--- /dev/null
+from nmigen import Module, Signal
+from nmigen.back.pysim import Simulator, Delay, Settle
+from nmigen.test.utils import FHDLTestCase
+from nmigen.cli import rtlil
+import unittest
+from soc.decoder.isa.caller import ISACaller, special_sprs
+from soc.decoder.power_decoder import (create_pdecode)
+from soc.decoder.power_decoder2 import (PowerDecode2)
+from soc.decoder.power_enums import (XER_bits, Function, InternalOp)
+from soc.decoder.selectable_int import SelectableInt
+from soc.simulator.program import Program
+from soc.decoder.isa.all import ISA
+
+from soc.fu.alu.test.test_pipe_caller import TestCase, ALUTestCase, test_data
+from soc.fu.compunits import ALUFunctionUnit
+import random
+
+
+def set_alu_inputs(alu, dec2, sim):
+ # TODO: see https://bugs.libre-soc.org/show_bug.cgi?id=305#c43
+ # detect the immediate here (with m.If(self.i.ctx.op.imm_data.imm_ok))
+ # and place it into data_i.b
+
+ reg3_ok = yield dec2.e.read_reg3.ok
+ reg1_ok = yield dec2.e.read_reg1.ok
+ assert reg3_ok != reg1_ok
+ if reg3_ok:
+ data1 = yield dec2.e.read_reg3.data
+ data1 = sim.gpr(data1).value
+ elif reg1_ok:
+ data1 = yield dec2.e.read_reg1.data
+ data1 = sim.gpr(data1).value
+ else:
+ data1 = 0
+
+ yield alu.p.data_i.a.eq(data1)
+
+ # If there's an immediate, set the B operand to that
+ reg2_ok = yield dec2.e.read_reg2.ok
+ imm_ok = yield dec2.e.imm_data.imm_ok
+ if imm_ok:
+ data2 = yield dec2.e.imm_data.imm
+ elif reg2_ok:
+ data2 = yield dec2.e.read_reg2.data
+ data2 = sim.gpr(data2).value
+ else:
+ data2 = 0
+ yield alu.p.data_i.b.eq(data2)
+
+
+
+def set_extra_alu_inputs(alu, dec2, sim):
+ carry = 1 if sim.spr['XER'][XER_bits['CA']] else 0
+ carry32 = 1 if sim.spr['XER'][XER_bits['CA32']] else 0
+ yield alu.p.data_i.xer_ca[0].eq(carry)
+ yield alu.p.data_i.xer_ca[1].eq(carry32)
+ so = 1 if sim.spr['XER'][XER_bits['SO']] else 0
+ yield alu.p.data_i.xer_so.eq(so)
+
+
+
+class TestRunner(FHDLTestCase):
+ def __init__(self, test_data):
+ super().__init__("run_all")
+ self.test_data = test_data
+
+ def run_all(self):
+ m = Module()
+ comb = m.d.comb
+ instruction = Signal(32)
+
+ pdecode = create_pdecode()
+
+ m.submodules.pdecode2 = pdecode2 = PowerDecode2(pdecode)
+ m.submodules.cu = cu = ALUFunctionUnit()
+
+ comb += cu.oper_i.eq_from_execute1(pdecode2.e)
+ comb += alu.p.valid_i.eq(1)
+ comb += alu.n.ready_i.eq(1)
+ comb += pdecode2.dec.raw_opcode_in.eq(instruction)
+ sim = Simulator(m)
+
+ sim.add_clock(1e-6)
+ def process():
+ for test in self.test_data:
+ print(test.name)
+ program = test.program
+ self.subTest(test.name)
+ simulator = ISA(pdecode2, test.regs, test.sprs, 0)
+ gen = program.generate_instructions()
+ instructions = list(zip(gen, program.assembly.splitlines()))
+
+ index = simulator.pc.CIA.value//4
+ while index < len(instructions):
+ ins, code = instructions[index]
+
+ print("0x{:X}".format(ins & 0xffffffff))
+ print(code)
+
+ # ask the decoder to decode this binary data (endian'd)
+ yield pdecode2.dec.bigendian.eq(0) # little / big?
+ yield instruction.eq(ins) # raw binary instr.
+ yield Settle()
+ fn_unit = yield pdecode2.e.fn_unit
+ self.assertEqual(fn_unit, Function.ALU.value)
+ yield from set_alu_inputs(alu, pdecode2, simulator)
+ yield from set_extra_alu_inputs(alu, pdecode2, simulator)
+ yield
+ opname = code.split(' ')[0]
+ yield from simulator.call(opname)
+ index = simulator.pc.CIA.value//4
+
+ vld = yield alu.n.valid_o
+ while not vld:
+ yield
+ vld = yield alu.n.valid_o
+ yield
+ alu_out = yield alu.n.data_o.o.data
+ out_reg_valid = yield pdecode2.e.write_reg.ok
+ if out_reg_valid:
+ write_reg_idx = yield pdecode2.e.write_reg.data
+ expected = simulator.gpr(write_reg_idx).value
+ print(f"expected {expected:x}, actual: {alu_out:x}")
+ self.assertEqual(expected, alu_out, code)
+ yield from self.check_extra_alu_outputs(alu, pdecode2,
+ simulator, code)
+
+ sim.add_sync_process(process)
+ with sim.write_vcd("simulator.vcd", "simulator.gtkw",
+ traces=[]):
+ sim.run()
+
+ def check_extra_alu_outputs(self, alu, dec2, sim, code):
+ rc = yield dec2.e.rc.data
+ if rc:
+ cr_expected = sim.crl[0].get_range().value
+ cr_actual = yield alu.n.data_o.cr0.data
+ self.assertEqual(cr_expected, cr_actual, code)
+
+ op = yield dec2.e.insn_type
+ if op == InternalOp.OP_CMP.value or \
+ op == InternalOp.OP_CMPEQB.value:
+ bf = yield dec2.dec.BF
+ cr_actual = yield alu.n.data_o.cr0.data
+ cr_expected = sim.crl[bf].get_range().value
+ self.assertEqual(cr_expected, cr_actual, code)
+
+ cry_out = yield dec2.e.output_carry
+ if cry_out:
+ expected_carry = 1 if sim.spr['XER'][XER_bits['CA']] else 0
+ real_carry = yield alu.n.data_o.xer_ca.data[0] # XXX CO not CO32
+ self.assertEqual(expected_carry, real_carry, code)
+ expected_carry32 = 1 if sim.spr['XER'][XER_bits['CA32']] else 0
+ real_carry32 = yield alu.n.data_o.xer_ca.data[1] # XXX CO32
+ self.assertEqual(expected_carry32, real_carry32, code)
+
+
+
+if __name__ == "__main__":
+ unittest.main(exit=False)
+ suite = unittest.TestSuite()
+ suite.addTest(TestRunner(test_data))
+
+ runner = unittest.TextTestRunner()
+ runner.run(suite)