mesa: Return ZeroVec/dummyReg instead of NULL pointer
[mesa.git] / src / mesa / program / prog_execute.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_execute.c
27 * Software interpreter for vertex/fragment programs.
28 * \author Brian Paul
29 */
30
31 /*
32 * NOTE: we do everything in single-precision floating point; we don't
33 * currently observe the single/half/fixed-precision qualifiers.
34 *
35 */
36
37
38 #include "main/glheader.h"
39 #include "main/colormac.h"
40 #include "main/macros.h"
41 #include "prog_execute.h"
42 #include "prog_instruction.h"
43 #include "prog_parameter.h"
44 #include "prog_print.h"
45 #include "prog_noise.h"
46
47
48 /* debug predicate */
49 #define DEBUG_PROG 0
50
51
52 /**
53 * Set x to positive or negative infinity.
54 */
55 #if defined(USE_IEEE) || defined(_WIN32)
56 #define SET_POS_INFINITY(x) \
57 do { \
58 fi_type fi; \
59 fi.i = 0x7F800000; \
60 x = fi.f; \
61 } while (0)
62 #define SET_NEG_INFINITY(x) \
63 do { \
64 fi_type fi; \
65 fi.i = 0xFF800000; \
66 x = fi.f; \
67 } while (0)
68 #else
69 #define SET_POS_INFINITY(x) x = (GLfloat) HUGE_VAL
70 #define SET_NEG_INFINITY(x) x = (GLfloat) -HUGE_VAL
71 #endif
72
73 #define SET_FLOAT_BITS(x, bits) ((fi_type *) (void *) &(x))->i = bits
74
75
76 static const GLfloat ZeroVec[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
77
78
79 /**
80 * Return a pointer to the 4-element float vector specified by the given
81 * source register.
82 */
83 static inline const GLfloat *
84 get_src_register_pointer(const struct prog_src_register *source,
85 const struct gl_program_machine *machine)
86 {
87 const struct gl_program *prog = machine->CurProgram;
88 GLint reg = source->Index;
89
90 if (source->RelAddr) {
91 /* add address register value to src index/offset */
92 reg += machine->AddressReg[0][0];
93 if (reg < 0) {
94 return ZeroVec;
95 }
96 }
97
98 switch (source->File) {
99 case PROGRAM_TEMPORARY:
100 if (reg >= MAX_PROGRAM_TEMPS)
101 return ZeroVec;
102 return machine->Temporaries[reg];
103
104 case PROGRAM_INPUT:
105 if (prog->Target == GL_VERTEX_PROGRAM_ARB) {
106 if (reg >= VERT_ATTRIB_MAX)
107 return ZeroVec;
108 return machine->VertAttribs[reg];
109 }
110 else {
111 if (reg >= VARYING_SLOT_MAX)
112 return ZeroVec;
113 return machine->Attribs[reg][machine->CurElement];
114 }
115
116 case PROGRAM_OUTPUT:
117 if (reg >= MAX_PROGRAM_OUTPUTS)
118 return ZeroVec;
119 return machine->Outputs[reg];
120
121 case PROGRAM_LOCAL_PARAM:
122 if (reg >= MAX_PROGRAM_LOCAL_PARAMS)
123 return ZeroVec;
124 return machine->CurProgram->LocalParams[reg];
125
126 case PROGRAM_ENV_PARAM:
127 if (reg >= MAX_PROGRAM_ENV_PARAMS)
128 return ZeroVec;
129 return machine->EnvParams[reg];
130
131 case PROGRAM_STATE_VAR:
132 /* Fallthrough */
133 case PROGRAM_CONSTANT:
134 /* Fallthrough */
135 case PROGRAM_UNIFORM:
136 if (reg >= (GLint) prog->Parameters->NumParameters)
137 return ZeroVec;
138 return (GLfloat *) prog->Parameters->ParameterValues[reg];
139
140 case PROGRAM_SYSTEM_VALUE:
141 assert(reg < Elements(machine->SystemValues));
142 return machine->SystemValues[reg];
143
144 default:
145 _mesa_problem(NULL,
146 "Invalid src register file %d in get_src_register_pointer()",
147 source->File);
148 return ZeroVec;
149 }
150 }
151
152
153 /**
154 * Return a pointer to the 4-element float vector specified by the given
155 * destination register.
156 */
157 static inline GLfloat *
158 get_dst_register_pointer(const struct prog_dst_register *dest,
159 struct gl_program_machine *machine)
160 {
161 static GLfloat dummyReg[4];
162 GLint reg = dest->Index;
163
164 if (dest->RelAddr) {
165 /* add address register value to src index/offset */
166 reg += machine->AddressReg[0][0];
167 if (reg < 0) {
168 return dummyReg;
169 }
170 }
171
172 switch (dest->File) {
173 case PROGRAM_TEMPORARY:
174 if (reg >= MAX_PROGRAM_TEMPS)
175 return dummyReg;
176 return machine->Temporaries[reg];
177
178 case PROGRAM_OUTPUT:
179 if (reg >= MAX_PROGRAM_OUTPUTS)
180 return dummyReg;
181 return machine->Outputs[reg];
182
183 default:
184 _mesa_problem(NULL,
185 "Invalid dest register file %d in get_dst_register_pointer()",
186 dest->File);
187 return dummyReg;
188 }
189 }
190
191
192
193 /**
194 * Fetch a 4-element float vector from the given source register.
195 * Apply swizzling and negating as needed.
196 */
197 static void
198 fetch_vector4(const struct prog_src_register *source,
199 const struct gl_program_machine *machine, GLfloat result[4])
200 {
201 const GLfloat *src = get_src_register_pointer(source, machine);
202
203 if (source->Swizzle == SWIZZLE_NOOP) {
204 /* no swizzling */
205 COPY_4V(result, src);
206 }
207 else {
208 ASSERT(GET_SWZ(source->Swizzle, 0) <= 3);
209 ASSERT(GET_SWZ(source->Swizzle, 1) <= 3);
210 ASSERT(GET_SWZ(source->Swizzle, 2) <= 3);
211 ASSERT(GET_SWZ(source->Swizzle, 3) <= 3);
212 result[0] = src[GET_SWZ(source->Swizzle, 0)];
213 result[1] = src[GET_SWZ(source->Swizzle, 1)];
214 result[2] = src[GET_SWZ(source->Swizzle, 2)];
215 result[3] = src[GET_SWZ(source->Swizzle, 3)];
216 }
217
218 if (source->Abs) {
219 result[0] = FABSF(result[0]);
220 result[1] = FABSF(result[1]);
221 result[2] = FABSF(result[2]);
222 result[3] = FABSF(result[3]);
223 }
224 if (source->Negate) {
225 ASSERT(source->Negate == NEGATE_XYZW);
226 result[0] = -result[0];
227 result[1] = -result[1];
228 result[2] = -result[2];
229 result[3] = -result[3];
230 }
231
232 #ifdef NAN_CHECK
233 assert(!IS_INF_OR_NAN(result[0]));
234 assert(!IS_INF_OR_NAN(result[0]));
235 assert(!IS_INF_OR_NAN(result[0]));
236 assert(!IS_INF_OR_NAN(result[0]));
237 #endif
238 }
239
240
241 /**
242 * Fetch the derivative with respect to X or Y for the given register.
243 * XXX this currently only works for fragment program input attribs.
244 */
245 static void
246 fetch_vector4_deriv(struct gl_context * ctx,
247 const struct prog_src_register *source,
248 const struct gl_program_machine *machine,
249 char xOrY, GLfloat result[4])
250 {
251 if (source->File == PROGRAM_INPUT &&
252 source->Index < (GLint) machine->NumDeriv) {
253 const GLint col = machine->CurElement;
254 const GLfloat w = machine->Attribs[VARYING_SLOT_POS][col][3];
255 const GLfloat invQ = 1.0f / w;
256 GLfloat deriv[4];
257
258 if (xOrY == 'X') {
259 deriv[0] = machine->DerivX[source->Index][0] * invQ;
260 deriv[1] = machine->DerivX[source->Index][1] * invQ;
261 deriv[2] = machine->DerivX[source->Index][2] * invQ;
262 deriv[3] = machine->DerivX[source->Index][3] * invQ;
263 }
264 else {
265 deriv[0] = machine->DerivY[source->Index][0] * invQ;
266 deriv[1] = machine->DerivY[source->Index][1] * invQ;
267 deriv[2] = machine->DerivY[source->Index][2] * invQ;
268 deriv[3] = machine->DerivY[source->Index][3] * invQ;
269 }
270
271 result[0] = deriv[GET_SWZ(source->Swizzle, 0)];
272 result[1] = deriv[GET_SWZ(source->Swizzle, 1)];
273 result[2] = deriv[GET_SWZ(source->Swizzle, 2)];
274 result[3] = deriv[GET_SWZ(source->Swizzle, 3)];
275
276 if (source->Abs) {
277 result[0] = FABSF(result[0]);
278 result[1] = FABSF(result[1]);
279 result[2] = FABSF(result[2]);
280 result[3] = FABSF(result[3]);
281 }
282 if (source->Negate) {
283 ASSERT(source->Negate == NEGATE_XYZW);
284 result[0] = -result[0];
285 result[1] = -result[1];
286 result[2] = -result[2];
287 result[3] = -result[3];
288 }
289 }
290 else {
291 ASSIGN_4V(result, 0.0, 0.0, 0.0, 0.0);
292 }
293 }
294
295
296 /**
297 * As above, but only return result[0] element.
298 */
299 static void
300 fetch_vector1(const struct prog_src_register *source,
301 const struct gl_program_machine *machine, GLfloat result[4])
302 {
303 const GLfloat *src = get_src_register_pointer(source, machine);
304
305 result[0] = src[GET_SWZ(source->Swizzle, 0)];
306
307 if (source->Abs) {
308 result[0] = FABSF(result[0]);
309 }
310 if (source->Negate) {
311 result[0] = -result[0];
312 }
313 }
314
315
316 static GLuint
317 fetch_vector1ui(const struct prog_src_register *source,
318 const struct gl_program_machine *machine)
319 {
320 const GLuint *src = (GLuint *) get_src_register_pointer(source, machine);
321 return src[GET_SWZ(source->Swizzle, 0)];
322 }
323
324
325 /**
326 * Fetch texel from texture. Use partial derivatives when possible.
327 */
328 static inline void
329 fetch_texel(struct gl_context *ctx,
330 const struct gl_program_machine *machine,
331 const struct prog_instruction *inst,
332 const GLfloat texcoord[4], GLfloat lodBias,
333 GLfloat color[4])
334 {
335 const GLuint unit = machine->Samplers[inst->TexSrcUnit];
336
337 /* Note: we only have the right derivatives for fragment input attribs.
338 */
339 if (machine->NumDeriv > 0 &&
340 inst->SrcReg[0].File == PROGRAM_INPUT &&
341 inst->SrcReg[0].Index == VARYING_SLOT_TEX0 + inst->TexSrcUnit) {
342 /* simple texture fetch for which we should have derivatives */
343 GLuint attr = inst->SrcReg[0].Index;
344 machine->FetchTexelDeriv(ctx, texcoord,
345 machine->DerivX[attr],
346 machine->DerivY[attr],
347 lodBias, unit, color);
348 }
349 else {
350 machine->FetchTexelLod(ctx, texcoord, lodBias, unit, color);
351 }
352 }
353
354
355 /**
356 * Test value against zero and return GT, LT, EQ or UN if NaN.
357 */
358 static inline GLuint
359 generate_cc(float value)
360 {
361 if (value != value)
362 return COND_UN; /* NaN */
363 if (value > 0.0F)
364 return COND_GT;
365 if (value < 0.0F)
366 return COND_LT;
367 return COND_EQ;
368 }
369
370
371 /**
372 * Test if the ccMaskRule is satisfied by the given condition code.
373 * Used to mask destination writes according to the current condition code.
374 */
375 static inline GLboolean
376 test_cc(GLuint condCode, GLuint ccMaskRule)
377 {
378 switch (ccMaskRule) {
379 case COND_EQ: return (condCode == COND_EQ);
380 case COND_NE: return (condCode != COND_EQ);
381 case COND_LT: return (condCode == COND_LT);
382 case COND_GE: return (condCode == COND_GT || condCode == COND_EQ);
383 case COND_LE: return (condCode == COND_LT || condCode == COND_EQ);
384 case COND_GT: return (condCode == COND_GT);
385 case COND_TR: return GL_TRUE;
386 case COND_FL: return GL_FALSE;
387 default: return GL_TRUE;
388 }
389 }
390
391
392 /**
393 * Evaluate the 4 condition codes against a predicate and return GL_TRUE
394 * or GL_FALSE to indicate result.
395 */
396 static inline GLboolean
397 eval_condition(const struct gl_program_machine *machine,
398 const struct prog_instruction *inst)
399 {
400 const GLuint swizzle = inst->DstReg.CondSwizzle;
401 const GLuint condMask = inst->DstReg.CondMask;
402 if (test_cc(machine->CondCodes[GET_SWZ(swizzle, 0)], condMask) ||
403 test_cc(machine->CondCodes[GET_SWZ(swizzle, 1)], condMask) ||
404 test_cc(machine->CondCodes[GET_SWZ(swizzle, 2)], condMask) ||
405 test_cc(machine->CondCodes[GET_SWZ(swizzle, 3)], condMask)) {
406 return GL_TRUE;
407 }
408 else {
409 return GL_FALSE;
410 }
411 }
412
413
414
415 /**
416 * Store 4 floats into a register. Observe the instructions saturate and
417 * set-condition-code flags.
418 */
419 static void
420 store_vector4(const struct prog_instruction *inst,
421 struct gl_program_machine *machine, const GLfloat value[4])
422 {
423 const struct prog_dst_register *dstReg = &(inst->DstReg);
424 const GLboolean clamp = inst->SaturateMode == SATURATE_ZERO_ONE;
425 GLuint writeMask = dstReg->WriteMask;
426 GLfloat clampedValue[4];
427 GLfloat *dst = get_dst_register_pointer(dstReg, machine);
428
429 #if 0
430 if (value[0] > 1.0e10 ||
431 IS_INF_OR_NAN(value[0]) ||
432 IS_INF_OR_NAN(value[1]) ||
433 IS_INF_OR_NAN(value[2]) || IS_INF_OR_NAN(value[3]))
434 printf("store %g %g %g %g\n", value[0], value[1], value[2], value[3]);
435 #endif
436
437 if (clamp) {
438 clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F);
439 clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F);
440 clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F);
441 clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F);
442 value = clampedValue;
443 }
444
445 if (dstReg->CondMask != COND_TR) {
446 /* condition codes may turn off some writes */
447 if (writeMask & WRITEMASK_X) {
448 if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 0)],
449 dstReg->CondMask))
450 writeMask &= ~WRITEMASK_X;
451 }
452 if (writeMask & WRITEMASK_Y) {
453 if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 1)],
454 dstReg->CondMask))
455 writeMask &= ~WRITEMASK_Y;
456 }
457 if (writeMask & WRITEMASK_Z) {
458 if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 2)],
459 dstReg->CondMask))
460 writeMask &= ~WRITEMASK_Z;
461 }
462 if (writeMask & WRITEMASK_W) {
463 if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 3)],
464 dstReg->CondMask))
465 writeMask &= ~WRITEMASK_W;
466 }
467 }
468
469 #ifdef NAN_CHECK
470 assert(!IS_INF_OR_NAN(value[0]));
471 assert(!IS_INF_OR_NAN(value[0]));
472 assert(!IS_INF_OR_NAN(value[0]));
473 assert(!IS_INF_OR_NAN(value[0]));
474 #endif
475
476 if (writeMask & WRITEMASK_X)
477 dst[0] = value[0];
478 if (writeMask & WRITEMASK_Y)
479 dst[1] = value[1];
480 if (writeMask & WRITEMASK_Z)
481 dst[2] = value[2];
482 if (writeMask & WRITEMASK_W)
483 dst[3] = value[3];
484
485 if (inst->CondUpdate) {
486 if (writeMask & WRITEMASK_X)
487 machine->CondCodes[0] = generate_cc(value[0]);
488 if (writeMask & WRITEMASK_Y)
489 machine->CondCodes[1] = generate_cc(value[1]);
490 if (writeMask & WRITEMASK_Z)
491 machine->CondCodes[2] = generate_cc(value[2]);
492 if (writeMask & WRITEMASK_W)
493 machine->CondCodes[3] = generate_cc(value[3]);
494 #if DEBUG_PROG
495 printf("CondCodes=(%s,%s,%s,%s) for:\n",
496 _mesa_condcode_string(machine->CondCodes[0]),
497 _mesa_condcode_string(machine->CondCodes[1]),
498 _mesa_condcode_string(machine->CondCodes[2]),
499 _mesa_condcode_string(machine->CondCodes[3]));
500 #endif
501 }
502 }
503
504
505 /**
506 * Store 4 uints into a register. Observe the set-condition-code flags.
507 */
508 static void
509 store_vector4ui(const struct prog_instruction *inst,
510 struct gl_program_machine *machine, const GLuint value[4])
511 {
512 const struct prog_dst_register *dstReg = &(inst->DstReg);
513 GLuint writeMask = dstReg->WriteMask;
514 GLuint *dst = (GLuint *) get_dst_register_pointer(dstReg, machine);
515
516 if (dstReg->CondMask != COND_TR) {
517 /* condition codes may turn off some writes */
518 if (writeMask & WRITEMASK_X) {
519 if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 0)],
520 dstReg->CondMask))
521 writeMask &= ~WRITEMASK_X;
522 }
523 if (writeMask & WRITEMASK_Y) {
524 if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 1)],
525 dstReg->CondMask))
526 writeMask &= ~WRITEMASK_Y;
527 }
528 if (writeMask & WRITEMASK_Z) {
529 if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 2)],
530 dstReg->CondMask))
531 writeMask &= ~WRITEMASK_Z;
532 }
533 if (writeMask & WRITEMASK_W) {
534 if (!test_cc(machine->CondCodes[GET_SWZ(dstReg->CondSwizzle, 3)],
535 dstReg->CondMask))
536 writeMask &= ~WRITEMASK_W;
537 }
538 }
539
540 if (writeMask & WRITEMASK_X)
541 dst[0] = value[0];
542 if (writeMask & WRITEMASK_Y)
543 dst[1] = value[1];
544 if (writeMask & WRITEMASK_Z)
545 dst[2] = value[2];
546 if (writeMask & WRITEMASK_W)
547 dst[3] = value[3];
548
549 if (inst->CondUpdate) {
550 if (writeMask & WRITEMASK_X)
551 machine->CondCodes[0] = generate_cc((float)value[0]);
552 if (writeMask & WRITEMASK_Y)
553 machine->CondCodes[1] = generate_cc((float)value[1]);
554 if (writeMask & WRITEMASK_Z)
555 machine->CondCodes[2] = generate_cc((float)value[2]);
556 if (writeMask & WRITEMASK_W)
557 machine->CondCodes[3] = generate_cc((float)value[3]);
558 #if DEBUG_PROG
559 printf("CondCodes=(%s,%s,%s,%s) for:\n",
560 _mesa_condcode_string(machine->CondCodes[0]),
561 _mesa_condcode_string(machine->CondCodes[1]),
562 _mesa_condcode_string(machine->CondCodes[2]),
563 _mesa_condcode_string(machine->CondCodes[3]));
564 #endif
565 }
566 }
567
568
569
570 /**
571 * Execute the given vertex/fragment program.
572 *
573 * \param ctx rendering context
574 * \param program the program to execute
575 * \param machine machine state (must be initialized)
576 * \return GL_TRUE if program completed or GL_FALSE if program executed KIL.
577 */
578 GLboolean
579 _mesa_execute_program(struct gl_context * ctx,
580 const struct gl_program *program,
581 struct gl_program_machine *machine)
582 {
583 const GLuint numInst = program->NumInstructions;
584 const GLuint maxExec = 65536;
585 GLuint pc, numExec = 0;
586
587 machine->CurProgram = program;
588
589 if (DEBUG_PROG) {
590 printf("execute program %u --------------------\n", program->Id);
591 }
592
593 if (program->Target == GL_VERTEX_PROGRAM_ARB) {
594 machine->EnvParams = ctx->VertexProgram.Parameters;
595 }
596 else {
597 machine->EnvParams = ctx->FragmentProgram.Parameters;
598 }
599
600 for (pc = 0; pc < numInst; pc++) {
601 const struct prog_instruction *inst = program->Instructions + pc;
602
603 if (DEBUG_PROG) {
604 _mesa_print_instruction(inst);
605 }
606
607 switch (inst->Opcode) {
608 case OPCODE_ABS:
609 {
610 GLfloat a[4], result[4];
611 fetch_vector4(&inst->SrcReg[0], machine, a);
612 result[0] = FABSF(a[0]);
613 result[1] = FABSF(a[1]);
614 result[2] = FABSF(a[2]);
615 result[3] = FABSF(a[3]);
616 store_vector4(inst, machine, result);
617 }
618 break;
619 case OPCODE_ADD:
620 {
621 GLfloat a[4], b[4], result[4];
622 fetch_vector4(&inst->SrcReg[0], machine, a);
623 fetch_vector4(&inst->SrcReg[1], machine, b);
624 result[0] = a[0] + b[0];
625 result[1] = a[1] + b[1];
626 result[2] = a[2] + b[2];
627 result[3] = a[3] + b[3];
628 store_vector4(inst, machine, result);
629 if (DEBUG_PROG) {
630 printf("ADD (%g %g %g %g) = (%g %g %g %g) + (%g %g %g %g)\n",
631 result[0], result[1], result[2], result[3],
632 a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
633 }
634 }
635 break;
636 case OPCODE_ARL:
637 {
638 GLfloat t[4];
639 fetch_vector4(&inst->SrcReg[0], machine, t);
640 machine->AddressReg[0][0] = IFLOOR(t[0]);
641 if (DEBUG_PROG) {
642 printf("ARL %d\n", machine->AddressReg[0][0]);
643 }
644 }
645 break;
646 case OPCODE_BGNLOOP:
647 /* no-op */
648 ASSERT(program->Instructions[inst->BranchTarget].Opcode
649 == OPCODE_ENDLOOP);
650 break;
651 case OPCODE_ENDLOOP:
652 /* subtract 1 here since pc is incremented by for(pc) loop */
653 ASSERT(program->Instructions[inst->BranchTarget].Opcode
654 == OPCODE_BGNLOOP);
655 pc = inst->BranchTarget - 1; /* go to matching BNGLOOP */
656 break;
657 case OPCODE_BGNSUB: /* begin subroutine */
658 break;
659 case OPCODE_ENDSUB: /* end subroutine */
660 break;
661 case OPCODE_BRK: /* break out of loop (conditional) */
662 ASSERT(program->Instructions[inst->BranchTarget].Opcode
663 == OPCODE_ENDLOOP);
664 if (eval_condition(machine, inst)) {
665 /* break out of loop */
666 /* pc++ at end of for-loop will put us after the ENDLOOP inst */
667 pc = inst->BranchTarget;
668 }
669 break;
670 case OPCODE_CONT: /* continue loop (conditional) */
671 ASSERT(program->Instructions[inst->BranchTarget].Opcode
672 == OPCODE_ENDLOOP);
673 if (eval_condition(machine, inst)) {
674 /* continue at ENDLOOP */
675 /* Subtract 1 here since we'll do pc++ at end of for-loop */
676 pc = inst->BranchTarget - 1;
677 }
678 break;
679 case OPCODE_CAL: /* Call subroutine (conditional) */
680 if (eval_condition(machine, inst)) {
681 /* call the subroutine */
682 if (machine->StackDepth >= MAX_PROGRAM_CALL_DEPTH) {
683 return GL_TRUE; /* Per GL_NV_vertex_program2 spec */
684 }
685 machine->CallStack[machine->StackDepth++] = pc + 1; /* next inst */
686 /* Subtract 1 here since we'll do pc++ at end of for-loop */
687 pc = inst->BranchTarget - 1;
688 }
689 break;
690 case OPCODE_CMP:
691 {
692 GLfloat a[4], b[4], c[4], result[4];
693 fetch_vector4(&inst->SrcReg[0], machine, a);
694 fetch_vector4(&inst->SrcReg[1], machine, b);
695 fetch_vector4(&inst->SrcReg[2], machine, c);
696 result[0] = a[0] < 0.0F ? b[0] : c[0];
697 result[1] = a[1] < 0.0F ? b[1] : c[1];
698 result[2] = a[2] < 0.0F ? b[2] : c[2];
699 result[3] = a[3] < 0.0F ? b[3] : c[3];
700 store_vector4(inst, machine, result);
701 if (DEBUG_PROG) {
702 printf("CMP (%g %g %g %g) = (%g %g %g %g) < 0 ? (%g %g %g %g) : (%g %g %g %g)\n",
703 result[0], result[1], result[2], result[3],
704 a[0], a[1], a[2], a[3],
705 b[0], b[1], b[2], b[3],
706 c[0], c[1], c[2], c[3]);
707 }
708 }
709 break;
710 case OPCODE_COS:
711 {
712 GLfloat a[4], result[4];
713 fetch_vector1(&inst->SrcReg[0], machine, a);
714 result[0] = result[1] = result[2] = result[3]
715 = (GLfloat) cos(a[0]);
716 store_vector4(inst, machine, result);
717 }
718 break;
719 case OPCODE_DDX: /* Partial derivative with respect to X */
720 {
721 GLfloat result[4];
722 fetch_vector4_deriv(ctx, &inst->SrcReg[0], machine,
723 'X', result);
724 store_vector4(inst, machine, result);
725 }
726 break;
727 case OPCODE_DDY: /* Partial derivative with respect to Y */
728 {
729 GLfloat result[4];
730 fetch_vector4_deriv(ctx, &inst->SrcReg[0], machine,
731 'Y', result);
732 store_vector4(inst, machine, result);
733 }
734 break;
735 case OPCODE_DP2:
736 {
737 GLfloat a[4], b[4], result[4];
738 fetch_vector4(&inst->SrcReg[0], machine, a);
739 fetch_vector4(&inst->SrcReg[1], machine, b);
740 result[0] = result[1] = result[2] = result[3] = DOT2(a, b);
741 store_vector4(inst, machine, result);
742 if (DEBUG_PROG) {
743 printf("DP2 %g = (%g %g) . (%g %g)\n",
744 result[0], a[0], a[1], b[0], b[1]);
745 }
746 }
747 break;
748 case OPCODE_DP3:
749 {
750 GLfloat a[4], b[4], result[4];
751 fetch_vector4(&inst->SrcReg[0], machine, a);
752 fetch_vector4(&inst->SrcReg[1], machine, b);
753 result[0] = result[1] = result[2] = result[3] = DOT3(a, b);
754 store_vector4(inst, machine, result);
755 if (DEBUG_PROG) {
756 printf("DP3 %g = (%g %g %g) . (%g %g %g)\n",
757 result[0], a[0], a[1], a[2], b[0], b[1], b[2]);
758 }
759 }
760 break;
761 case OPCODE_DP4:
762 {
763 GLfloat a[4], b[4], result[4];
764 fetch_vector4(&inst->SrcReg[0], machine, a);
765 fetch_vector4(&inst->SrcReg[1], machine, b);
766 result[0] = result[1] = result[2] = result[3] = DOT4(a, b);
767 store_vector4(inst, machine, result);
768 if (DEBUG_PROG) {
769 printf("DP4 %g = (%g, %g %g %g) . (%g, %g %g %g)\n",
770 result[0], a[0], a[1], a[2], a[3],
771 b[0], b[1], b[2], b[3]);
772 }
773 }
774 break;
775 case OPCODE_DPH:
776 {
777 GLfloat a[4], b[4], result[4];
778 fetch_vector4(&inst->SrcReg[0], machine, a);
779 fetch_vector4(&inst->SrcReg[1], machine, b);
780 result[0] = result[1] = result[2] = result[3] = DOT3(a, b) + b[3];
781 store_vector4(inst, machine, result);
782 }
783 break;
784 case OPCODE_DST: /* Distance vector */
785 {
786 GLfloat a[4], b[4], result[4];
787 fetch_vector4(&inst->SrcReg[0], machine, a);
788 fetch_vector4(&inst->SrcReg[1], machine, b);
789 result[0] = 1.0F;
790 result[1] = a[1] * b[1];
791 result[2] = a[2];
792 result[3] = b[3];
793 store_vector4(inst, machine, result);
794 }
795 break;
796 case OPCODE_EXP:
797 {
798 GLfloat t[4], q[4], floor_t0;
799 fetch_vector1(&inst->SrcReg[0], machine, t);
800 floor_t0 = FLOORF(t[0]);
801 if (floor_t0 > FLT_MAX_EXP) {
802 SET_POS_INFINITY(q[0]);
803 SET_POS_INFINITY(q[2]);
804 }
805 else if (floor_t0 < FLT_MIN_EXP) {
806 q[0] = 0.0F;
807 q[2] = 0.0F;
808 }
809 else {
810 q[0] = LDEXPF(1.0, (int) floor_t0);
811 /* Note: GL_NV_vertex_program expects
812 * result.z = result.x * APPX(result.y)
813 * We do what the ARB extension says.
814 */
815 q[2] = (GLfloat) pow(2.0, t[0]);
816 }
817 q[1] = t[0] - floor_t0;
818 q[3] = 1.0F;
819 store_vector4( inst, machine, q );
820 }
821 break;
822 case OPCODE_EX2: /* Exponential base 2 */
823 {
824 GLfloat a[4], result[4], val;
825 fetch_vector1(&inst->SrcReg[0], machine, a);
826 val = (GLfloat) pow(2.0, a[0]);
827 /*
828 if (IS_INF_OR_NAN(val))
829 val = 1.0e10;
830 */
831 result[0] = result[1] = result[2] = result[3] = val;
832 store_vector4(inst, machine, result);
833 }
834 break;
835 case OPCODE_FLR:
836 {
837 GLfloat a[4], result[4];
838 fetch_vector4(&inst->SrcReg[0], machine, a);
839 result[0] = FLOORF(a[0]);
840 result[1] = FLOORF(a[1]);
841 result[2] = FLOORF(a[2]);
842 result[3] = FLOORF(a[3]);
843 store_vector4(inst, machine, result);
844 }
845 break;
846 case OPCODE_FRC:
847 {
848 GLfloat a[4], result[4];
849 fetch_vector4(&inst->SrcReg[0], machine, a);
850 result[0] = a[0] - FLOORF(a[0]);
851 result[1] = a[1] - FLOORF(a[1]);
852 result[2] = a[2] - FLOORF(a[2]);
853 result[3] = a[3] - FLOORF(a[3]);
854 store_vector4(inst, machine, result);
855 }
856 break;
857 case OPCODE_IF:
858 {
859 GLboolean cond;
860 ASSERT(program->Instructions[inst->BranchTarget].Opcode
861 == OPCODE_ELSE ||
862 program->Instructions[inst->BranchTarget].Opcode
863 == OPCODE_ENDIF);
864 /* eval condition */
865 if (inst->SrcReg[0].File != PROGRAM_UNDEFINED) {
866 GLfloat a[4];
867 fetch_vector1(&inst->SrcReg[0], machine, a);
868 cond = (a[0] != 0.0);
869 }
870 else {
871 cond = eval_condition(machine, inst);
872 }
873 if (DEBUG_PROG) {
874 printf("IF: %d\n", cond);
875 }
876 /* do if/else */
877 if (cond) {
878 /* do if-clause (just continue execution) */
879 }
880 else {
881 /* go to the instruction after ELSE or ENDIF */
882 assert(inst->BranchTarget >= 0);
883 pc = inst->BranchTarget;
884 }
885 }
886 break;
887 case OPCODE_ELSE:
888 /* goto ENDIF */
889 ASSERT(program->Instructions[inst->BranchTarget].Opcode
890 == OPCODE_ENDIF);
891 assert(inst->BranchTarget >= 0);
892 pc = inst->BranchTarget;
893 break;
894 case OPCODE_ENDIF:
895 /* nothing */
896 break;
897 case OPCODE_KIL_NV: /* NV_f_p only (conditional) */
898 if (eval_condition(machine, inst)) {
899 return GL_FALSE;
900 }
901 break;
902 case OPCODE_KIL: /* ARB_f_p only */
903 {
904 GLfloat a[4];
905 fetch_vector4(&inst->SrcReg[0], machine, a);
906 if (DEBUG_PROG) {
907 printf("KIL if (%g %g %g %g) <= 0.0\n",
908 a[0], a[1], a[2], a[3]);
909 }
910
911 if (a[0] < 0.0F || a[1] < 0.0F || a[2] < 0.0F || a[3] < 0.0F) {
912 return GL_FALSE;
913 }
914 }
915 break;
916 case OPCODE_LG2: /* log base 2 */
917 {
918 GLfloat a[4], result[4], val;
919 fetch_vector1(&inst->SrcReg[0], machine, a);
920 /* The fast LOG2 macro doesn't meet the precision requirements.
921 */
922 if (a[0] == 0.0F) {
923 val = -FLT_MAX;
924 }
925 else {
926 val = (float)(log(a[0]) * 1.442695F);
927 }
928 result[0] = result[1] = result[2] = result[3] = val;
929 store_vector4(inst, machine, result);
930 }
931 break;
932 case OPCODE_LIT:
933 {
934 const GLfloat epsilon = 1.0F / 256.0F; /* from NV VP spec */
935 GLfloat a[4], result[4];
936 fetch_vector4(&inst->SrcReg[0], machine, a);
937 a[0] = MAX2(a[0], 0.0F);
938 a[1] = MAX2(a[1], 0.0F);
939 /* XXX ARB version clamps a[3], NV version doesn't */
940 a[3] = CLAMP(a[3], -(128.0F - epsilon), (128.0F - epsilon));
941 result[0] = 1.0F;
942 result[1] = a[0];
943 /* XXX we could probably just use pow() here */
944 if (a[0] > 0.0F) {
945 if (a[1] == 0.0 && a[3] == 0.0)
946 result[2] = 1.0F;
947 else
948 result[2] = (GLfloat) pow(a[1], a[3]);
949 }
950 else {
951 result[2] = 0.0F;
952 }
953 result[3] = 1.0F;
954 store_vector4(inst, machine, result);
955 if (DEBUG_PROG) {
956 printf("LIT (%g %g %g %g) : (%g %g %g %g)\n",
957 result[0], result[1], result[2], result[3],
958 a[0], a[1], a[2], a[3]);
959 }
960 }
961 break;
962 case OPCODE_LOG:
963 {
964 GLfloat t[4], q[4], abs_t0;
965 fetch_vector1(&inst->SrcReg[0], machine, t);
966 abs_t0 = FABSF(t[0]);
967 if (abs_t0 != 0.0F) {
968 if (IS_INF_OR_NAN(abs_t0))
969 {
970 SET_POS_INFINITY(q[0]);
971 q[1] = 1.0F;
972 SET_POS_INFINITY(q[2]);
973 }
974 else {
975 int exponent;
976 GLfloat mantissa = FREXPF(t[0], &exponent);
977 q[0] = (GLfloat) (exponent - 1);
978 q[1] = (GLfloat) (2.0 * mantissa); /* map [.5, 1) -> [1, 2) */
979
980 /* The fast LOG2 macro doesn't meet the precision
981 * requirements.
982 */
983 q[2] = (float)(log(t[0]) * 1.442695F);
984 }
985 }
986 else {
987 SET_NEG_INFINITY(q[0]);
988 q[1] = 1.0F;
989 SET_NEG_INFINITY(q[2]);
990 }
991 q[3] = 1.0;
992 store_vector4(inst, machine, q);
993 }
994 break;
995 case OPCODE_LRP:
996 {
997 GLfloat a[4], b[4], c[4], result[4];
998 fetch_vector4(&inst->SrcReg[0], machine, a);
999 fetch_vector4(&inst->SrcReg[1], machine, b);
1000 fetch_vector4(&inst->SrcReg[2], machine, c);
1001 result[0] = a[0] * b[0] + (1.0F - a[0]) * c[0];
1002 result[1] = a[1] * b[1] + (1.0F - a[1]) * c[1];
1003 result[2] = a[2] * b[2] + (1.0F - a[2]) * c[2];
1004 result[3] = a[3] * b[3] + (1.0F - a[3]) * c[3];
1005 store_vector4(inst, machine, result);
1006 if (DEBUG_PROG) {
1007 printf("LRP (%g %g %g %g) = (%g %g %g %g), "
1008 "(%g %g %g %g), (%g %g %g %g)\n",
1009 result[0], result[1], result[2], result[3],
1010 a[0], a[1], a[2], a[3],
1011 b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]);
1012 }
1013 }
1014 break;
1015 case OPCODE_MAD:
1016 {
1017 GLfloat a[4], b[4], c[4], result[4];
1018 fetch_vector4(&inst->SrcReg[0], machine, a);
1019 fetch_vector4(&inst->SrcReg[1], machine, b);
1020 fetch_vector4(&inst->SrcReg[2], machine, c);
1021 result[0] = a[0] * b[0] + c[0];
1022 result[1] = a[1] * b[1] + c[1];
1023 result[2] = a[2] * b[2] + c[2];
1024 result[3] = a[3] * b[3] + c[3];
1025 store_vector4(inst, machine, result);
1026 if (DEBUG_PROG) {
1027 printf("MAD (%g %g %g %g) = (%g %g %g %g) * "
1028 "(%g %g %g %g) + (%g %g %g %g)\n",
1029 result[0], result[1], result[2], result[3],
1030 a[0], a[1], a[2], a[3],
1031 b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]);
1032 }
1033 }
1034 break;
1035 case OPCODE_MAX:
1036 {
1037 GLfloat a[4], b[4], result[4];
1038 fetch_vector4(&inst->SrcReg[0], machine, a);
1039 fetch_vector4(&inst->SrcReg[1], machine, b);
1040 result[0] = MAX2(a[0], b[0]);
1041 result[1] = MAX2(a[1], b[1]);
1042 result[2] = MAX2(a[2], b[2]);
1043 result[3] = MAX2(a[3], b[3]);
1044 store_vector4(inst, machine, result);
1045 if (DEBUG_PROG) {
1046 printf("MAX (%g %g %g %g) = (%g %g %g %g), (%g %g %g %g)\n",
1047 result[0], result[1], result[2], result[3],
1048 a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
1049 }
1050 }
1051 break;
1052 case OPCODE_MIN:
1053 {
1054 GLfloat a[4], b[4], result[4];
1055 fetch_vector4(&inst->SrcReg[0], machine, a);
1056 fetch_vector4(&inst->SrcReg[1], machine, b);
1057 result[0] = MIN2(a[0], b[0]);
1058 result[1] = MIN2(a[1], b[1]);
1059 result[2] = MIN2(a[2], b[2]);
1060 result[3] = MIN2(a[3], b[3]);
1061 store_vector4(inst, machine, result);
1062 }
1063 break;
1064 case OPCODE_MOV:
1065 {
1066 GLfloat result[4];
1067 fetch_vector4(&inst->SrcReg[0], machine, result);
1068 store_vector4(inst, machine, result);
1069 if (DEBUG_PROG) {
1070 printf("MOV (%g %g %g %g)\n",
1071 result[0], result[1], result[2], result[3]);
1072 }
1073 }
1074 break;
1075 case OPCODE_MUL:
1076 {
1077 GLfloat a[4], b[4], result[4];
1078 fetch_vector4(&inst->SrcReg[0], machine, a);
1079 fetch_vector4(&inst->SrcReg[1], machine, b);
1080 result[0] = a[0] * b[0];
1081 result[1] = a[1] * b[1];
1082 result[2] = a[2] * b[2];
1083 result[3] = a[3] * b[3];
1084 store_vector4(inst, machine, result);
1085 if (DEBUG_PROG) {
1086 printf("MUL (%g %g %g %g) = (%g %g %g %g) * (%g %g %g %g)\n",
1087 result[0], result[1], result[2], result[3],
1088 a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
1089 }
1090 }
1091 break;
1092 case OPCODE_NOISE1:
1093 {
1094 GLfloat a[4], result[4];
1095 fetch_vector1(&inst->SrcReg[0], machine, a);
1096 result[0] =
1097 result[1] =
1098 result[2] =
1099 result[3] = _mesa_noise1(a[0]);
1100 store_vector4(inst, machine, result);
1101 }
1102 break;
1103 case OPCODE_NOISE2:
1104 {
1105 GLfloat a[4], result[4];
1106 fetch_vector4(&inst->SrcReg[0], machine, a);
1107 result[0] =
1108 result[1] =
1109 result[2] = result[3] = _mesa_noise2(a[0], a[1]);
1110 store_vector4(inst, machine, result);
1111 }
1112 break;
1113 case OPCODE_NOISE3:
1114 {
1115 GLfloat a[4], result[4];
1116 fetch_vector4(&inst->SrcReg[0], machine, a);
1117 result[0] =
1118 result[1] =
1119 result[2] =
1120 result[3] = _mesa_noise3(a[0], a[1], a[2]);
1121 store_vector4(inst, machine, result);
1122 }
1123 break;
1124 case OPCODE_NOISE4:
1125 {
1126 GLfloat a[4], result[4];
1127 fetch_vector4(&inst->SrcReg[0], machine, a);
1128 result[0] =
1129 result[1] =
1130 result[2] =
1131 result[3] = _mesa_noise4(a[0], a[1], a[2], a[3]);
1132 store_vector4(inst, machine, result);
1133 }
1134 break;
1135 case OPCODE_NOP:
1136 break;
1137 case OPCODE_PK2H: /* pack two 16-bit floats in one 32-bit float */
1138 {
1139 GLfloat a[4];
1140 GLuint result[4];
1141 GLhalfNV hx, hy;
1142 fetch_vector4(&inst->SrcReg[0], machine, a);
1143 hx = _mesa_float_to_half(a[0]);
1144 hy = _mesa_float_to_half(a[1]);
1145 result[0] =
1146 result[1] =
1147 result[2] =
1148 result[3] = hx | (hy << 16);
1149 store_vector4ui(inst, machine, result);
1150 }
1151 break;
1152 case OPCODE_PK2US: /* pack two GLushorts into one 32-bit float */
1153 {
1154 GLfloat a[4];
1155 GLuint result[4], usx, usy;
1156 fetch_vector4(&inst->SrcReg[0], machine, a);
1157 a[0] = CLAMP(a[0], 0.0F, 1.0F);
1158 a[1] = CLAMP(a[1], 0.0F, 1.0F);
1159 usx = F_TO_I(a[0] * 65535.0F);
1160 usy = F_TO_I(a[1] * 65535.0F);
1161 result[0] =
1162 result[1] =
1163 result[2] =
1164 result[3] = usx | (usy << 16);
1165 store_vector4ui(inst, machine, result);
1166 }
1167 break;
1168 case OPCODE_PK4B: /* pack four GLbytes into one 32-bit float */
1169 {
1170 GLfloat a[4];
1171 GLuint result[4], ubx, uby, ubz, ubw;
1172 fetch_vector4(&inst->SrcReg[0], machine, a);
1173 a[0] = CLAMP(a[0], -128.0F / 127.0F, 1.0F);
1174 a[1] = CLAMP(a[1], -128.0F / 127.0F, 1.0F);
1175 a[2] = CLAMP(a[2], -128.0F / 127.0F, 1.0F);
1176 a[3] = CLAMP(a[3], -128.0F / 127.0F, 1.0F);
1177 ubx = F_TO_I(127.0F * a[0] + 128.0F);
1178 uby = F_TO_I(127.0F * a[1] + 128.0F);
1179 ubz = F_TO_I(127.0F * a[2] + 128.0F);
1180 ubw = F_TO_I(127.0F * a[3] + 128.0F);
1181 result[0] =
1182 result[1] =
1183 result[2] =
1184 result[3] = ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
1185 store_vector4ui(inst, machine, result);
1186 }
1187 break;
1188 case OPCODE_PK4UB: /* pack four GLubytes into one 32-bit float */
1189 {
1190 GLfloat a[4];
1191 GLuint result[4], ubx, uby, ubz, ubw;
1192 fetch_vector4(&inst->SrcReg[0], machine, a);
1193 a[0] = CLAMP(a[0], 0.0F, 1.0F);
1194 a[1] = CLAMP(a[1], 0.0F, 1.0F);
1195 a[2] = CLAMP(a[2], 0.0F, 1.0F);
1196 a[3] = CLAMP(a[3], 0.0F, 1.0F);
1197 ubx = F_TO_I(255.0F * a[0]);
1198 uby = F_TO_I(255.0F * a[1]);
1199 ubz = F_TO_I(255.0F * a[2]);
1200 ubw = F_TO_I(255.0F * a[3]);
1201 result[0] =
1202 result[1] =
1203 result[2] =
1204 result[3] = ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
1205 store_vector4ui(inst, machine, result);
1206 }
1207 break;
1208 case OPCODE_POW:
1209 {
1210 GLfloat a[4], b[4], result[4];
1211 fetch_vector1(&inst->SrcReg[0], machine, a);
1212 fetch_vector1(&inst->SrcReg[1], machine, b);
1213 result[0] = result[1] = result[2] = result[3]
1214 = (GLfloat) pow(a[0], b[0]);
1215 store_vector4(inst, machine, result);
1216 }
1217 break;
1218
1219 case OPCODE_RCP:
1220 {
1221 GLfloat a[4], result[4];
1222 fetch_vector1(&inst->SrcReg[0], machine, a);
1223 if (DEBUG_PROG) {
1224 if (a[0] == 0)
1225 printf("RCP(0)\n");
1226 else if (IS_INF_OR_NAN(a[0]))
1227 printf("RCP(inf)\n");
1228 }
1229 result[0] = result[1] = result[2] = result[3] = 1.0F / a[0];
1230 store_vector4(inst, machine, result);
1231 }
1232 break;
1233 case OPCODE_RET: /* return from subroutine (conditional) */
1234 if (eval_condition(machine, inst)) {
1235 if (machine->StackDepth == 0) {
1236 return GL_TRUE; /* Per GL_NV_vertex_program2 spec */
1237 }
1238 /* subtract one because of pc++ in the for loop */
1239 pc = machine->CallStack[--machine->StackDepth] - 1;
1240 }
1241 break;
1242 case OPCODE_RFL: /* reflection vector */
1243 {
1244 GLfloat axis[4], dir[4], result[4], tmpX, tmpW;
1245 fetch_vector4(&inst->SrcReg[0], machine, axis);
1246 fetch_vector4(&inst->SrcReg[1], machine, dir);
1247 tmpW = DOT3(axis, axis);
1248 tmpX = (2.0F * DOT3(axis, dir)) / tmpW;
1249 result[0] = tmpX * axis[0] - dir[0];
1250 result[1] = tmpX * axis[1] - dir[1];
1251 result[2] = tmpX * axis[2] - dir[2];
1252 /* result[3] is never written! XXX enforce in parser! */
1253 store_vector4(inst, machine, result);
1254 }
1255 break;
1256 case OPCODE_RSQ: /* 1 / sqrt() */
1257 {
1258 GLfloat a[4], result[4];
1259 fetch_vector1(&inst->SrcReg[0], machine, a);
1260 a[0] = FABSF(a[0]);
1261 result[0] = result[1] = result[2] = result[3] = INV_SQRTF(a[0]);
1262 store_vector4(inst, machine, result);
1263 if (DEBUG_PROG) {
1264 printf("RSQ %g = 1/sqrt(|%g|)\n", result[0], a[0]);
1265 }
1266 }
1267 break;
1268 case OPCODE_SCS: /* sine and cos */
1269 {
1270 GLfloat a[4], result[4];
1271 fetch_vector1(&inst->SrcReg[0], machine, a);
1272 result[0] = (GLfloat) cos(a[0]);
1273 result[1] = (GLfloat) sin(a[0]);
1274 result[2] = 0.0; /* undefined! */
1275 result[3] = 0.0; /* undefined! */
1276 store_vector4(inst, machine, result);
1277 }
1278 break;
1279 case OPCODE_SEQ: /* set on equal */
1280 {
1281 GLfloat a[4], b[4], result[4];
1282 fetch_vector4(&inst->SrcReg[0], machine, a);
1283 fetch_vector4(&inst->SrcReg[1], machine, b);
1284 result[0] = (a[0] == b[0]) ? 1.0F : 0.0F;
1285 result[1] = (a[1] == b[1]) ? 1.0F : 0.0F;
1286 result[2] = (a[2] == b[2]) ? 1.0F : 0.0F;
1287 result[3] = (a[3] == b[3]) ? 1.0F : 0.0F;
1288 store_vector4(inst, machine, result);
1289 if (DEBUG_PROG) {
1290 printf("SEQ (%g %g %g %g) = (%g %g %g %g) == (%g %g %g %g)\n",
1291 result[0], result[1], result[2], result[3],
1292 a[0], a[1], a[2], a[3],
1293 b[0], b[1], b[2], b[3]);
1294 }
1295 }
1296 break;
1297 case OPCODE_SFL: /* set false, operands ignored */
1298 {
1299 static const GLfloat result[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
1300 store_vector4(inst, machine, result);
1301 }
1302 break;
1303 case OPCODE_SGE: /* set on greater or equal */
1304 {
1305 GLfloat a[4], b[4], result[4];
1306 fetch_vector4(&inst->SrcReg[0], machine, a);
1307 fetch_vector4(&inst->SrcReg[1], machine, b);
1308 result[0] = (a[0] >= b[0]) ? 1.0F : 0.0F;
1309 result[1] = (a[1] >= b[1]) ? 1.0F : 0.0F;
1310 result[2] = (a[2] >= b[2]) ? 1.0F : 0.0F;
1311 result[3] = (a[3] >= b[3]) ? 1.0F : 0.0F;
1312 store_vector4(inst, machine, result);
1313 if (DEBUG_PROG) {
1314 printf("SGE (%g %g %g %g) = (%g %g %g %g) >= (%g %g %g %g)\n",
1315 result[0], result[1], result[2], result[3],
1316 a[0], a[1], a[2], a[3],
1317 b[0], b[1], b[2], b[3]);
1318 }
1319 }
1320 break;
1321 case OPCODE_SGT: /* set on greater */
1322 {
1323 GLfloat a[4], b[4], result[4];
1324 fetch_vector4(&inst->SrcReg[0], machine, a);
1325 fetch_vector4(&inst->SrcReg[1], machine, b);
1326 result[0] = (a[0] > b[0]) ? 1.0F : 0.0F;
1327 result[1] = (a[1] > b[1]) ? 1.0F : 0.0F;
1328 result[2] = (a[2] > b[2]) ? 1.0F : 0.0F;
1329 result[3] = (a[3] > b[3]) ? 1.0F : 0.0F;
1330 store_vector4(inst, machine, result);
1331 if (DEBUG_PROG) {
1332 printf("SGT (%g %g %g %g) = (%g %g %g %g) > (%g %g %g %g)\n",
1333 result[0], result[1], result[2], result[3],
1334 a[0], a[1], a[2], a[3],
1335 b[0], b[1], b[2], b[3]);
1336 }
1337 }
1338 break;
1339 case OPCODE_SIN:
1340 {
1341 GLfloat a[4], result[4];
1342 fetch_vector1(&inst->SrcReg[0], machine, a);
1343 result[0] = result[1] = result[2] = result[3]
1344 = (GLfloat) sin(a[0]);
1345 store_vector4(inst, machine, result);
1346 }
1347 break;
1348 case OPCODE_SLE: /* set on less or equal */
1349 {
1350 GLfloat a[4], b[4], result[4];
1351 fetch_vector4(&inst->SrcReg[0], machine, a);
1352 fetch_vector4(&inst->SrcReg[1], machine, b);
1353 result[0] = (a[0] <= b[0]) ? 1.0F : 0.0F;
1354 result[1] = (a[1] <= b[1]) ? 1.0F : 0.0F;
1355 result[2] = (a[2] <= b[2]) ? 1.0F : 0.0F;
1356 result[3] = (a[3] <= b[3]) ? 1.0F : 0.0F;
1357 store_vector4(inst, machine, result);
1358 if (DEBUG_PROG) {
1359 printf("SLE (%g %g %g %g) = (%g %g %g %g) <= (%g %g %g %g)\n",
1360 result[0], result[1], result[2], result[3],
1361 a[0], a[1], a[2], a[3],
1362 b[0], b[1], b[2], b[3]);
1363 }
1364 }
1365 break;
1366 case OPCODE_SLT: /* set on less */
1367 {
1368 GLfloat a[4], b[4], result[4];
1369 fetch_vector4(&inst->SrcReg[0], machine, a);
1370 fetch_vector4(&inst->SrcReg[1], machine, b);
1371 result[0] = (a[0] < b[0]) ? 1.0F : 0.0F;
1372 result[1] = (a[1] < b[1]) ? 1.0F : 0.0F;
1373 result[2] = (a[2] < b[2]) ? 1.0F : 0.0F;
1374 result[3] = (a[3] < b[3]) ? 1.0F : 0.0F;
1375 store_vector4(inst, machine, result);
1376 if (DEBUG_PROG) {
1377 printf("SLT (%g %g %g %g) = (%g %g %g %g) < (%g %g %g %g)\n",
1378 result[0], result[1], result[2], result[3],
1379 a[0], a[1], a[2], a[3],
1380 b[0], b[1], b[2], b[3]);
1381 }
1382 }
1383 break;
1384 case OPCODE_SNE: /* set on not equal */
1385 {
1386 GLfloat a[4], b[4], result[4];
1387 fetch_vector4(&inst->SrcReg[0], machine, a);
1388 fetch_vector4(&inst->SrcReg[1], machine, b);
1389 result[0] = (a[0] != b[0]) ? 1.0F : 0.0F;
1390 result[1] = (a[1] != b[1]) ? 1.0F : 0.0F;
1391 result[2] = (a[2] != b[2]) ? 1.0F : 0.0F;
1392 result[3] = (a[3] != b[3]) ? 1.0F : 0.0F;
1393 store_vector4(inst, machine, result);
1394 if (DEBUG_PROG) {
1395 printf("SNE (%g %g %g %g) = (%g %g %g %g) != (%g %g %g %g)\n",
1396 result[0], result[1], result[2], result[3],
1397 a[0], a[1], a[2], a[3],
1398 b[0], b[1], b[2], b[3]);
1399 }
1400 }
1401 break;
1402 case OPCODE_SSG: /* set sign (-1, 0 or +1) */
1403 {
1404 GLfloat a[4], result[4];
1405 fetch_vector4(&inst->SrcReg[0], machine, a);
1406 result[0] = (GLfloat) ((a[0] > 0.0F) - (a[0] < 0.0F));
1407 result[1] = (GLfloat) ((a[1] > 0.0F) - (a[1] < 0.0F));
1408 result[2] = (GLfloat) ((a[2] > 0.0F) - (a[2] < 0.0F));
1409 result[3] = (GLfloat) ((a[3] > 0.0F) - (a[3] < 0.0F));
1410 store_vector4(inst, machine, result);
1411 }
1412 break;
1413 case OPCODE_STR: /* set true, operands ignored */
1414 {
1415 static const GLfloat result[4] = { 1.0F, 1.0F, 1.0F, 1.0F };
1416 store_vector4(inst, machine, result);
1417 }
1418 break;
1419 case OPCODE_SUB:
1420 {
1421 GLfloat a[4], b[4], result[4];
1422 fetch_vector4(&inst->SrcReg[0], machine, a);
1423 fetch_vector4(&inst->SrcReg[1], machine, b);
1424 result[0] = a[0] - b[0];
1425 result[1] = a[1] - b[1];
1426 result[2] = a[2] - b[2];
1427 result[3] = a[3] - b[3];
1428 store_vector4(inst, machine, result);
1429 if (DEBUG_PROG) {
1430 printf("SUB (%g %g %g %g) = (%g %g %g %g) - (%g %g %g %g)\n",
1431 result[0], result[1], result[2], result[3],
1432 a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
1433 }
1434 }
1435 break;
1436 case OPCODE_SWZ: /* extended swizzle */
1437 {
1438 const struct prog_src_register *source = &inst->SrcReg[0];
1439 const GLfloat *src = get_src_register_pointer(source, machine);
1440 GLfloat result[4];
1441 GLuint i;
1442 for (i = 0; i < 4; i++) {
1443 const GLuint swz = GET_SWZ(source->Swizzle, i);
1444 if (swz == SWIZZLE_ZERO)
1445 result[i] = 0.0;
1446 else if (swz == SWIZZLE_ONE)
1447 result[i] = 1.0;
1448 else {
1449 ASSERT(swz >= 0);
1450 ASSERT(swz <= 3);
1451 result[i] = src[swz];
1452 }
1453 if (source->Negate & (1 << i))
1454 result[i] = -result[i];
1455 }
1456 store_vector4(inst, machine, result);
1457 }
1458 break;
1459 case OPCODE_TEX: /* Both ARB and NV frag prog */
1460 /* Simple texel lookup */
1461 {
1462 GLfloat texcoord[4], color[4];
1463 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1464
1465 /* For TEX, texcoord.Q should not be used and its value should not
1466 * matter (at most, we pass coord.xyz to texture3D() in GLSL).
1467 * Set Q=1 so that FetchTexelDeriv() doesn't get a garbage value
1468 * which is effectively what happens when the texcoord swizzle
1469 * is .xyzz
1470 */
1471 texcoord[3] = 1.0f;
1472
1473 fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
1474
1475 if (DEBUG_PROG) {
1476 printf("TEX (%g, %g, %g, %g) = texture[%d][%g, %g, %g, %g]\n",
1477 color[0], color[1], color[2], color[3],
1478 inst->TexSrcUnit,
1479 texcoord[0], texcoord[1], texcoord[2], texcoord[3]);
1480 }
1481 store_vector4(inst, machine, color);
1482 }
1483 break;
1484 case OPCODE_TXB: /* GL_ARB_fragment_program only */
1485 /* Texel lookup with LOD bias */
1486 {
1487 GLfloat texcoord[4], color[4], lodBias;
1488
1489 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1490
1491 /* texcoord[3] is the bias to add to lambda */
1492 lodBias = texcoord[3];
1493
1494 fetch_texel(ctx, machine, inst, texcoord, lodBias, color);
1495
1496 if (DEBUG_PROG) {
1497 printf("TXB (%g, %g, %g, %g) = texture[%d][%g %g %g %g]"
1498 " bias %g\n",
1499 color[0], color[1], color[2], color[3],
1500 inst->TexSrcUnit,
1501 texcoord[0],
1502 texcoord[1],
1503 texcoord[2],
1504 texcoord[3],
1505 lodBias);
1506 }
1507
1508 store_vector4(inst, machine, color);
1509 }
1510 break;
1511 case OPCODE_TXD: /* GL_NV_fragment_program only */
1512 /* Texture lookup w/ partial derivatives for LOD */
1513 {
1514 GLfloat texcoord[4], dtdx[4], dtdy[4], color[4];
1515 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1516 fetch_vector4(&inst->SrcReg[1], machine, dtdx);
1517 fetch_vector4(&inst->SrcReg[2], machine, dtdy);
1518 machine->FetchTexelDeriv(ctx, texcoord, dtdx, dtdy,
1519 0.0, /* lodBias */
1520 inst->TexSrcUnit, color);
1521 store_vector4(inst, machine, color);
1522 }
1523 break;
1524 case OPCODE_TXL:
1525 /* Texel lookup with explicit LOD */
1526 {
1527 GLfloat texcoord[4], color[4], lod;
1528
1529 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1530
1531 /* texcoord[3] is the LOD */
1532 lod = texcoord[3];
1533
1534 machine->FetchTexelLod(ctx, texcoord, lod,
1535 machine->Samplers[inst->TexSrcUnit], color);
1536
1537 store_vector4(inst, machine, color);
1538 }
1539 break;
1540 case OPCODE_TXP: /* GL_ARB_fragment_program only */
1541 /* Texture lookup w/ projective divide */
1542 {
1543 GLfloat texcoord[4], color[4];
1544
1545 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1546 /* Not so sure about this test - if texcoord[3] is
1547 * zero, we'd probably be fine except for an ASSERT in
1548 * IROUND_POS() which gets triggered by the inf values created.
1549 */
1550 if (texcoord[3] != 0.0) {
1551 texcoord[0] /= texcoord[3];
1552 texcoord[1] /= texcoord[3];
1553 texcoord[2] /= texcoord[3];
1554 }
1555
1556 fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
1557
1558 store_vector4(inst, machine, color);
1559 }
1560 break;
1561 case OPCODE_TXP_NV: /* GL_NV_fragment_program only */
1562 /* Texture lookup w/ projective divide, as above, but do not
1563 * do the divide by w if sampling from a cube map.
1564 */
1565 {
1566 GLfloat texcoord[4], color[4];
1567
1568 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1569 if (inst->TexSrcTarget != TEXTURE_CUBE_INDEX &&
1570 texcoord[3] != 0.0) {
1571 texcoord[0] /= texcoord[3];
1572 texcoord[1] /= texcoord[3];
1573 texcoord[2] /= texcoord[3];
1574 }
1575
1576 fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
1577
1578 store_vector4(inst, machine, color);
1579 }
1580 break;
1581 case OPCODE_TRUNC: /* truncate toward zero */
1582 {
1583 GLfloat a[4], result[4];
1584 fetch_vector4(&inst->SrcReg[0], machine, a);
1585 result[0] = (GLfloat) (GLint) a[0];
1586 result[1] = (GLfloat) (GLint) a[1];
1587 result[2] = (GLfloat) (GLint) a[2];
1588 result[3] = (GLfloat) (GLint) a[3];
1589 store_vector4(inst, machine, result);
1590 }
1591 break;
1592 case OPCODE_UP2H: /* unpack two 16-bit floats */
1593 {
1594 const GLuint raw = fetch_vector1ui(&inst->SrcReg[0], machine);
1595 GLfloat result[4];
1596 GLushort hx, hy;
1597 hx = raw & 0xffff;
1598 hy = raw >> 16;
1599 result[0] = result[2] = _mesa_half_to_float(hx);
1600 result[1] = result[3] = _mesa_half_to_float(hy);
1601 store_vector4(inst, machine, result);
1602 }
1603 break;
1604 case OPCODE_UP2US: /* unpack two GLushorts */
1605 {
1606 const GLuint raw = fetch_vector1ui(&inst->SrcReg[0], machine);
1607 GLfloat result[4];
1608 GLushort usx, usy;
1609 usx = raw & 0xffff;
1610 usy = raw >> 16;
1611 result[0] = result[2] = usx * (1.0f / 65535.0f);
1612 result[1] = result[3] = usy * (1.0f / 65535.0f);
1613 store_vector4(inst, machine, result);
1614 }
1615 break;
1616 case OPCODE_UP4B: /* unpack four GLbytes */
1617 {
1618 const GLuint raw = fetch_vector1ui(&inst->SrcReg[0], machine);
1619 GLfloat result[4];
1620 result[0] = (((raw >> 0) & 0xff) - 128) / 127.0F;
1621 result[1] = (((raw >> 8) & 0xff) - 128) / 127.0F;
1622 result[2] = (((raw >> 16) & 0xff) - 128) / 127.0F;
1623 result[3] = (((raw >> 24) & 0xff) - 128) / 127.0F;
1624 store_vector4(inst, machine, result);
1625 }
1626 break;
1627 case OPCODE_UP4UB: /* unpack four GLubytes */
1628 {
1629 const GLuint raw = fetch_vector1ui(&inst->SrcReg[0], machine);
1630 GLfloat result[4];
1631 result[0] = ((raw >> 0) & 0xff) / 255.0F;
1632 result[1] = ((raw >> 8) & 0xff) / 255.0F;
1633 result[2] = ((raw >> 16) & 0xff) / 255.0F;
1634 result[3] = ((raw >> 24) & 0xff) / 255.0F;
1635 store_vector4(inst, machine, result);
1636 }
1637 break;
1638 case OPCODE_XPD: /* cross product */
1639 {
1640 GLfloat a[4], b[4], result[4];
1641 fetch_vector4(&inst->SrcReg[0], machine, a);
1642 fetch_vector4(&inst->SrcReg[1], machine, b);
1643 result[0] = a[1] * b[2] - a[2] * b[1];
1644 result[1] = a[2] * b[0] - a[0] * b[2];
1645 result[2] = a[0] * b[1] - a[1] * b[0];
1646 result[3] = 1.0;
1647 store_vector4(inst, machine, result);
1648 if (DEBUG_PROG) {
1649 printf("XPD (%g %g %g %g) = (%g %g %g) X (%g %g %g)\n",
1650 result[0], result[1], result[2], result[3],
1651 a[0], a[1], a[2], b[0], b[1], b[2]);
1652 }
1653 }
1654 break;
1655 case OPCODE_X2D: /* 2-D matrix transform */
1656 {
1657 GLfloat a[4], b[4], c[4], result[4];
1658 fetch_vector4(&inst->SrcReg[0], machine, a);
1659 fetch_vector4(&inst->SrcReg[1], machine, b);
1660 fetch_vector4(&inst->SrcReg[2], machine, c);
1661 result[0] = a[0] + b[0] * c[0] + b[1] * c[1];
1662 result[1] = a[1] + b[0] * c[2] + b[1] * c[3];
1663 result[2] = a[2] + b[0] * c[0] + b[1] * c[1];
1664 result[3] = a[3] + b[0] * c[2] + b[1] * c[3];
1665 store_vector4(inst, machine, result);
1666 }
1667 break;
1668 case OPCODE_END:
1669 return GL_TRUE;
1670 default:
1671 _mesa_problem(ctx, "Bad opcode %d in _mesa_execute_program",
1672 inst->Opcode);
1673 return GL_TRUE; /* return value doesn't matter */
1674 }
1675
1676 numExec++;
1677 if (numExec > maxExec) {
1678 static GLboolean reported = GL_FALSE;
1679 if (!reported) {
1680 _mesa_problem(ctx, "Infinite loop detected in fragment program");
1681 reported = GL_TRUE;
1682 }
1683 return GL_TRUE;
1684 }
1685
1686 } /* for pc */
1687
1688 return GL_TRUE;
1689 }