i965: Rework the modifier info map
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "brw_state.h"
41 #include "compiler/nir/nir.h"
42
43 #include "utils.h"
44 #include "xmlpool.h"
45
46 #ifndef DRM_FORMAT_MOD_INVALID
47 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
48 #endif
49
50 #ifndef DRM_FORMAT_MOD_LINEAR
51 #define DRM_FORMAT_MOD_LINEAR 0
52 #endif
53
54 static const __DRIconfigOptionsExtension brw_config_options = {
55 .base = { __DRI_CONFIG_OPTIONS, 1 },
56 .xml =
57 DRI_CONF_BEGIN
58 DRI_CONF_SECTION_PERFORMANCE
59 DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
60 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
61 * DRI_CONF_BO_REUSE_ALL
62 */
63 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
64 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
65 DRI_CONF_ENUM(0, "Disable buffer object reuse")
66 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
67 DRI_CONF_DESC_END
68 DRI_CONF_OPT_END
69 DRI_CONF_SECTION_END
70
71 DRI_CONF_SECTION_QUALITY
72 DRI_CONF_FORCE_S3TC_ENABLE("false")
73
74 DRI_CONF_PRECISE_TRIG("false")
75
76 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
77 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
78 "given integer. If negative, then do not clamp.")
79 DRI_CONF_OPT_END
80 DRI_CONF_SECTION_END
81
82 DRI_CONF_SECTION_DEBUG
83 DRI_CONF_NO_RAST("false")
84 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
85 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
86 DRI_CONF_DISABLE_THROTTLING("false")
87 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
88 DRI_CONF_FORCE_GLSL_VERSION(0)
89 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
90 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
91 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
92 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
93 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
94 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
95 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
96
97 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
98 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
99 DRI_CONF_OPT_END
100 DRI_CONF_SECTION_END
101
102 DRI_CONF_SECTION_MISCELLANEOUS
103 DRI_CONF_GLSL_ZERO_INIT("false")
104 DRI_CONF_SECTION_END
105 DRI_CONF_END
106 };
107
108 #include "intel_batchbuffer.h"
109 #include "intel_buffers.h"
110 #include "brw_bufmgr.h"
111 #include "intel_fbo.h"
112 #include "intel_mipmap_tree.h"
113 #include "intel_screen.h"
114 #include "intel_tex.h"
115 #include "intel_image.h"
116
117 #include "brw_context.h"
118
119 #include "i915_drm.h"
120
121 /**
122 * For debugging purposes, this returns a time in seconds.
123 */
124 double
125 get_time(void)
126 {
127 struct timespec tp;
128
129 clock_gettime(CLOCK_MONOTONIC, &tp);
130
131 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
132 }
133
134 static const __DRItexBufferExtension intelTexBufferExtension = {
135 .base = { __DRI_TEX_BUFFER, 3 },
136
137 .setTexBuffer = intelSetTexBuffer,
138 .setTexBuffer2 = intelSetTexBuffer2,
139 .releaseTexBuffer = NULL,
140 };
141
142 static void
143 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
144 __DRIdrawable *dPriv,
145 unsigned flags,
146 enum __DRI2throttleReason reason)
147 {
148 struct brw_context *brw = cPriv->driverPrivate;
149
150 if (!brw)
151 return;
152
153 struct gl_context *ctx = &brw->ctx;
154
155 FLUSH_VERTICES(ctx, 0);
156
157 if (flags & __DRI2_FLUSH_DRAWABLE)
158 intel_resolve_for_dri2_flush(brw, dPriv);
159
160 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
161 brw->need_swap_throttle = true;
162 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
163 brw->need_flush_throttle = true;
164
165 intel_batchbuffer_flush(brw);
166 }
167
168 /**
169 * Provides compatibility with loaders that only support the older (version
170 * 1-3) flush interface.
171 *
172 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
173 */
174 static void
175 intel_dri2_flush(__DRIdrawable *drawable)
176 {
177 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
178 __DRI2_FLUSH_DRAWABLE,
179 __DRI2_THROTTLE_SWAPBUFFER);
180 }
181
182 static const struct __DRI2flushExtensionRec intelFlushExtension = {
183 .base = { __DRI2_FLUSH, 4 },
184
185 .flush = intel_dri2_flush,
186 .invalidate = dri2InvalidateDrawable,
187 .flush_with_flags = intel_dri2_flush_with_flags,
188 };
189
190 static struct intel_image_format intel_image_formats[] = {
191 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
192 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
193
194 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
195 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
196
197 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
198 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
199
200 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
201 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
202
203 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
204 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
205
206 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
207 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
208
209 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
210 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
211
212 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
213 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
214
215 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
216 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
217
218 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
219 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
220
221 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
222 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
223
224 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
225 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
226 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
227 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
228
229 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
230 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
231 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
232 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
233
234 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
235 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
236 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
237 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
238
239 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
240 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
241 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
242 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
243
244 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
245 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
246 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
247 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
248
249 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
250 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
251 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
252 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
253
254 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
255 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
256 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
257 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
258
259 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
260 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
261 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
262 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
263
264 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
265 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
266 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
267 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
268
269 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
270 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
271 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
272 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
273
274 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
275 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
276 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
277
278 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
279 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
280 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
281
282 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
283 * and treat them as planar buffers in the compositors.
284 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
285 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
286 * clusters and places pairs and places U into the G component and
287 * V into A. This lets the texture sampler interpolate the Y
288 * components correctly when sampling from plane 0, and interpolate
289 * U and V correctly when sampling from plane 1. */
290 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
291 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
292 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
293 { __DRI_IMAGE_FOURCC_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
294 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
295 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
296 };
297
298 static const struct {
299 uint64_t modifier;
300 unsigned since_gen;
301 } supported_modifiers[] = {
302 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
303 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
304 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
305 };
306
307 static bool
308 modifier_is_supported(const struct gen_device_info *devinfo,
309 uint64_t modifier)
310 {
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
314 if (supported_modifiers[i].modifier != modifier)
315 continue;
316
317 return supported_modifiers[i].since_gen <= devinfo->gen;
318 }
319
320 return false;
321 }
322
323 static uint64_t
324 tiling_to_modifier(uint32_t tiling)
325 {
326 static const uint64_t map[] = {
327 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
328 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
329 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
330 };
331
332 assert(tiling < ARRAY_SIZE(map));
333
334 return map[tiling];
335 }
336
337 static void
338 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
339 {
340 uint32_t tiling, swizzle;
341 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
342
343 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
344 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
345 func, image->offset);
346 }
347 }
348
349 static struct intel_image_format *
350 intel_image_format_lookup(int fourcc)
351 {
352 struct intel_image_format *f = NULL;
353
354 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
355 if (intel_image_formats[i].fourcc == fourcc) {
356 f = &intel_image_formats[i];
357 break;
358 }
359 }
360
361 return f;
362 }
363
364 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
365 {
366 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
367 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
368 *fourcc = intel_image_formats[i].fourcc;
369 return true;
370 }
371 }
372 return false;
373 }
374
375 static __DRIimage *
376 intel_allocate_image(struct intel_screen *screen, int dri_format,
377 void *loaderPrivate)
378 {
379 __DRIimage *image;
380
381 image = calloc(1, sizeof *image);
382 if (image == NULL)
383 return NULL;
384
385 image->screen = screen;
386 image->dri_format = dri_format;
387 image->offset = 0;
388
389 image->format = driImageFormatToGLFormat(dri_format);
390 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
391 image->format == MESA_FORMAT_NONE) {
392 free(image);
393 return NULL;
394 }
395
396 image->internal_format = _mesa_get_format_base_format(image->format);
397 image->data = loaderPrivate;
398
399 return image;
400 }
401
402 /**
403 * Sets up a DRIImage structure to point to a slice out of a miptree.
404 */
405 static void
406 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
407 struct intel_mipmap_tree *mt, GLuint level,
408 GLuint zoffset)
409 {
410 intel_miptree_make_shareable(brw, mt);
411
412 intel_miptree_check_level_layer(mt, level, zoffset);
413
414 image->width = minify(mt->physical_width0, level - mt->first_level);
415 image->height = minify(mt->physical_height0, level - mt->first_level);
416 image->pitch = mt->pitch;
417
418 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
419 &image->tile_x,
420 &image->tile_y);
421
422 brw_bo_unreference(image->bo);
423 image->bo = mt->bo;
424 brw_bo_reference(mt->bo);
425 }
426
427 static __DRIimage *
428 intel_create_image_from_name(__DRIscreen *dri_screen,
429 int width, int height, int format,
430 int name, int pitch, void *loaderPrivate)
431 {
432 struct intel_screen *screen = dri_screen->driverPrivate;
433 __DRIimage *image;
434 int cpp;
435
436 image = intel_allocate_image(screen, format, loaderPrivate);
437 if (image == NULL)
438 return NULL;
439
440 if (image->format == MESA_FORMAT_NONE)
441 cpp = 1;
442 else
443 cpp = _mesa_get_format_bytes(image->format);
444
445 image->width = width;
446 image->height = height;
447 image->pitch = pitch * cpp;
448 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
449 name);
450 if (!image->bo) {
451 free(image);
452 return NULL;
453 }
454 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
455
456 return image;
457 }
458
459 static __DRIimage *
460 intel_create_image_from_renderbuffer(__DRIcontext *context,
461 int renderbuffer, void *loaderPrivate)
462 {
463 __DRIimage *image;
464 struct brw_context *brw = context->driverPrivate;
465 struct gl_context *ctx = &brw->ctx;
466 struct gl_renderbuffer *rb;
467 struct intel_renderbuffer *irb;
468
469 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
470 if (!rb) {
471 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
472 return NULL;
473 }
474
475 irb = intel_renderbuffer(rb);
476 intel_miptree_make_shareable(brw, irb->mt);
477 image = calloc(1, sizeof *image);
478 if (image == NULL)
479 return NULL;
480
481 image->internal_format = rb->InternalFormat;
482 image->format = rb->Format;
483 image->modifier = tiling_to_modifier(irb->mt->tiling);
484 image->offset = 0;
485 image->data = loaderPrivate;
486 brw_bo_unreference(image->bo);
487 image->bo = irb->mt->bo;
488 brw_bo_reference(irb->mt->bo);
489 image->width = rb->Width;
490 image->height = rb->Height;
491 image->pitch = irb->mt->pitch;
492 image->dri_format = driGLFormatToImageFormat(image->format);
493 image->has_depthstencil = irb->mt->stencil_mt? true : false;
494
495 rb->NeedsFinishRenderTexture = true;
496 return image;
497 }
498
499 static __DRIimage *
500 intel_create_image_from_texture(__DRIcontext *context, int target,
501 unsigned texture, int zoffset,
502 int level,
503 unsigned *error,
504 void *loaderPrivate)
505 {
506 __DRIimage *image;
507 struct brw_context *brw = context->driverPrivate;
508 struct gl_texture_object *obj;
509 struct intel_texture_object *iobj;
510 GLuint face = 0;
511
512 obj = _mesa_lookup_texture(&brw->ctx, texture);
513 if (!obj || obj->Target != target) {
514 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
515 return NULL;
516 }
517
518 if (target == GL_TEXTURE_CUBE_MAP)
519 face = zoffset;
520
521 _mesa_test_texobj_completeness(&brw->ctx, obj);
522 iobj = intel_texture_object(obj);
523 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
524 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
525 return NULL;
526 }
527
528 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
529 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
530 return NULL;
531 }
532
533 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
534 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
535 return NULL;
536 }
537 image = calloc(1, sizeof *image);
538 if (image == NULL) {
539 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
540 return NULL;
541 }
542
543 image->internal_format = obj->Image[face][level]->InternalFormat;
544 image->format = obj->Image[face][level]->TexFormat;
545 image->modifier = tiling_to_modifier(iobj->mt->tiling);
546 image->data = loaderPrivate;
547 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
548 image->dri_format = driGLFormatToImageFormat(image->format);
549 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
550 if (image->dri_format == MESA_FORMAT_NONE) {
551 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
552 free(image);
553 return NULL;
554 }
555
556 *error = __DRI_IMAGE_ERROR_SUCCESS;
557 return image;
558 }
559
560 static void
561 intel_destroy_image(__DRIimage *image)
562 {
563 brw_bo_unreference(image->bo);
564 free(image);
565 }
566
567 enum modifier_priority {
568 MODIFIER_PRIORITY_INVALID = 0,
569 MODIFIER_PRIORITY_LINEAR,
570 MODIFIER_PRIORITY_X,
571 MODIFIER_PRIORITY_Y,
572 };
573
574 const uint64_t priority_to_modifier[] = {
575 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
576 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
577 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
578 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
579 };
580
581 static uint64_t
582 select_best_modifier(struct gen_device_info *devinfo,
583 const uint64_t *modifiers,
584 const unsigned count)
585 {
586 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
587
588 for (int i = 0; i < count; i++) {
589 switch (modifiers[i]) {
590 case I915_FORMAT_MOD_Y_TILED:
591 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
592 break;
593 case I915_FORMAT_MOD_X_TILED:
594 prio = MAX2(prio, MODIFIER_PRIORITY_X);
595 break;
596 case DRM_FORMAT_MOD_LINEAR:
597 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
598 break;
599 case DRM_FORMAT_MOD_INVALID:
600 default:
601 break;
602 }
603 }
604
605 return priority_to_modifier[prio];
606 }
607
608 static __DRIimage *
609 intel_create_image_common(__DRIscreen *dri_screen,
610 int width, int height, int format,
611 unsigned int use,
612 const uint64_t *modifiers,
613 unsigned count,
614 void *loaderPrivate)
615 {
616 __DRIimage *image;
617 struct intel_screen *screen = dri_screen->driverPrivate;
618 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
619 bool ok;
620
621 /* Callers of this may specify a modifier, or a dri usage, but not both. The
622 * newer modifier interface deprecates the older usage flags newer modifier
623 * interface deprecates the older usage flags.
624 */
625 assert(!(use && count));
626
627 if (use & __DRI_IMAGE_USE_CURSOR) {
628 if (width != 64 || height != 64)
629 return NULL;
630 modifier = DRM_FORMAT_MOD_LINEAR;
631 }
632
633 if (use & __DRI_IMAGE_USE_LINEAR)
634 modifier = DRM_FORMAT_MOD_LINEAR;
635
636 if (modifier == DRM_FORMAT_MOD_INVALID) {
637 if (modifiers) {
638 /* User requested specific modifiers */
639 modifier = select_best_modifier(&screen->devinfo, modifiers, count);
640 if (modifier == DRM_FORMAT_MOD_INVALID)
641 return NULL;
642 } else {
643 /* Historically, X-tiled was the default, and so lack of modifier means
644 * X-tiled.
645 */
646 modifier = I915_FORMAT_MOD_X_TILED;
647 }
648 }
649
650 image = intel_allocate_image(screen, format, loaderPrivate);
651 if (image == NULL)
652 return NULL;
653
654 const struct isl_drm_modifier_info *mod_info =
655 isl_drm_modifier_get_info(modifier);
656
657 struct isl_surf surf;
658 ok = isl_surf_init(&screen->isl_dev, &surf,
659 .dim = ISL_SURF_DIM_2D,
660 .format = brw_isl_format_for_mesa_format(image->format),
661 .width = width,
662 .height = height,
663 .depth = 1,
664 .levels = 1,
665 .array_len = 1,
666 .samples = 1,
667 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
668 ISL_SURF_USAGE_TEXTURE_BIT |
669 ISL_SURF_USAGE_STORAGE_BIT,
670 .tiling_flags = (1 << mod_info->tiling));
671 assert(ok);
672 if (!ok) {
673 free(image);
674 return NULL;
675 }
676
677 /* We request that the bufmgr zero because, if a buffer gets re-used from
678 * the pool, we don't want to leak random garbage from our process to some
679 * other.
680 */
681 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image", surf.size,
682 isl_tiling_to_i915_tiling(mod_info->tiling),
683 surf.row_pitch, BO_ALLOC_ZEROED);
684 if (image->bo == NULL) {
685 free(image);
686 return NULL;
687 }
688 image->width = width;
689 image->height = height;
690 image->pitch = surf.row_pitch;
691 image->modifier = modifier;
692
693 return image;
694 }
695
696 static __DRIimage *
697 intel_create_image(__DRIscreen *dri_screen,
698 int width, int height, int format,
699 unsigned int use,
700 void *loaderPrivate)
701 {
702 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
703 loaderPrivate);
704 }
705
706 static __DRIimage *
707 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
708 int width, int height, int format,
709 const uint64_t *modifiers,
710 const unsigned count,
711 void *loaderPrivate)
712 {
713 return intel_create_image_common(dri_screen, width, height, format, 0,
714 modifiers, count, loaderPrivate);
715 }
716
717 static GLboolean
718 intel_query_image(__DRIimage *image, int attrib, int *value)
719 {
720 switch (attrib) {
721 case __DRI_IMAGE_ATTRIB_STRIDE:
722 *value = image->pitch;
723 return true;
724 case __DRI_IMAGE_ATTRIB_HANDLE:
725 *value = image->bo->gem_handle;
726 return true;
727 case __DRI_IMAGE_ATTRIB_NAME:
728 return !brw_bo_flink(image->bo, (uint32_t *) value);
729 case __DRI_IMAGE_ATTRIB_FORMAT:
730 *value = image->dri_format;
731 return true;
732 case __DRI_IMAGE_ATTRIB_WIDTH:
733 *value = image->width;
734 return true;
735 case __DRI_IMAGE_ATTRIB_HEIGHT:
736 *value = image->height;
737 return true;
738 case __DRI_IMAGE_ATTRIB_COMPONENTS:
739 if (image->planar_format == NULL)
740 return false;
741 *value = image->planar_format->components;
742 return true;
743 case __DRI_IMAGE_ATTRIB_FD:
744 return !brw_bo_gem_export_to_prime(image->bo, value);
745 case __DRI_IMAGE_ATTRIB_FOURCC:
746 return intel_lookup_fourcc(image->dri_format, value);
747 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
748 *value = 1;
749 return true;
750 case __DRI_IMAGE_ATTRIB_OFFSET:
751 *value = image->offset;
752 return true;
753 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
754 *value = (image->modifier & 0xffffffff);
755 return true;
756 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
757 *value = ((image->modifier >> 32) & 0xffffffff);
758 return true;
759
760 default:
761 return false;
762 }
763 }
764
765 static __DRIimage *
766 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
767 {
768 __DRIimage *image;
769
770 image = calloc(1, sizeof *image);
771 if (image == NULL)
772 return NULL;
773
774 brw_bo_reference(orig_image->bo);
775 image->bo = orig_image->bo;
776 image->internal_format = orig_image->internal_format;
777 image->planar_format = orig_image->planar_format;
778 image->dri_format = orig_image->dri_format;
779 image->format = orig_image->format;
780 image->modifier = orig_image->modifier;
781 image->offset = orig_image->offset;
782 image->width = orig_image->width;
783 image->height = orig_image->height;
784 image->pitch = orig_image->pitch;
785 image->tile_x = orig_image->tile_x;
786 image->tile_y = orig_image->tile_y;
787 image->has_depthstencil = orig_image->has_depthstencil;
788 image->data = loaderPrivate;
789
790 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
791 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
792
793 return image;
794 }
795
796 static GLboolean
797 intel_validate_usage(__DRIimage *image, unsigned int use)
798 {
799 if (use & __DRI_IMAGE_USE_CURSOR) {
800 if (image->width != 64 || image->height != 64)
801 return GL_FALSE;
802 }
803
804 return GL_TRUE;
805 }
806
807 static __DRIimage *
808 intel_create_image_from_names(__DRIscreen *dri_screen,
809 int width, int height, int fourcc,
810 int *names, int num_names,
811 int *strides, int *offsets,
812 void *loaderPrivate)
813 {
814 struct intel_image_format *f = NULL;
815 __DRIimage *image;
816 int i, index;
817
818 if (dri_screen == NULL || names == NULL || num_names != 1)
819 return NULL;
820
821 f = intel_image_format_lookup(fourcc);
822 if (f == NULL)
823 return NULL;
824
825 image = intel_create_image_from_name(dri_screen, width, height,
826 __DRI_IMAGE_FORMAT_NONE,
827 names[0], strides[0],
828 loaderPrivate);
829
830 if (image == NULL)
831 return NULL;
832
833 image->planar_format = f;
834 for (i = 0; i < f->nplanes; i++) {
835 index = f->planes[i].buffer_index;
836 image->offsets[index] = offsets[index];
837 image->strides[index] = strides[index];
838 }
839
840 return image;
841 }
842
843 static __DRIimage *
844 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
845 int width, int height, int fourcc,
846 uint64_t modifier, int *fds, int num_fds,
847 int *strides, int *offsets,
848 void *loaderPrivate)
849 {
850 struct intel_screen *screen = dri_screen->driverPrivate;
851 struct intel_image_format *f;
852 __DRIimage *image;
853 int i, index;
854 bool ok;
855
856 if (fds == NULL || num_fds < 1)
857 return NULL;
858
859 f = intel_image_format_lookup(fourcc);
860 if (f == NULL)
861 return NULL;
862
863 if (modifier != DRM_FORMAT_MOD_INVALID &&
864 !modifier_is_supported(&screen->devinfo, modifier))
865 return NULL;
866
867 if (f->nplanes == 1)
868 image = intel_allocate_image(screen, f->planes[0].dri_format,
869 loaderPrivate);
870 else
871 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
872 loaderPrivate);
873
874 if (image == NULL)
875 return NULL;
876
877 image->width = width;
878 image->height = height;
879 image->pitch = strides[0];
880
881 image->planar_format = f;
882
883 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
884 if (image->bo == NULL) {
885 free(image);
886 return NULL;
887 }
888
889 /* We only support all planes from the same bo.
890 * brw_bo_gem_create_from_prime() should return the same pointer for all
891 * fds received here */
892 for (i = 1; i < num_fds; i++) {
893 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
894 brw_bo_unreference(aux);
895 if (aux != image->bo) {
896 brw_bo_unreference(image->bo);
897 free(image);
898 return NULL;
899 }
900 }
901
902 if (modifier != DRM_FORMAT_MOD_INVALID)
903 image->modifier = modifier;
904 else
905 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
906
907 int size = 0;
908 for (i = 0; i < f->nplanes; i++) {
909 index = f->planes[i].buffer_index;
910 image->offsets[index] = offsets[index];
911 image->strides[index] = strides[index];
912
913 const struct isl_drm_modifier_info *mod_info =
914 isl_drm_modifier_get_info(image->modifier);
915
916 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
917
918 struct isl_surf surf;
919 ok = isl_surf_init(&screen->isl_dev, &surf,
920 .dim = ISL_SURF_DIM_2D,
921 .format = brw_isl_format_for_mesa_format(format),
922 .width = image->width >> f->planes[i].width_shift,
923 .height = image->height >> f->planes[i].height_shift,
924 .depth = 1,
925 .levels = 1,
926 .array_len = 1,
927 .samples = 1,
928 .row_pitch = strides[index],
929 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
930 ISL_SURF_USAGE_TEXTURE_BIT |
931 ISL_SURF_USAGE_STORAGE_BIT,
932 .tiling_flags = (1 << mod_info->tiling));
933 if (!ok) {
934 brw_bo_unreference(image->bo);
935 free(image);
936 return NULL;
937 }
938
939 const int end = offsets[index] + surf.size;
940 if (size < end)
941 size = end;
942 }
943
944 /* Check that the requested image actually fits within the BO. 'size'
945 * is already relative to the offsets, so we don't need to add that. */
946 if (image->bo->size == 0) {
947 image->bo->size = size;
948 } else if (size > image->bo->size) {
949 brw_bo_unreference(image->bo);
950 free(image);
951 return NULL;
952 }
953
954 if (f->nplanes == 1) {
955 image->offset = image->offsets[0];
956 intel_image_warn_if_unaligned(image, __func__);
957 }
958
959 return image;
960 }
961
962 static __DRIimage *
963 intel_create_image_from_fds(__DRIscreen *dri_screen,
964 int width, int height, int fourcc,
965 int *fds, int num_fds, int *strides, int *offsets,
966 void *loaderPrivate)
967 {
968 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
969 DRM_FORMAT_MOD_INVALID,
970 fds, num_fds, strides, offsets,
971 loaderPrivate);
972 }
973
974 static __DRIimage *
975 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
976 int width, int height,
977 int fourcc, uint64_t modifier,
978 int *fds, int num_fds,
979 int *strides, int *offsets,
980 enum __DRIYUVColorSpace yuv_color_space,
981 enum __DRISampleRange sample_range,
982 enum __DRIChromaSiting horizontal_siting,
983 enum __DRIChromaSiting vertical_siting,
984 unsigned *error,
985 void *loaderPrivate)
986 {
987 __DRIimage *image;
988 struct intel_image_format *f = intel_image_format_lookup(fourcc);
989
990 if (!f) {
991 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
992 return NULL;
993 }
994
995 image = intel_create_image_from_fds_common(dri_screen, width, height,
996 fourcc, modifier,
997 fds, num_fds, strides, offsets,
998 loaderPrivate);
999
1000 /*
1001 * Invalid parameters and any inconsistencies between are assumed to be
1002 * checked by the caller. Therefore besides unsupported formats one can fail
1003 * only in allocation.
1004 */
1005 if (!image) {
1006 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1007 return NULL;
1008 }
1009
1010 image->dma_buf_imported = true;
1011 image->yuv_color_space = yuv_color_space;
1012 image->sample_range = sample_range;
1013 image->horizontal_siting = horizontal_siting;
1014 image->vertical_siting = vertical_siting;
1015
1016 *error = __DRI_IMAGE_ERROR_SUCCESS;
1017 return image;
1018 }
1019
1020 static __DRIimage *
1021 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1022 int width, int height, int fourcc,
1023 int *fds, int num_fds,
1024 int *strides, int *offsets,
1025 enum __DRIYUVColorSpace yuv_color_space,
1026 enum __DRISampleRange sample_range,
1027 enum __DRIChromaSiting horizontal_siting,
1028 enum __DRIChromaSiting vertical_siting,
1029 unsigned *error,
1030 void *loaderPrivate)
1031 {
1032 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1033 fourcc, DRM_FORMAT_MOD_INVALID,
1034 fds, num_fds, strides, offsets,
1035 yuv_color_space,
1036 sample_range,
1037 horizontal_siting,
1038 vertical_siting,
1039 error,
1040 loaderPrivate);
1041 }
1042
1043 static GLboolean
1044 intel_query_dma_buf_formats(__DRIscreen *screen, int max,
1045 int *formats, int *count)
1046 {
1047 int i, j = 0;
1048
1049 if (max == 0) {
1050 *count = ARRAY_SIZE(intel_image_formats) - 1; /* not SARGB */
1051 return true;
1052 }
1053
1054 for (i = 0; i < (ARRAY_SIZE(intel_image_formats)) && j < max; i++) {
1055 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888)
1056 continue;
1057 formats[j++] = intel_image_formats[i].fourcc;
1058 }
1059
1060 *count = j;
1061 return true;
1062 }
1063
1064 static GLboolean
1065 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1066 uint64_t *modifiers,
1067 unsigned int *external_only,
1068 int *count)
1069 {
1070 struct intel_screen *screen = _screen->driverPrivate;
1071 struct intel_image_format *f;
1072 int num_mods = 0, i;
1073
1074 f = intel_image_format_lookup(fourcc);
1075 if (f == NULL)
1076 return false;
1077
1078 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1079 uint64_t modifier = supported_modifiers[i].modifier;
1080 if (!modifier_is_supported(&screen->devinfo, modifier))
1081 continue;
1082
1083 num_mods++;
1084 if (max == 0)
1085 continue;
1086
1087 modifiers[num_mods - 1] = modifier;
1088 if (num_mods >= max)
1089 break;
1090 }
1091
1092 if (external_only != NULL) {
1093 for (i = 0; i < num_mods && i < max; i++) {
1094 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1095 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1096 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV) {
1097 external_only[i] = GL_TRUE;
1098 }
1099 else {
1100 external_only[i] = GL_FALSE;
1101 }
1102 }
1103 }
1104
1105 *count = num_mods;
1106 return true;
1107 }
1108
1109 static __DRIimage *
1110 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1111 {
1112 int width, height, offset, stride, dri_format, index;
1113 struct intel_image_format *f;
1114 __DRIimage *image;
1115
1116 if (parent == NULL || parent->planar_format == NULL)
1117 return NULL;
1118
1119 f = parent->planar_format;
1120
1121 if (plane >= f->nplanes)
1122 return NULL;
1123
1124 width = parent->width >> f->planes[plane].width_shift;
1125 height = parent->height >> f->planes[plane].height_shift;
1126 dri_format = f->planes[plane].dri_format;
1127 index = f->planes[plane].buffer_index;
1128 offset = parent->offsets[index];
1129 stride = parent->strides[index];
1130
1131 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1132 if (image == NULL)
1133 return NULL;
1134
1135 if (offset + height * stride > parent->bo->size) {
1136 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
1137 free(image);
1138 return NULL;
1139 }
1140
1141 image->bo = parent->bo;
1142 brw_bo_reference(parent->bo);
1143 image->modifier = parent->modifier;
1144
1145 image->width = width;
1146 image->height = height;
1147 image->pitch = stride;
1148 image->offset = offset;
1149
1150 intel_image_warn_if_unaligned(image, __func__);
1151
1152 return image;
1153 }
1154
1155 static const __DRIimageExtension intelImageExtension = {
1156 .base = { __DRI_IMAGE, 15 },
1157
1158 .createImageFromName = intel_create_image_from_name,
1159 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1160 .destroyImage = intel_destroy_image,
1161 .createImage = intel_create_image,
1162 .queryImage = intel_query_image,
1163 .dupImage = intel_dup_image,
1164 .validateUsage = intel_validate_usage,
1165 .createImageFromNames = intel_create_image_from_names,
1166 .fromPlanar = intel_from_planar,
1167 .createImageFromTexture = intel_create_image_from_texture,
1168 .createImageFromFds = intel_create_image_from_fds,
1169 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1170 .blitImage = NULL,
1171 .getCapabilities = NULL,
1172 .mapImage = NULL,
1173 .unmapImage = NULL,
1174 .createImageWithModifiers = intel_create_image_with_modifiers,
1175 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1176 .queryDmaBufFormats = intel_query_dma_buf_formats,
1177 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1178 };
1179
1180 static uint64_t
1181 get_aperture_size(int fd)
1182 {
1183 struct drm_i915_gem_get_aperture aperture;
1184
1185 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1186 return 0;
1187
1188 return aperture.aper_size;
1189 }
1190
1191 static int
1192 brw_query_renderer_integer(__DRIscreen *dri_screen,
1193 int param, unsigned int *value)
1194 {
1195 const struct intel_screen *const screen =
1196 (struct intel_screen *) dri_screen->driverPrivate;
1197
1198 switch (param) {
1199 case __DRI2_RENDERER_VENDOR_ID:
1200 value[0] = 0x8086;
1201 return 0;
1202 case __DRI2_RENDERER_DEVICE_ID:
1203 value[0] = screen->deviceID;
1204 return 0;
1205 case __DRI2_RENDERER_ACCELERATED:
1206 value[0] = 1;
1207 return 0;
1208 case __DRI2_RENDERER_VIDEO_MEMORY: {
1209 /* Once a batch uses more than 75% of the maximum mappable size, we
1210 * assume that there's some fragmentation, and we start doing extra
1211 * flushing, etc. That's the big cliff apps will care about.
1212 */
1213 const unsigned gpu_mappable_megabytes =
1214 screen->aperture_threshold / (1024 * 1024);
1215
1216 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1217 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1218
1219 if (system_memory_pages <= 0 || system_page_size <= 0)
1220 return -1;
1221
1222 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1223 * (uint64_t) system_page_size;
1224
1225 const unsigned system_memory_megabytes =
1226 (unsigned) (system_memory_bytes / (1024 * 1024));
1227
1228 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1229 return 0;
1230 }
1231 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1232 value[0] = 1;
1233 return 0;
1234 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1235 value[0] = 1;
1236 return 0;
1237 default:
1238 return driQueryRendererIntegerCommon(dri_screen, param, value);
1239 }
1240
1241 return -1;
1242 }
1243
1244 static int
1245 brw_query_renderer_string(__DRIscreen *dri_screen,
1246 int param, const char **value)
1247 {
1248 const struct intel_screen *screen =
1249 (struct intel_screen *) dri_screen->driverPrivate;
1250
1251 switch (param) {
1252 case __DRI2_RENDERER_VENDOR_ID:
1253 value[0] = brw_vendor_string;
1254 return 0;
1255 case __DRI2_RENDERER_DEVICE_ID:
1256 value[0] = brw_get_renderer_string(screen);
1257 return 0;
1258 default:
1259 break;
1260 }
1261
1262 return -1;
1263 }
1264
1265 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1266 .base = { __DRI2_RENDERER_QUERY, 1 },
1267
1268 .queryInteger = brw_query_renderer_integer,
1269 .queryString = brw_query_renderer_string
1270 };
1271
1272 static const __DRIrobustnessExtension dri2Robustness = {
1273 .base = { __DRI2_ROBUSTNESS, 1 }
1274 };
1275
1276 static const __DRIextension *screenExtensions[] = {
1277 &intelTexBufferExtension.base,
1278 &intelFenceExtension.base,
1279 &intelFlushExtension.base,
1280 &intelImageExtension.base,
1281 &intelRendererQueryExtension.base,
1282 &dri2ConfigQueryExtension.base,
1283 &dri2NoErrorExtension.base,
1284 NULL
1285 };
1286
1287 static const __DRIextension *intelRobustScreenExtensions[] = {
1288 &intelTexBufferExtension.base,
1289 &intelFenceExtension.base,
1290 &intelFlushExtension.base,
1291 &intelImageExtension.base,
1292 &intelRendererQueryExtension.base,
1293 &dri2ConfigQueryExtension.base,
1294 &dri2Robustness.base,
1295 &dri2NoErrorExtension.base,
1296 NULL
1297 };
1298
1299 static int
1300 intel_get_param(struct intel_screen *screen, int param, int *value)
1301 {
1302 int ret = 0;
1303 struct drm_i915_getparam gp;
1304
1305 memset(&gp, 0, sizeof(gp));
1306 gp.param = param;
1307 gp.value = value;
1308
1309 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1310 ret = -errno;
1311 if (ret != -EINVAL)
1312 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1313 }
1314
1315 return ret;
1316 }
1317
1318 static bool
1319 intel_get_boolean(struct intel_screen *screen, int param)
1320 {
1321 int value = 0;
1322 return (intel_get_param(screen, param, &value) == 0) && value;
1323 }
1324
1325 static int
1326 intel_get_integer(struct intel_screen *screen, int param)
1327 {
1328 int value = -1;
1329
1330 if (intel_get_param(screen, param, &value) == 0)
1331 return value;
1332
1333 return -1;
1334 }
1335
1336 static void
1337 intelDestroyScreen(__DRIscreen * sPriv)
1338 {
1339 struct intel_screen *screen = sPriv->driverPrivate;
1340
1341 brw_bufmgr_destroy(screen->bufmgr);
1342 driDestroyOptionInfo(&screen->optionCache);
1343
1344 ralloc_free(screen);
1345 sPriv->driverPrivate = NULL;
1346 }
1347
1348
1349 /**
1350 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1351 *
1352 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1353 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1354 * this does not allocate GPU memory.
1355 */
1356 static GLboolean
1357 intelCreateBuffer(__DRIscreen *dri_screen,
1358 __DRIdrawable * driDrawPriv,
1359 const struct gl_config * mesaVis, GLboolean isPixmap)
1360 {
1361 struct intel_renderbuffer *rb;
1362 struct intel_screen *screen = (struct intel_screen *)
1363 dri_screen->driverPrivate;
1364 mesa_format rgbFormat;
1365 unsigned num_samples =
1366 intel_quantize_num_samples(screen, mesaVis->samples);
1367
1368 if (isPixmap)
1369 return false;
1370
1371 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1372 if (!fb)
1373 return false;
1374
1375 _mesa_initialize_window_framebuffer(fb, mesaVis);
1376
1377 if (screen->winsys_msaa_samples_override != -1) {
1378 num_samples = screen->winsys_msaa_samples_override;
1379 fb->Visual.samples = num_samples;
1380 }
1381
1382 if (mesaVis->redBits == 5) {
1383 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1384 : MESA_FORMAT_B5G6R5_UNORM;
1385 } else if (mesaVis->sRGBCapable) {
1386 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1387 : MESA_FORMAT_B8G8R8A8_SRGB;
1388 } else if (mesaVis->alphaBits == 0) {
1389 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1390 : MESA_FORMAT_B8G8R8X8_UNORM;
1391 } else {
1392 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1393 : MESA_FORMAT_B8G8R8A8_SRGB;
1394 fb->Visual.sRGBCapable = true;
1395 }
1396
1397 /* setup the hardware-based renderbuffers */
1398 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1399 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1400
1401 if (mesaVis->doubleBufferMode) {
1402 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1403 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1404 }
1405
1406 /*
1407 * Assert here that the gl_config has an expected depth/stencil bit
1408 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1409 * which constructs the advertised configs.)
1410 */
1411 if (mesaVis->depthBits == 24) {
1412 assert(mesaVis->stencilBits == 8);
1413
1414 if (screen->devinfo.has_hiz_and_separate_stencil) {
1415 rb = intel_create_private_renderbuffer(screen,
1416 MESA_FORMAT_Z24_UNORM_X8_UINT,
1417 num_samples);
1418 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1419 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1420 num_samples);
1421 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1422 } else {
1423 /*
1424 * Use combined depth/stencil. Note that the renderbuffer is
1425 * attached to two attachment points.
1426 */
1427 rb = intel_create_private_renderbuffer(screen,
1428 MESA_FORMAT_Z24_UNORM_S8_UINT,
1429 num_samples);
1430 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1431 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1432 }
1433 }
1434 else if (mesaVis->depthBits == 16) {
1435 assert(mesaVis->stencilBits == 0);
1436 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1437 num_samples);
1438 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1439 }
1440 else {
1441 assert(mesaVis->depthBits == 0);
1442 assert(mesaVis->stencilBits == 0);
1443 }
1444
1445 /* now add any/all software-based renderbuffers we may need */
1446 _swrast_add_soft_renderbuffers(fb,
1447 false, /* never sw color */
1448 false, /* never sw depth */
1449 false, /* never sw stencil */
1450 mesaVis->accumRedBits > 0,
1451 false, /* never sw alpha */
1452 false /* never sw aux */ );
1453 driDrawPriv->driverPrivate = fb;
1454
1455 return true;
1456 }
1457
1458 static void
1459 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1460 {
1461 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1462
1463 _mesa_reference_framebuffer(&fb, NULL);
1464 }
1465
1466 static void
1467 intel_detect_sseu(struct intel_screen *screen)
1468 {
1469 assert(screen->devinfo.gen >= 8);
1470 int ret;
1471
1472 screen->subslice_total = -1;
1473 screen->eu_total = -1;
1474
1475 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1476 &screen->subslice_total);
1477 if (ret < 0 && ret != -EINVAL)
1478 goto err_out;
1479
1480 ret = intel_get_param(screen,
1481 I915_PARAM_EU_TOTAL, &screen->eu_total);
1482 if (ret < 0 && ret != -EINVAL)
1483 goto err_out;
1484
1485 /* Without this information, we cannot get the right Braswell brandstrings,
1486 * and we have to use conservative numbers for GPGPU on many platforms, but
1487 * otherwise, things will just work.
1488 */
1489 if (screen->subslice_total < 1 || screen->eu_total < 1)
1490 _mesa_warning(NULL,
1491 "Kernel 4.1 required to properly query GPU properties.\n");
1492
1493 return;
1494
1495 err_out:
1496 screen->subslice_total = -1;
1497 screen->eu_total = -1;
1498 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1499 }
1500
1501 static bool
1502 intel_init_bufmgr(struct intel_screen *screen)
1503 {
1504 __DRIscreen *dri_screen = screen->driScrnPriv;
1505
1506 if (getenv("INTEL_NO_HW") != NULL)
1507 screen->no_hw = true;
1508
1509 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd, BATCH_SZ);
1510 if (screen->bufmgr == NULL) {
1511 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1512 __func__, __LINE__);
1513 return false;
1514 }
1515
1516 if (!intel_get_boolean(screen, I915_PARAM_HAS_WAIT_TIMEOUT)) {
1517 fprintf(stderr, "[%s: %u] Kernel 3.6 required.\n", __func__, __LINE__);
1518 return false;
1519 }
1520
1521 return true;
1522 }
1523
1524 static bool
1525 intel_detect_swizzling(struct intel_screen *screen)
1526 {
1527 struct brw_bo *buffer;
1528 unsigned flags = 0;
1529 uint32_t aligned_pitch;
1530 uint32_t tiling = I915_TILING_X;
1531 uint32_t swizzle_mode = 0;
1532
1533 buffer = brw_bo_alloc_tiled_2d(screen->bufmgr, "swizzle test",
1534 64, 64, 4, tiling, &aligned_pitch, flags);
1535 if (buffer == NULL)
1536 return false;
1537
1538 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1539 brw_bo_unreference(buffer);
1540
1541 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1542 return false;
1543 else
1544 return true;
1545 }
1546
1547 static int
1548 intel_detect_timestamp(struct intel_screen *screen)
1549 {
1550 uint64_t dummy = 0, last = 0;
1551 int upper, lower, loops;
1552
1553 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1554 * TIMESTAMP register being shifted and the low 32bits always zero.
1555 *
1556 * More recent kernels offer an interface to read the full 36bits
1557 * everywhere.
1558 */
1559 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1560 return 3;
1561
1562 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1563 * upper 32bits for a rapidly changing timestamp.
1564 */
1565 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1566 return 0;
1567
1568 upper = lower = 0;
1569 for (loops = 0; loops < 10; loops++) {
1570 /* The TIMESTAMP should change every 80ns, so several round trips
1571 * through the kernel should be enough to advance it.
1572 */
1573 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1574 return 0;
1575
1576 upper += (dummy >> 32) != (last >> 32);
1577 if (upper > 1) /* beware 32bit counter overflow */
1578 return 2; /* upper dword holds the low 32bits of the timestamp */
1579
1580 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1581 if (lower > 1)
1582 return 1; /* timestamp is unshifted */
1583
1584 last = dummy;
1585 }
1586
1587 /* No advancement? No timestamp! */
1588 return 0;
1589 }
1590
1591 /**
1592 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1593 *
1594 * Some combinations of hardware and kernel versions allow this feature,
1595 * while others don't. Instead of trying to enumerate every case, just
1596 * try and write a register and see if works.
1597 */
1598 static bool
1599 intel_detect_pipelined_register(struct intel_screen *screen,
1600 int reg, uint32_t expected_value, bool reset)
1601 {
1602 if (screen->no_hw)
1603 return false;
1604
1605 struct brw_bo *results, *bo;
1606 uint32_t *batch;
1607 uint32_t offset = 0;
1608 void *map;
1609 bool success = false;
1610
1611 /* Create a zero'ed temporary buffer for reading our results */
1612 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1613 if (results == NULL)
1614 goto err;
1615
1616 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1617 if (bo == NULL)
1618 goto err_results;
1619
1620 map = brw_bo_map(NULL, bo, MAP_WRITE);
1621 if (!map)
1622 goto err_batch;
1623
1624 batch = map;
1625
1626 /* Write the register. */
1627 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1628 *batch++ = reg;
1629 *batch++ = expected_value;
1630
1631 /* Save the register's value back to the buffer. */
1632 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1633 *batch++ = reg;
1634 struct drm_i915_gem_relocation_entry reloc = {
1635 .offset = (char *) batch - (char *) map,
1636 .delta = offset * sizeof(uint32_t),
1637 .target_handle = results->gem_handle,
1638 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1639 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1640 };
1641 *batch++ = reloc.presumed_offset + reloc.delta;
1642
1643 /* And afterwards clear the register */
1644 if (reset) {
1645 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1646 *batch++ = reg;
1647 *batch++ = 0;
1648 }
1649
1650 *batch++ = MI_BATCH_BUFFER_END;
1651
1652 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1653 {
1654 .handle = results->gem_handle,
1655 },
1656 {
1657 .handle = bo->gem_handle,
1658 .relocation_count = 1,
1659 .relocs_ptr = (uintptr_t) &reloc,
1660 }
1661 };
1662
1663 struct drm_i915_gem_execbuffer2 execbuf = {
1664 .buffers_ptr = (uintptr_t) exec_objects,
1665 .buffer_count = 2,
1666 .batch_len = ALIGN((char *) batch - (char *) map, 8),
1667 .flags = I915_EXEC_RENDER,
1668 };
1669
1670 /* Don't bother with error checking - if the execbuf fails, the
1671 * value won't be written and we'll just report that there's no access.
1672 */
1673 __DRIscreen *dri_screen = screen->driScrnPriv;
1674 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1675
1676 /* Check whether the value got written. */
1677 void *results_map = brw_bo_map(NULL, results, MAP_READ);
1678 if (results_map) {
1679 success = *((uint32_t *)results_map + offset) == expected_value;
1680 brw_bo_unmap(results);
1681 }
1682
1683 err_batch:
1684 brw_bo_unreference(bo);
1685 err_results:
1686 brw_bo_unreference(results);
1687 err:
1688 return success;
1689 }
1690
1691 static bool
1692 intel_detect_pipelined_so(struct intel_screen *screen)
1693 {
1694 const struct gen_device_info *devinfo = &screen->devinfo;
1695
1696 /* Supposedly, Broadwell just works. */
1697 if (devinfo->gen >= 8)
1698 return true;
1699
1700 if (devinfo->gen <= 6)
1701 return false;
1702
1703 /* See the big explanation about command parser versions below */
1704 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1705 return true;
1706
1707 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1708 * statistics registers), and we already reset it to zero before using it.
1709 */
1710 return intel_detect_pipelined_register(screen,
1711 GEN7_SO_WRITE_OFFSET(0),
1712 0x1337d0d0,
1713 false);
1714 }
1715
1716 /**
1717 * Return array of MSAA modes supported by the hardware. The array is
1718 * zero-terminated and sorted in decreasing order.
1719 */
1720 const int*
1721 intel_supported_msaa_modes(const struct intel_screen *screen)
1722 {
1723 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1724 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1725 static const int gen7_modes[] = {8, 4, 0, -1};
1726 static const int gen6_modes[] = {4, 0, -1};
1727 static const int gen4_modes[] = {0, -1};
1728
1729 if (screen->devinfo.gen >= 9) {
1730 return gen9_modes;
1731 } else if (screen->devinfo.gen >= 8) {
1732 return gen8_modes;
1733 } else if (screen->devinfo.gen >= 7) {
1734 return gen7_modes;
1735 } else if (screen->devinfo.gen == 6) {
1736 return gen6_modes;
1737 } else {
1738 return gen4_modes;
1739 }
1740 }
1741
1742 static __DRIconfig**
1743 intel_screen_make_configs(__DRIscreen *dri_screen)
1744 {
1745 static const mesa_format formats[] = {
1746 MESA_FORMAT_B5G6R5_UNORM,
1747 MESA_FORMAT_B8G8R8A8_UNORM,
1748 MESA_FORMAT_B8G8R8X8_UNORM,
1749
1750 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
1751 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
1752 * server may disagree on which format the GLXFBConfig represents,
1753 * resulting in swapped color channels.
1754 *
1755 * The problem, as of 2017-05-30:
1756 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
1757 * order and chooses the first __DRIconfig with the expected channel
1758 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
1759 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
1760 *
1761 * EGL does not suffer from this problem. It correctly compares the
1762 * channel masks when matching EGLConfig to __DRIconfig.
1763 */
1764
1765 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
1766 MESA_FORMAT_R8G8B8A8_UNORM,
1767
1768 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
1769 MESA_FORMAT_R8G8B8X8_UNORM,
1770 };
1771
1772 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1773 static const GLenum back_buffer_modes[] = {
1774 GLX_SWAP_UNDEFINED_OML, GLX_NONE,
1775 };
1776
1777 static const uint8_t singlesample_samples[1] = {0};
1778 static const uint8_t multisample_samples[2] = {4, 8};
1779
1780 struct intel_screen *screen = dri_screen->driverPrivate;
1781 const struct gen_device_info *devinfo = &screen->devinfo;
1782 uint8_t depth_bits[4], stencil_bits[4];
1783 __DRIconfig **configs = NULL;
1784
1785 /* Generate singlesample configs without accumulation buffer. */
1786 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1787 __DRIconfig **new_configs;
1788 int num_depth_stencil_bits = 2;
1789
1790 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1791 * buffer that has a different number of bits per pixel than the color
1792 * buffer, gen >= 6 supports this.
1793 */
1794 depth_bits[0] = 0;
1795 stencil_bits[0] = 0;
1796
1797 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1798 depth_bits[1] = 16;
1799 stencil_bits[1] = 0;
1800 if (devinfo->gen >= 6) {
1801 depth_bits[2] = 24;
1802 stencil_bits[2] = 8;
1803 num_depth_stencil_bits = 3;
1804 }
1805 } else {
1806 depth_bits[1] = 24;
1807 stencil_bits[1] = 8;
1808 }
1809
1810 new_configs = driCreateConfigs(formats[i],
1811 depth_bits,
1812 stencil_bits,
1813 num_depth_stencil_bits,
1814 back_buffer_modes, 2,
1815 singlesample_samples, 1,
1816 false, false);
1817 configs = driConcatConfigs(configs, new_configs);
1818 }
1819
1820 /* Generate the minimum possible set of configs that include an
1821 * accumulation buffer.
1822 */
1823 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1824 __DRIconfig **new_configs;
1825
1826 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1827 depth_bits[0] = 16;
1828 stencil_bits[0] = 0;
1829 } else {
1830 depth_bits[0] = 24;
1831 stencil_bits[0] = 8;
1832 }
1833
1834 new_configs = driCreateConfigs(formats[i],
1835 depth_bits, stencil_bits, 1,
1836 back_buffer_modes, 1,
1837 singlesample_samples, 1,
1838 true, false);
1839 configs = driConcatConfigs(configs, new_configs);
1840 }
1841
1842 /* Generate multisample configs.
1843 *
1844 * This loop breaks early, and hence is a no-op, on gen < 6.
1845 *
1846 * Multisample configs must follow the singlesample configs in order to
1847 * work around an X server bug present in 1.12. The X server chooses to
1848 * associate the first listed RGBA888-Z24S8 config, regardless of its
1849 * sample count, with the 32-bit depth visual used for compositing.
1850 *
1851 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1852 * supported. Singlebuffer configs are not supported because no one wants
1853 * them.
1854 */
1855 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1856 if (devinfo->gen < 6)
1857 break;
1858
1859 __DRIconfig **new_configs;
1860 const int num_depth_stencil_bits = 2;
1861 int num_msaa_modes = 0;
1862
1863 depth_bits[0] = 0;
1864 stencil_bits[0] = 0;
1865
1866 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1867 depth_bits[1] = 16;
1868 stencil_bits[1] = 0;
1869 } else {
1870 depth_bits[1] = 24;
1871 stencil_bits[1] = 8;
1872 }
1873
1874 if (devinfo->gen >= 7)
1875 num_msaa_modes = 2;
1876 else if (devinfo->gen == 6)
1877 num_msaa_modes = 1;
1878
1879 new_configs = driCreateConfigs(formats[i],
1880 depth_bits,
1881 stencil_bits,
1882 num_depth_stencil_bits,
1883 back_buffer_modes, 1,
1884 multisample_samples,
1885 num_msaa_modes,
1886 false, false);
1887 configs = driConcatConfigs(configs, new_configs);
1888 }
1889
1890 if (configs == NULL) {
1891 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1892 __LINE__);
1893 return NULL;
1894 }
1895
1896 return configs;
1897 }
1898
1899 static void
1900 set_max_gl_versions(struct intel_screen *screen)
1901 {
1902 __DRIscreen *dri_screen = screen->driScrnPriv;
1903 const bool has_astc = screen->devinfo.gen >= 9;
1904
1905 switch (screen->devinfo.gen) {
1906 case 10:
1907 case 9:
1908 case 8:
1909 dri_screen->max_gl_core_version = 45;
1910 dri_screen->max_gl_compat_version = 30;
1911 dri_screen->max_gl_es1_version = 11;
1912 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1913 break;
1914 case 7:
1915 dri_screen->max_gl_core_version = 33;
1916 if (can_do_pipelined_register_writes(screen)) {
1917 dri_screen->max_gl_core_version = 42;
1918 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
1919 dri_screen->max_gl_core_version = 43;
1920 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
1921 dri_screen->max_gl_core_version = 45;
1922 }
1923 dri_screen->max_gl_compat_version = 30;
1924 dri_screen->max_gl_es1_version = 11;
1925 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1926 break;
1927 case 6:
1928 dri_screen->max_gl_core_version = 33;
1929 dri_screen->max_gl_compat_version = 30;
1930 dri_screen->max_gl_es1_version = 11;
1931 dri_screen->max_gl_es2_version = 30;
1932 break;
1933 case 5:
1934 case 4:
1935 dri_screen->max_gl_core_version = 0;
1936 dri_screen->max_gl_compat_version = 21;
1937 dri_screen->max_gl_es1_version = 11;
1938 dri_screen->max_gl_es2_version = 20;
1939 break;
1940 default:
1941 unreachable("unrecognized intel_screen::gen");
1942 }
1943 }
1944
1945 /**
1946 * Return the revision (generally the revid field of the PCI header) of the
1947 * graphics device.
1948 *
1949 * XXX: This function is useful to keep around even if it is not currently in
1950 * use. It is necessary for new platforms and revision specific workarounds or
1951 * features. Please don't remove it so that we know it at least continues to
1952 * build.
1953 */
1954 static __attribute__((__unused__)) int
1955 brw_get_revision(int fd)
1956 {
1957 struct drm_i915_getparam gp;
1958 int revision;
1959 int ret;
1960
1961 memset(&gp, 0, sizeof(gp));
1962 gp.param = I915_PARAM_REVISION;
1963 gp.value = &revision;
1964
1965 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1966 if (ret)
1967 revision = -1;
1968
1969 return revision;
1970 }
1971
1972 static void
1973 shader_debug_log_mesa(void *data, const char *fmt, ...)
1974 {
1975 struct brw_context *brw = (struct brw_context *)data;
1976 va_list args;
1977
1978 va_start(args, fmt);
1979 GLuint msg_id = 0;
1980 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1981 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1982 MESA_DEBUG_TYPE_OTHER,
1983 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1984 va_end(args);
1985 }
1986
1987 static void
1988 shader_perf_log_mesa(void *data, const char *fmt, ...)
1989 {
1990 struct brw_context *brw = (struct brw_context *)data;
1991
1992 va_list args;
1993 va_start(args, fmt);
1994
1995 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1996 va_list args_copy;
1997 va_copy(args_copy, args);
1998 vfprintf(stderr, fmt, args_copy);
1999 va_end(args_copy);
2000 }
2001
2002 if (brw->perf_debug) {
2003 GLuint msg_id = 0;
2004 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2005 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2006 MESA_DEBUG_TYPE_PERFORMANCE,
2007 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2008 }
2009 va_end(args);
2010 }
2011
2012 static int
2013 parse_devid_override(const char *devid_override)
2014 {
2015 static const struct {
2016 const char *name;
2017 int pci_id;
2018 } name_map[] = {
2019 { "brw", 0x2a02 },
2020 { "g4x", 0x2a42 },
2021 { "ilk", 0x0042 },
2022 { "snb", 0x0126 },
2023 { "ivb", 0x016a },
2024 { "hsw", 0x0d2e },
2025 { "byt", 0x0f33 },
2026 { "bdw", 0x162e },
2027 { "skl", 0x1912 },
2028 { "kbl", 0x5912 },
2029 { "cnl", 0x5a52 },
2030 };
2031
2032 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
2033 if (!strcmp(name_map[i].name, devid_override))
2034 return name_map[i].pci_id;
2035 }
2036
2037 return strtol(devid_override, NULL, 0);
2038 }
2039
2040 /**
2041 * Get the PCI ID for the device. This can be overridden by setting the
2042 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
2043 *
2044 * Returns -1 on ioctl failure.
2045 */
2046 static int
2047 get_pci_device_id(struct intel_screen *screen)
2048 {
2049 if (geteuid() == getuid()) {
2050 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
2051 if (devid_override) {
2052 screen->no_hw = true;
2053 return parse_devid_override(devid_override);
2054 }
2055 }
2056
2057 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
2058 }
2059
2060 /**
2061 * This is the driver specific part of the createNewScreen entry point.
2062 * Called when using DRI2.
2063 *
2064 * \return the struct gl_config supported by this driver
2065 */
2066 static const
2067 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2068 {
2069 struct intel_screen *screen;
2070
2071 if (dri_screen->image.loader) {
2072 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2073 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2074 fprintf(stderr,
2075 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2076 "support required\n");
2077 return NULL;
2078 }
2079
2080 /* Allocate the private area */
2081 screen = rzalloc(NULL, struct intel_screen);
2082 if (!screen) {
2083 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2084 return NULL;
2085 }
2086 /* parse information in __driConfigOptions */
2087 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
2088
2089 screen->driScrnPriv = dri_screen;
2090 dri_screen->driverPrivate = (void *) screen;
2091
2092 screen->deviceID = get_pci_device_id(screen);
2093
2094 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
2095 return NULL;
2096
2097 if (!intel_init_bufmgr(screen))
2098 return NULL;
2099
2100 const struct gen_device_info *devinfo = &screen->devinfo;
2101
2102 brw_process_intel_debug_variable();
2103
2104 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2105 fprintf(stderr,
2106 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2107 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2108 }
2109
2110 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2111 /* Theorectically unlimited! At least for individual objects...
2112 *
2113 * Currently the entire (global) address space for all GTT maps is
2114 * limited to 64bits. That is all objects on the system that are
2115 * setup for GTT mmapping must fit within 64bits. An attempt to use
2116 * one that exceeds the limit with fail in brw_bo_map_gtt().
2117 *
2118 * Long before we hit that limit, we will be practically limited by
2119 * that any single object must fit in physical memory (RAM). The upper
2120 * limit on the CPU's address space is currently 48bits (Skylake), of
2121 * which only 39bits can be physical memory. (The GPU itself also has
2122 * a 48bit addressable virtual space.) We can fit over 32 million
2123 * objects of the current maximum allocable size before running out
2124 * of mmap space.
2125 */
2126 screen->max_gtt_map_object_size = UINT64_MAX;
2127 } else {
2128 /* Estimate the size of the mappable aperture into the GTT. There's an
2129 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2130 * It turns out it's basically always 256MB, though some ancient hardware
2131 * was smaller.
2132 */
2133 uint32_t gtt_size = 256 * 1024 * 1024;
2134
2135 /* We don't want to map two objects such that a memcpy between them would
2136 * just fault one mapping in and then the other over and over forever. So
2137 * we would need to divide the GTT size by 2. Additionally, some GTT is
2138 * taken up by things like the framebuffer and the ringbuffer and such, so
2139 * be more conservative.
2140 */
2141 screen->max_gtt_map_object_size = gtt_size / 4;
2142 }
2143
2144 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
2145
2146 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2147 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2148
2149 isl_device_init(&screen->isl_dev, &screen->devinfo,
2150 screen->hw_has_swizzling);
2151
2152 /* GENs prior to 8 do not support EU/Subslice info */
2153 if (devinfo->gen >= 8) {
2154 intel_detect_sseu(screen);
2155 } else if (devinfo->gen == 7) {
2156 screen->subslice_total = 1 << (devinfo->gt - 1);
2157 }
2158
2159 /* Gen7-7.5 kernel requirements / command parser saga:
2160 *
2161 * - pre-v3.16:
2162 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2163 *
2164 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2165 * all batches secure, allowing them to use any feature with no checking.
2166 * This is effectively equivalent to a command parser version of
2167 * \infinity - everything is possible.
2168 *
2169 * The command parser does not exist, and querying the version will
2170 * return -EINVAL.
2171 *
2172 * - v3.16:
2173 * The kernel enables the command parser by default, for systems with
2174 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2175 * hardware checker is still enabled, so Haswell and Baytrail cannot
2176 * do anything.
2177 *
2178 * Ivybridge goes from "everything is possible" to "only what the
2179 * command parser allows" (if the user boots with i915.cmd_parser=0,
2180 * then everything is possible again). We can only safely use features
2181 * allowed by the supported command parser version.
2182 *
2183 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2184 * implemented by the kernel, even if it's turned off. So, checking
2185 * for version > 0 does not mean that you can write registers. We have
2186 * to try it and see. The version does, however, indicate the age of
2187 * the kernel.
2188 *
2189 * Instead of matching the hardware checker's behavior of converting
2190 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2191 * -EINVAL, making it dangerous to try and use privileged features.
2192 *
2193 * Effective command parser versions:
2194 * - Haswell: 0 (reporting 1, writes don't work)
2195 * - Baytrail: 0 (reporting 1, writes don't work)
2196 * - Ivybridge: 1 (enabled) or infinite (disabled)
2197 *
2198 * - v3.17:
2199 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2200 * effectively version 1 (enabled) or infinite (disabled).
2201 *
2202 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2203 * Command parser v2 supports predicate writes.
2204 *
2205 * - Haswell: 0 (reporting 1, writes don't work)
2206 * - Baytrail: 2 (enabled) or infinite (disabled)
2207 * - Ivybridge: 2 (enabled) or infinite (disabled)
2208 *
2209 * So version >= 2 is enough to know that Ivybridge and Baytrail
2210 * will work. Haswell still can't do anything.
2211 *
2212 * - v4.0: Version 3 happened. Largely not relevant.
2213 *
2214 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2215 * L3 config registers are properly saved and restored as part
2216 * of the hardware context. We can approximately detect this point
2217 * in time by checking if I915_PARAM_REVISION is recognized - it
2218 * landed in a later commit, but in the same release cycle.
2219 *
2220 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2221 * Command parser finally gains secure batch promotion. On Haswell,
2222 * the hardware checker gets disabled, which finally allows it to do
2223 * privileged commands.
2224 *
2225 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2226 * - Haswell: 3 (enabled) or 0 (disabled)
2227 * - Baytrail: 3 (enabled) or infinite (disabled)
2228 * - Ivybridge: 3 (enabled) or infinite (disabled)
2229 *
2230 * Unfortunately, detecting this point in time is tricky, because
2231 * no version bump happened when this important change occurred.
2232 * On Haswell, if we can write any register, then the kernel is at
2233 * least this new, and we can start trusting the version number.
2234 *
2235 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2236 * Command parser reaches version 4, allowing access to Haswell
2237 * atomic scratch and chicken3 registers. If version >= 4, we know
2238 * the kernel is new enough to support privileged features on all
2239 * hardware. However, the user might have disabled it...and the
2240 * kernel will still report version 4. So we still have to guess
2241 * and check.
2242 *
2243 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2244 * Command parser v5 whitelists indirect compute shader dispatch
2245 * registers, needed for OpenGL 4.3 and later.
2246 *
2247 * - v4.8:
2248 * Command parser v7 lets us use MI_MATH on Haswell.
2249 *
2250 * Additionally, the kernel begins reporting version 0 when
2251 * the command parser is disabled, allowing us to skip the
2252 * guess-and-check step on Haswell. Unfortunately, this also
2253 * means that we can no longer use it as an indicator of the
2254 * age of the kernel.
2255 */
2256 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2257 &screen->cmd_parser_version) < 0) {
2258 /* Command parser does not exist - getparam is unrecognized */
2259 screen->cmd_parser_version = 0;
2260 }
2261
2262 /* Kernel 4.13 retuired for exec object capture */
2263 #ifndef I915_PARAM_HAS_EXEC_CAPTURE
2264 #define I915_PARAM_HAS_EXEC_CAPTURE 45
2265 #endif
2266 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2267 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2268 }
2269
2270 if (!intel_detect_pipelined_so(screen)) {
2271 /* We can't do anything, so the effective version is 0. */
2272 screen->cmd_parser_version = 0;
2273 } else {
2274 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2275 }
2276
2277 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2278 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2279
2280 /* Haswell requires command parser version 4 in order to have L3
2281 * atomic scratch1 and chicken3 bits
2282 */
2283 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2284 screen->kernel_features |=
2285 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2286 }
2287
2288 /* Haswell requires command parser version 6 in order to write to the
2289 * MI_MATH GPR registers, and version 7 in order to use
2290 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2291 */
2292 if (devinfo->gen >= 8 ||
2293 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2294 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2295 }
2296
2297 /* Gen7 needs at least command parser version 5 to support compute */
2298 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2299 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2300
2301 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2302 if (force_msaa) {
2303 screen->winsys_msaa_samples_override =
2304 intel_quantize_num_samples(screen, atoi(force_msaa));
2305 printf("Forcing winsys sample count to %d\n",
2306 screen->winsys_msaa_samples_override);
2307 } else {
2308 screen->winsys_msaa_samples_override = -1;
2309 }
2310
2311 set_max_gl_versions(screen);
2312
2313 /* Notification of GPU resets requires hardware contexts and a kernel new
2314 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2315 * supported, calling it with a context of 0 will either generate EPERM or
2316 * no error. If the ioctl is not supported, it always generate EINVAL.
2317 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2318 * extension to the loader.
2319 *
2320 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2321 */
2322 if (devinfo->gen >= 6) {
2323 struct drm_i915_reset_stats stats;
2324 memset(&stats, 0, sizeof(stats));
2325
2326 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2327
2328 screen->has_context_reset_notification =
2329 (ret != -1 || errno != EINVAL);
2330 }
2331
2332 dri_screen->extensions = !screen->has_context_reset_notification
2333 ? screenExtensions : intelRobustScreenExtensions;
2334
2335 screen->compiler = brw_compiler_create(screen, devinfo);
2336 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2337 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2338 screen->compiler->constant_buffer_0_is_relative = devinfo->gen < 8;
2339 screen->program_id = 1;
2340
2341 screen->has_exec_fence =
2342 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2343
2344 intel_screen_init_surface_formats(screen);
2345
2346 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2347 }
2348
2349 struct intel_buffer {
2350 __DRIbuffer base;
2351 struct brw_bo *bo;
2352 };
2353
2354 static __DRIbuffer *
2355 intelAllocateBuffer(__DRIscreen *dri_screen,
2356 unsigned attachment, unsigned format,
2357 int width, int height)
2358 {
2359 struct intel_buffer *intelBuffer;
2360 struct intel_screen *screen = dri_screen->driverPrivate;
2361
2362 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2363 attachment == __DRI_BUFFER_BACK_LEFT);
2364
2365 intelBuffer = calloc(1, sizeof *intelBuffer);
2366 if (intelBuffer == NULL)
2367 return NULL;
2368
2369 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2370 * supports Y tiled and compressed buffers, but there is no way to plumb that
2371 * through to here. */
2372 uint32_t pitch;
2373 int cpp = format / 8;
2374 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2375 "intelAllocateBuffer",
2376 width,
2377 height,
2378 cpp,
2379 I915_TILING_X, &pitch,
2380 BO_ALLOC_FOR_RENDER);
2381
2382 if (intelBuffer->bo == NULL) {
2383 free(intelBuffer);
2384 return NULL;
2385 }
2386
2387 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2388
2389 intelBuffer->base.attachment = attachment;
2390 intelBuffer->base.cpp = cpp;
2391 intelBuffer->base.pitch = pitch;
2392
2393 return &intelBuffer->base;
2394 }
2395
2396 static void
2397 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2398 {
2399 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2400
2401 brw_bo_unreference(intelBuffer->bo);
2402 free(intelBuffer);
2403 }
2404
2405 static const struct __DriverAPIRec brw_driver_api = {
2406 .InitScreen = intelInitScreen2,
2407 .DestroyScreen = intelDestroyScreen,
2408 .CreateContext = brwCreateContext,
2409 .DestroyContext = intelDestroyContext,
2410 .CreateBuffer = intelCreateBuffer,
2411 .DestroyBuffer = intelDestroyBuffer,
2412 .MakeCurrent = intelMakeCurrent,
2413 .UnbindContext = intelUnbindContext,
2414 .AllocateBuffer = intelAllocateBuffer,
2415 .ReleaseBuffer = intelReleaseBuffer
2416 };
2417
2418 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2419 .base = { __DRI_DRIVER_VTABLE, 1 },
2420 .vtable = &brw_driver_api,
2421 };
2422
2423 static const __DRIextension *brw_driver_extensions[] = {
2424 &driCoreExtension.base,
2425 &driImageDriverExtension.base,
2426 &driDRI2Extension.base,
2427 &brw_vtable.base,
2428 &brw_config_options.base,
2429 NULL
2430 };
2431
2432 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2433 {
2434 globalDriverAPI = &brw_driver_api;
2435
2436 return brw_driver_extensions;
2437 }