Supposedly, Broadwell just works. */
2114 if (devinfo->gen >= 8)
2115 return true;
2116
2117 if (devinfo->gen <= 6)
2118 return false;
2119
2120 /* See the big explanation about command parser versions below */
2121 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
2122 return true;
2123
2124 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
2125 * statistics registers), and we already reset it to zero before using it.
2126 */
2127 return intel_detect_pipelined_register(screen,
2128 GEN7_SO_WRITE_OFFSET(0),
2129 0x1337d0d0,
2130 false);
2131 }
2132
2133 /**
2134 * Return array of MSAA modes supported by the hardware. The array is
2135 * zero-terminated and sorted in decreasing order.
2136 */
2137 const int*
2138 intel_supported_msaa_modes(const struct intel_screen *screen)
2139 {
2140 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
2141 static const int gen8_modes[] = {8, 4, 2, 0, -1};
2142 static const int gen7_modes[] = {8, 4, 0, -1};
2143 static const int gen6_modes[] = {4, 0, -1};
2144 static const int gen4_modes[] = {0, -1};
2145
2146 if (screen->devinfo.gen >= 9) {
2147 return gen9_modes;
2148 } else if (screen->devinfo.gen >= 8) {
2149 return gen8_modes;
2150 } else if (screen->devinfo.gen >= 7) {
2151 return gen7_modes;
2152 } else if (screen->devinfo.gen == 6) {
2153 return gen6_modes;
2154 } else {
2155 return gen4_modes;
2156 }
2157 }
2158
2159 static unsigned
2160 intel_loader_get_cap(const __DRIscreen *dri_screen, enum dri_loader_cap cap)
2161 {
2162 if (dri_screen->dri2.loader && dri_screen->dri2.loader->base.version >= 4 &&
2163 dri_screen->dri2.loader->getCapability)
2164 return dri_screen->dri2.loader->getCapability(dri_screen->loaderPrivate, cap);
2165
2166 if (dri_screen->image.loader && dri_screen->image.loader->base.version >= 2 &&
2167 dri_screen->image.loader->getCapability)
2168 return dri_screen->image.loader->getCapability(dri_screen->loaderPrivate, cap);
2169
2170 return 0;
2171 }
2172
2173 static bool
2174 intel_allowed_format(__DRIscreen *dri_screen, mesa_format format)
2175 {
2176 struct intel_screen *screen = dri_screen->driverPrivate;
2177
2178 /* Expose only BGRA ordering if the loader doesn't support RGBA ordering. */
2179 bool allow_rgba_ordering = intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_RGBA_ORDERING);
2180 if (!allow_rgba_ordering &&
2181 (format == MESA_FORMAT_R8G8B8A8_UNORM ||
2182 format == MESA_FORMAT_R8G8B8X8_UNORM ||
2183 format == MESA_FORMAT_R8G8B8A8_SRGB))
2184 return false;
2185
2186 /* Shall we expose 10 bpc formats? */
2187 bool allow_rgb10_configs = driQueryOptionb(&screen->optionCache,
2188 "allow_rgb10_configs");
2189 if (!allow_rgb10_configs &&
2190 (format == MESA_FORMAT_B10G10R10A2_UNORM ||
2191 format == MESA_FORMAT_B10G10R10X2_UNORM))
2192 return false;
2193
2194 /* Shall we expose 565 formats? */
2195 bool allow_rgb565_configs = driQueryOptionb(&screen->optionCache,
2196 "allow_rgb565_configs");
2197 if (!allow_rgb565_configs && format == MESA_FORMAT_B5G6R5_UNORM)
2198 return false;
2199
2200 /* Shall we expose fp16 formats? */
2201 bool allow_fp16_configs = driQueryOptionb(&screen->optionCache,
2202 "allow_fp16_configs");
2203 allow_fp16_configs &= intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_FP16);
2204 if (!allow_fp16_configs &&
2205 (format == MESA_FORMAT_RGBA_FLOAT16 ||
2206 format == MESA_FORMAT_RGBX_FLOAT16))
2207 return false;
2208
2209 return true;
2210 }
2211
2212 static __DRIconfig**
2213 intel_screen_make_configs(__DRIscreen *dri_screen)
2214 {
2215 static const mesa_format formats[] = {
2216 MESA_FORMAT_B5G6R5_UNORM,
2217 MESA_FORMAT_B8G8R8A8_UNORM,
2218 MESA_FORMAT_B8G8R8X8_UNORM,
2219
2220 MESA_FORMAT_B8G8R8A8_SRGB,
2221 MESA_FORMAT_B8G8R8X8_SRGB,
2222
2223 /* For 10 bpc, 30 bit depth framebuffers. */
2224 MESA_FORMAT_B10G10R10A2_UNORM,
2225 MESA_FORMAT_B10G10R10X2_UNORM,
2226
2227 MESA_FORMAT_RGBA_FLOAT16,
2228 MESA_FORMAT_RGBX_FLOAT16,
2229
2230 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
2231 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
2232 * server may disagree on which format the GLXFBConfig represents,
2233 * resulting in swapped color channels.
2234 *
2235 * The problem, as of 2017-05-30:
2236 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
2237 * order and chooses the first __DRIconfig with the expected channel
2238 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
2239 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
2240 *
2241 * EGL does not suffer from this problem. It correctly compares the
2242 * channel masks when matching EGLConfig to __DRIconfig.
2243 */
2244
2245 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
2246 MESA_FORMAT_R8G8B8A8_UNORM,
2247
2248 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
2249 MESA_FORMAT_R8G8B8X8_UNORM,
2250
2251 MESA_FORMAT_R8G8B8A8_SRGB,
2252 };
2253
2254 /* __DRI_ATTRIB_SWAP_COPY is not supported due to page flipping. */
2255 static const GLenum back_buffer_modes[] = {
2256 __DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
2257 };
2258
2259 static const uint8_t singlesample_samples[1] = {0};
2260
2261 struct intel_screen *screen = dri_screen->driverPrivate;
2262 const struct gen_device_info *devinfo = &screen->devinfo;
2263 uint8_t depth_bits[4], stencil_bits[4];
2264 __DRIconfig **configs = NULL;
2265
2266 unsigned num_formats = ARRAY_SIZE(formats);
2267
2268 /* Generate singlesample configs, each without accumulation buffer
2269 * and with EGL_MUTABLE_RENDER_BUFFER_BIT_KHR.
2270 */
2271 for (unsigned i = 0; i < num_formats; i++) {
2272 __DRIconfig **new_configs;
2273 int num_depth_stencil_bits = 1;
2274
2275 if (!intel_allowed_format(dri_screen, formats[i]))
2276 continue;
2277
2278 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
2279 * buffer that has a different number of bits per pixel than the color
2280 * buffer, gen >= 6 supports this.
2281 */
2282 depth_bits[0] = 0;
2283 stencil_bits[0] = 0;
2284
2285 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2286 if (devinfo->gen >= 8) {
2287 depth_bits[num_depth_stencil_bits] = 16;
2288 stencil_bits[num_depth_stencil_bits] = 0;
2289 num_depth_stencil_bits++;
2290 }
2291 if (devinfo->gen >= 6) {
2292 depth_bits[num_depth_stencil_bits] = 24;
2293 stencil_bits[num_depth_stencil_bits] = 8;
2294 num_depth_stencil_bits++;
2295 }
2296 } else {
2297 depth_bits[num_depth_stencil_bits] = 24;
2298 stencil_bits[num_depth_stencil_bits] = 8;
2299 num_depth_stencil_bits++;
2300 }
2301
2302 new_configs = driCreateConfigs(formats[i],
2303 depth_bits,
2304 stencil_bits,
2305 num_depth_stencil_bits,
2306 back_buffer_modes, 2,
2307 singlesample_samples, 1,
2308 false, false,
2309 /*mutable_render_buffer*/ true);
2310 configs = driConcatConfigs(configs, new_configs);
2311 }
2312
2313 /* Generate the minimum possible set of configs that include an
2314 * accumulation buffer.
2315 */
2316 for (unsigned i = 0; i < num_formats; i++) {
2317 __DRIconfig **new_configs;
2318
2319 if (!intel_allowed_format(dri_screen, formats[i]))
2320 continue;
2321
2322 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2323 if (devinfo->gen >= 8) {
2324 depth_bits[0] = 16;
2325 stencil_bits[0] = 0;
2326 } else if (devinfo->gen >= 6) {
2327 depth_bits[0] = 24;
2328 stencil_bits[0] = 8;
2329 } else {
2330 depth_bits[0] = 0;
2331 stencil_bits[0] = 0;
2332 }
2333 } else {
2334 depth_bits[0] = 24;
2335 stencil_bits[0] = 8;
2336 }
2337
2338 new_configs = driCreateConfigs(formats[i],
2339 depth_bits, stencil_bits, 1,
2340 back_buffer_modes, 1,
2341 singlesample_samples, 1,
2342 true, false, false);
2343 configs = driConcatConfigs(configs, new_configs);
2344 }
2345
2346 /* Generate multisample configs.
2347 *
2348 * This loop breaks early, and hence is a no-op, on gen < 6.
2349 *
2350 * Multisample configs must follow the singlesample configs in order to
2351 * work around an X server bug present in 1.12. The X server chooses to
2352 * associate the first listed RGBA888-Z24S8 config, regardless of its
2353 * sample count, with the 32-bit depth visual used for compositing.
2354 *
2355 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
2356 * supported. Singlebuffer configs are not supported because no one wants
2357 * them.
2358 */
2359 for (unsigned i = 0; i < num_formats; i++) {
2360 if (devinfo->gen < 6)
2361 break;
2362
2363 if (!intel_allowed_format(dri_screen, formats[i]))
2364 continue;
2365
2366 __DRIconfig **new_configs;
2367 const int num_depth_stencil_bits = 2;
2368 int num_msaa_modes = 0;
2369 const uint8_t *multisample_samples = NULL;
2370
2371 depth_bits[0] = 0;
2372 stencil_bits[0] = 0;
2373
2374 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM && devinfo->gen >= 8) {
2375 depth_bits[1] = 16;
2376 stencil_bits[1] = 0;
2377 } else {
2378 depth_bits[1] = 24;
2379 stencil_bits[1] = 8;
2380 }
2381
2382 if (devinfo->gen >= 9) {
2383 static const uint8_t multisample_samples_gen9[] = {2, 4, 8, 16};
2384 multisample_samples = multisample_samples_gen9;
2385 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen9);
2386 } else if (devinfo->gen == 8) {
2387 static const uint8_t multisample_samples_gen8[] = {2, 4, 8};
2388 multisample_samples = multisample_samples_gen8;
2389 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen8);
2390 } else if (devinfo->gen == 7) {
2391 static const uint8_t multisample_samples_gen7[] = {4, 8};
2392 multisample_samples = multisample_samples_gen7;
2393 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen7);
2394 } else if (devinfo->gen == 6) {
2395 static const uint8_t multisample_samples_gen6[] = {4};
2396 multisample_samples = multisample_samples_gen6;
2397 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen6);
2398 }
2399
2400 new_configs = driCreateConfigs(formats[i],
2401 depth_bits,
2402 stencil_bits,
2403 num_depth_stencil_bits,
2404 back_buffer_modes, 1,
2405 multisample_samples,
2406 num_msaa_modes,
2407 false, false, false);
2408 configs = driConcatConfigs(configs, new_configs);
2409 }
2410
2411 if (configs == NULL) {
2412 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
2413 __LINE__);
2414 return NULL;
2415 }
2416
2417 return configs;
2418 }
2419
2420 static void
2421 set_max_gl_versions(struct intel_screen *screen)
2422 {
2423 __DRIscreen *dri_screen = screen->driScrnPriv;
2424 const bool has_astc = screen->devinfo.gen >= 9;
2425
2426 switch (screen->devinfo.gen) {
2427 case 11:
2428 case 10:
2429 case 9:
2430 case 8:
2431 dri_screen->max_gl_core_version = 46;
2432 dri_screen->max_gl_compat_version = 30;
2433 dri_screen->max_gl_es1_version = 11;
2434 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
2435 break;
2436 case 7:
2437 dri_screen->max_gl_core_version = 33;
2438 if (can_do_pipelined_register_writes(screen)) {
2439 dri_screen->max_gl_core_version = 42;
2440 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
2441 dri_screen->max_gl_core_version = 43;
2442 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
2443 dri_screen->max_gl_core_version = 45;
2444 }
2445 dri_screen->max_gl_compat_version = 30;
2446 dri_screen->max_gl_es1_version = 11;
2447 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
2448 break;
2449 case 6:
2450 dri_screen->max_gl_core_version = 33;
2451 dri_screen->max_gl_compat_version = 30;
2452 dri_screen->max_gl_es1_version = 11;
2453 dri_screen->max_gl_es2_version = 30;
2454 break;
2455 case 5:
2456 case 4:
2457 dri_screen->max_gl_core_version = 0;
2458 dri_screen->max_gl_compat_version = 21;
2459 dri_screen->max_gl_es1_version = 11;
2460 dri_screen->max_gl_es2_version = 20;
2461 break;
2462 default:
2463 unreachable("unrecognized intel_screen::gen");
2464 }
2465 }
2466
2467 static void
2468 shader_debug_log_mesa(void *data, const char *fmt, ...)
2469 {
2470 struct brw_context *brw = (struct brw_context *)data;
2471 va_list args;
2472
2473 va_start(args, fmt);
2474 GLuint msg_id = 0;
2475 _mesa_gl_vdebugf(&brw->ctx, &msg_id,
2476 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2477 MESA_DEBUG_TYPE_OTHER,
2478 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
2479 va_end(args);
2480 }
2481
2482 static void
2483 shader_perf_log_mesa(void *data, const char *fmt, ...)
2484 {
2485 struct brw_context *brw = (struct brw_context *)data;
2486
2487 va_list args;
2488 va_start(args, fmt);
2489
2490 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2491 va_list args_copy;
2492 va_copy(args_copy, args);
2493 vfprintf(stderr, fmt, args_copy);
2494 va_end(args_copy);
2495 }
2496
2497 if (brw->perf_debug) {
2498 GLuint msg_id = 0;
2499 _mesa_gl_vdebugf(&brw->ctx, &msg_id,
2500 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2501 MESA_DEBUG_TYPE_PERFORMANCE,
2502 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2503 }
2504 va_end(args);
2505 }
2506
2507 /**
2508 * This is the driver specific part of the createNewScreen entry point.
2509 * Called when using DRI2.
2510 *
2511 * \return the struct gl_config supported by this driver
2512 */
2513 static const
2514 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2515 {
2516 struct intel_screen *screen;
2517
2518 if (dri_screen->image.loader) {
2519 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2520 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2521 fprintf(stderr,
2522 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2523 "support required\n");
2524 return NULL;
2525 }
2526
2527 /* Allocate the private area */
2528 screen = rzalloc(NULL, struct intel_screen);
2529 if (!screen) {
2530 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2531 return NULL;
2532 }
2533 /* parse information in __driConfigOptions */
2534 driOptionCache options;
2535 memset(&options, 0, sizeof(options));
2536
2537 driParseOptionInfo(&options, brw_config_options.xml);
2538 driParseConfigFiles(&screen->optionCache, &options, dri_screen->myNum,
2539 "i965", NULL, NULL, 0);
2540 driDestroyOptionCache(&options);
2541
2542 screen->driScrnPriv = dri_screen;
2543 dri_screen->driverPrivate = (void *) screen;
2544
2545 if (!gen_get_device_info_from_fd(dri_screen->fd, &screen->devinfo))
2546 return NULL;
2547
2548 const struct gen_device_info *devinfo = &screen->devinfo;
2549 screen->deviceID = devinfo->chipset_id;
2550 screen->no_hw = devinfo->no_hw;
2551
2552 if (devinfo->gen >= 12) {
2553 fprintf(stderr, "gen12 and newer are not supported on i965\n");
2554 return NULL;
2555 }
2556
2557 if (!intel_init_bufmgr(screen))
2558 return NULL;
2559
2560 brw_process_intel_debug_variable();
2561
2562 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2563 fprintf(stderr,
2564 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2565 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2566 }
2567
2568 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2569 /* Theorectically unlimited! At least for individual objects...
2570 *
2571 * Currently the entire (global) address space for all GTT maps is
2572 * limited to 64bits. That is all objects on the system that are
2573 * setup for GTT mmapping must fit within 64bits. An attempt to use
2574 * one that exceeds the limit with fail in brw_bo_map_gtt().
2575 *
2576 * Long before we hit that limit, we will be practically limited by
2577 * that any single object must fit in physical memory (RAM). The upper
2578 * limit on the CPU's address space is currently 48bits (Skylake), of
2579 * which only 39bits can be physical memory. (The GPU itself also has
2580 * a 48bit addressable virtual space.) We can fit over 32 million
2581 * objects of the current maximum allocable size before running out
2582 * of mmap space.
2583 */
2584 screen->max_gtt_map_object_size = UINT64_MAX;
2585 } else {
2586 /* Estimate the size of the mappable aperture into the GTT. There's an
2587 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2588 * It turns out it's basically always 256MB, though some ancient hardware
2589 * was smaller.
2590 */
2591 uint32_t gtt_size = 256 * 1024 * 1024;
2592
2593 /* We don't want to map two objects such that a memcpy between them would
2594 * just fault one mapping in and then the other over and over forever. So
2595 * we would need to divide the GTT size by 2. Additionally, some GTT is
2596 * taken up by things like the framebuffer and the ringbuffer and such, so
2597 * be more conservative.
2598 */
2599 screen->max_gtt_map_object_size = gtt_size / 4;
2600 }
2601
2602 screen->aperture_threshold = devinfo->aperture_bytes * 3 / 4;
2603
2604 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2605 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2606
2607 isl_device_init(&screen->isl_dev, &screen->devinfo,
2608 screen->hw_has_swizzling);
2609
2610 if (devinfo->gen >= 10)
2611 intel_cs_timestamp_frequency(screen);
2612
2613 /* GENs prior to 8 do not support EU/Subslice info */
2614 if (devinfo->gen >= 8) {
2615 intel_detect_sseu(screen);
2616 } else if (devinfo->gen == 7) {
2617 screen->subslice_total = 1 << (devinfo->gt - 1);
2618 }
2619
2620 /* Gen7-7.5 kernel requirements / command parser saga:
2621 *
2622 * - pre-v3.16:
2623 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2624 *
2625 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2626 * all batches secure, allowing them to use any feature with no checking.
2627 * This is effectively equivalent to a command parser version of
2628 * \infinity - everything is possible.
2629 *
2630 * The command parser does not exist, and querying the version will
2631 * return -EINVAL.
2632 *
2633 * - v3.16:
2634 * The kernel enables the command parser by default, for systems with
2635 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2636 * hardware checker is still enabled, so Haswell and Baytrail cannot
2637 * do anything.
2638 *
2639 * Ivybridge goes from "everything is possible" to "only what the
2640 * command parser allows" (if the user boots with i915.cmd_parser=0,
2641 * then everything is possible again). We can only safely use features
2642 * allowed by the supported command parser version.
2643 *
2644 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2645 * implemented by the kernel, even if it's turned off. So, checking
2646 * for version > 0 does not mean that you can write registers. We have
2647 * to try it and see. The version does, however, indicate the age of
2648 * the kernel.
2649 *
2650 * Instead of matching the hardware checker's behavior of converting
2651 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2652 * -EINVAL, making it dangerous to try and use privileged features.
2653 *
2654 * Effective command parser versions:
2655 * - Haswell: 0 (reporting 1, writes don't work)
2656 * - Baytrail: 0 (reporting 1, writes don't work)
2657 * - Ivybridge: 1 (enabled) or infinite (disabled)
2658 *
2659 * - v3.17:
2660 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2661 * effectively version 1 (enabled) or infinite (disabled).
2662 *
2663 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2664 * Command parser v2 supports predicate writes.
2665 *
2666 * - Haswell: 0 (reporting 1, writes don't work)
2667 * - Baytrail: 2 (enabled) or infinite (disabled)
2668 * - Ivybridge: 2 (enabled) or infinite (disabled)
2669 *
2670 * So version >= 2 is enough to know that Ivybridge and Baytrail
2671 * will work. Haswell still can't do anything.
2672 *
2673 * - v4.0: Version 3 happened. Largely not relevant.
2674 *
2675 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2676 * L3 config registers are properly saved and restored as part
2677 * of the hardware context. We can approximately detect this point
2678 * in time by checking if I915_PARAM_REVISION is recognized - it
2679 * landed in a later commit, but in the same release cycle.
2680 *
2681 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2682 * Command parser finally gains secure batch promotion. On Haswell,
2683 * the hardware checker gets disabled, which finally allows it to do
2684 * privileged commands.
2685 *
2686 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2687 * - Haswell: 3 (enabled) or 0 (disabled)
2688 * - Baytrail: 3 (enabled) or infinite (disabled)
2689 * - Ivybridge: 3 (enabled) or infinite (disabled)
2690 *
2691 * Unfortunately, detecting this point in time is tricky, because
2692 * no version bump happened when this important change occurred.
2693 * On Haswell, if we can write any register, then the kernel is at
2694 * least this new, and we can start trusting the version number.
2695 *
2696 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2697 * Command parser reaches version 4, allowing access to Haswell
2698 * atomic scratch and chicken3 registers. If version >= 4, we know
2699 * the kernel is new enough to support privileged features on all
2700 * hardware. However, the user might have disabled it...and the
2701 * kernel will still report version 4. So we still have to guess
2702 * and check.
2703 *
2704 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2705 * Command parser v5 whitelists indirect compute shader dispatch
2706 * registers, needed for OpenGL 4.3 and later.
2707 *
2708 * - v4.8:
2709 * Command parser v7 lets us use MI_MATH on Haswell.
2710 *
2711 * Additionally, the kernel begins reporting version 0 when
2712 * the command parser is disabled, allowing us to skip the
2713 * guess-and-check step on Haswell. Unfortunately, this also
2714 * means that we can no longer use it as an indicator of the
2715 * age of the kernel.
2716 */
2717 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2718 &screen->cmd_parser_version) < 0) {
2719 /* Command parser does not exist - getparam is unrecognized */
2720 screen->cmd_parser_version = 0;
2721 }
2722
2723 /* Kernel 4.13 retuired for exec object capture */
2724 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2725 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2726 }
2727
2728 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
2729 screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
2730 }
2731
2732 if (!intel_detect_pipelined_so(screen)) {
2733 /* We can't do anything, so the effective version is 0. */
2734 screen->cmd_parser_version = 0;
2735 } else {
2736 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2737 }
2738
2739 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2740 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2741
2742 /* Haswell requires command parser version 4 in order to have L3
2743 * atomic scratch1 and chicken3 bits
2744 */
2745 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2746 screen->kernel_features |=
2747 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2748 }
2749
2750 /* Haswell requires command parser version 6 in order to write to the
2751 * MI_MATH GPR registers, and version 7 in order to use
2752 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2753 */
2754 if (devinfo->gen >= 8 ||
2755 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2756 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2757 }
2758
2759 /* Gen7 needs at least command parser version 5 to support compute */
2760 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2761 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2762
2763 if (intel_get_boolean(screen, I915_PARAM_HAS_CONTEXT_ISOLATION))
2764 screen->kernel_features |= KERNEL_ALLOWS_CONTEXT_ISOLATION;
2765
2766 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2767 if (force_msaa) {
2768 screen->winsys_msaa_samples_override =
2769 intel_quantize_num_samples(screen, atoi(force_msaa));
2770 printf("Forcing winsys sample count to %d\n",
2771 screen->winsys_msaa_samples_override);
2772 } else {
2773 screen->winsys_msaa_samples_override = -1;
2774 }
2775
2776 set_max_gl_versions(screen);
2777
2778 /* Notification of GPU resets requires hardware contexts and a kernel new
2779 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2780 * supported, calling it with a context of 0 will either generate EPERM or
2781 * no error. If the ioctl is not supported, it always generate EINVAL.
2782 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2783 * extension to the loader.
2784 *
2785 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2786 */
2787 if (devinfo->gen >= 6) {
2788 struct drm_i915_reset_stats stats;
2789 memset(&stats, 0, sizeof(stats));
2790
2791 const int ret = drmIoctl(screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2792
2793 screen->has_context_reset_notification =
2794 (ret != -1 || errno != EINVAL);
2795 }
2796
2797 dri_screen->extensions = !screen->has_context_reset_notification
2798 ? screenExtensions : intelRobustScreenExtensions;
2799
2800 screen->compiler = brw_compiler_create(screen, devinfo);
2801 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2802 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2803
2804 /* Changing the meaning of constant buffer pointers from a dynamic state
2805 * offset to an absolute address is only safe if the kernel isolates other
2806 * contexts from our changes.
2807 */
2808 screen->compiler->constant_buffer_0_is_relative = devinfo->gen < 8 ||
2809 !(screen->kernel_features & KERNEL_ALLOWS_CONTEXT_ISOLATION);
2810
2811 screen->compiler->glsl_compiler_options[MESA_SHADER_VERTEX].PositionAlwaysInvariant = driQueryOptionb(&screen->optionCache, "vs_position_always_invariant");
2812
2813 screen->compiler->supports_pull_constants = true;
2814 screen->compiler->compact_params = true;
2815 screen->compiler->lower_variable_group_size = true;
2816
2817 screen->has_exec_fence =
2818 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2819
2820 intel_screen_init_surface_formats(screen);
2821
2822 if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
2823 unsigned int caps = intel_get_integer(screen, I915_PARAM_HAS_SCHEDULER);
2824 if (caps) {
2825 fprintf(stderr, "Kernel scheduler detected: %08x\n", caps);
2826 if (caps & I915_SCHEDULER_CAP_PRIORITY)
2827 fprintf(stderr, " - User priority sorting enabled\n");
2828 if (caps & I915_SCHEDULER_CAP_PREEMPTION)
2829 fprintf(stderr, " - Preemption enabled\n");
2830 }
2831 }
2832
2833 brw_disk_cache_init(screen);
2834
2835 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2836 }
2837
2838 struct intel_buffer {
2839 __DRIbuffer base;
2840 struct brw_bo *bo;
2841 };
2842
2843 static __DRIbuffer *
2844 intelAllocateBuffer(__DRIscreen *dri_screen,
2845 unsigned attachment, unsigned format,
2846 int width, int height)
2847 {
2848 struct intel_buffer *intelBuffer;
2849 struct intel_screen *screen = dri_screen->driverPrivate;
2850
2851 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2852 attachment == __DRI_BUFFER_BACK_LEFT);
2853
2854 intelBuffer = calloc(1, sizeof *intelBuffer);
2855 if (intelBuffer == NULL)
2856 return NULL;
2857
2858 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2859 * supports Y tiled and compressed buffers, but there is no way to plumb that
2860 * through to here. */
2861 uint32_t pitch;
2862 int cpp = format / 8;
2863 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2864 "intelAllocateBuffer",
2865 width,
2866 height,
2867 cpp,
2868 BRW_MEMZONE_OTHER,
2869 I915_TILING_X, &pitch,
2870 BO_ALLOC_BUSY);
2871
2872 if (intelBuffer->bo == NULL) {
2873 free(intelBuffer);
2874 return NULL;
2875 }
2876
2877 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2878
2879 intelBuffer->base.attachment = attachment;
2880 intelBuffer->base.cpp = cpp;
2881 intelBuffer->base.pitch = pitch;
2882
2883 return &intelBuffer->base;
2884 }
2885
2886 static void
2887 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2888 {
2889 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2890
2891 brw_bo_unreference(intelBuffer->bo);
2892 free(intelBuffer);
2893 }
2894
2895 static const struct __DriverAPIRec brw_driver_api = {
2896 .InitScreen = intelInitScreen2,
2897 .DestroyScreen = intelDestroyScreen,
2898 .CreateContext = brwCreateContext,
2899 .DestroyContext = intelDestroyContext,
2900 .CreateBuffer = intelCreateBuffer,
2901 .DestroyBuffer = intelDestroyBuffer,
2902 .MakeCurrent = intelMakeCurrent,
2903 .UnbindContext = intelUnbindContext,
2904 .AllocateBuffer = intelAllocateBuffer,
2905 .ReleaseBuffer = intelReleaseBuffer
2906 };
2907
2908 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2909 .base = { __DRI_DRIVER_VTABLE, 1 },
2910 .vtable = &brw_driver_api,
2911 };
2912
2913 static const __DRIextension *brw_driver_extensions[] = {
2914 &driCoreExtension.base,
2915 &driImageDriverExtension.base,
2916 &driDRI2Extension.base,
2917 &brw_vtable.base,
2918 &brw_config_options.base,
2919 NULL
2920 };
2921
2922 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2923 {
2924 globalDriverAPI = &brw_driver_api;
2925
2926 return brw_driver_extensions;
2927 }