Image stores don't use FMASK, so we have to turn it into identity.
Acked-by: Pierre-Eric Pelloux-Prayer <pierre-eric.pelloux-prayer@amd.com>
struct si_texture *tex,
unsigned first_level, unsigned last_level,
unsigned first_layer, unsigned last_layer,
- bool need_dcc_decompress)
+ bool need_dcc_decompress,
+ bool need_fmask_expand)
{
void* custom_blend;
unsigned layer, checked_last_layer, max_layer;
si_make_CB_shader_coherent(sctx, tex->buffer.b.b.nr_samples,
vi_dcc_enabled(tex, first_level),
tex->surface.u.gfx9.dcc.pipe_aligned);
+
+ if (need_fmask_expand && tex->surface.fmask_offset && tex->fmask_is_not_identity) {
+ si_compute_expand_fmask(&sctx->b, &tex->buffer.b.b);
+ tex->fmask_is_not_identity = false;
+ }
}
static void
si_decompress_color_texture(struct si_context *sctx, struct si_texture *tex,
- unsigned first_level, unsigned last_level)
+ unsigned first_level, unsigned last_level,
+ bool need_fmask_expand)
{
/* CMASK or DCC can be discarded and we can still end up here. */
if (!tex->cmask_buffer && !tex->surface.fmask_size && !tex->surface.dcc_offset)
si_blit_decompress_color(sctx, tex, first_level, last_level, 0,
util_max_layer(&tex->buffer.b.b, first_level),
- false);
+ false, need_fmask_expand);
}
static void
tex = (struct si_texture *)view->texture;
si_decompress_color_texture(sctx, tex, view->u.tex.first_level,
- view->u.tex.last_level);
+ view->u.tex.last_level, false);
}
}
tex = (struct si_texture *)view->resource;
si_decompress_color_texture(sctx, tex, view->u.tex.level,
- view->u.tex.level);
+ view->u.tex.level,
+ view->access & PIPE_IMAGE_ACCESS_WRITE);
}
}
struct si_texture *tex = (struct si_texture *)view->texture;
si_decompress_color_texture(sctx, tex, view->u.tex.first_level,
- view->u.tex.last_level);
+ view->u.tex.last_level, false);
}
util_dynarray_foreach(&sctx->resident_tex_needs_depth_decompress,
struct si_texture *tex = (struct si_texture *)view->resource;
si_decompress_color_texture(sctx, tex, view->u.tex.level,
- view->u.tex.level);
+ view->u.tex.level,
+ view->access & PIPE_IMAGE_ACCESS_WRITE);
}
}
si_decompress_color_texture(sctx,
(struct si_texture*)cb0->texture,
cb0->u.tex.first_layer,
- cb0->u.tex.last_layer);
+ cb0->u.tex.last_layer, false);
}
si_check_render_feedback(sctx);
}
si_blit_decompress_color(sctx, stex, level, level,
- first_layer, last_layer, false);
+ first_layer, last_layer, false, false);
}
}
if (!tex->is_depth && (tex->cmask_buffer || tex->surface.dcc_offset)) {
si_blit_decompress_color(sctx, tex, 0, res->last_level,
0, util_max_layer(res, 0),
- tex->dcc_separate_buffer != NULL);
+ tex->dcc_separate_buffer != NULL, false);
if (tex->surface.display_dcc_offset)
si_retile_dcc(sctx, tex);
si_blit_decompress_color(sctx, tex, 0, tex->buffer.b.b.last_level,
0, util_max_layer(&tex->buffer.b.b, 0),
- true);
+ true, false);
}
void si_init_blit_functions(struct si_context *sctx)
ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 3, saved_img);
}
+/* Expand FMASK to make it identity, so that image stores can ignore it. */
+void si_compute_expand_fmask(struct pipe_context *ctx, struct pipe_resource *tex)
+{
+ struct si_context *sctx = (struct si_context *)ctx;
+ bool is_array = tex->target == PIPE_TEXTURE_2D_ARRAY;
+ unsigned log_fragments = util_logbase2(tex->nr_storage_samples);
+ unsigned log_samples = util_logbase2(tex->nr_samples);
+ assert(tex->nr_samples >= 2);
+
+ /* EQAA FMASK expansion is unimplemented. */
+ if (tex->nr_samples != tex->nr_storage_samples)
+ return;
+
+ si_compute_internal_begin(sctx);
+
+ /* Flush caches and sync engines. */
+ sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH |
+ si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM);
+ si_make_CB_shader_coherent(sctx, tex->nr_samples, true,
+ true /* DCC is not possible with image stores */);
+
+ /* Save states. */
+ void *saved_cs = sctx->cs_shader_state.program;
+ struct pipe_image_view saved_image = {0};
+ util_copy_image_view(&saved_image, &sctx->images[PIPE_SHADER_COMPUTE].views[0]);
+
+ /* Bind the image. */
+ struct pipe_image_view image = {0};
+ image.resource = tex;
+ /* Don't set WRITE so as not to trigger FMASK expansion, causing
+ * an infinite loop. */
+ image.shader_access = image.access = PIPE_IMAGE_ACCESS_READ;
+ image.format = util_format_linear(tex->format);
+ if (is_array)
+ image.u.tex.last_layer = tex->array_size - 1;
+
+ ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &image);
+
+ /* Bind the shader. */
+ void **shader = &sctx->cs_fmask_expand[log_samples - 1][is_array];
+ if (!*shader)
+ *shader = si_create_fmask_expand_cs(ctx, tex->nr_samples, is_array);
+ ctx->bind_compute_state(ctx, *shader);
+
+ /* Dispatch compute. */
+ struct pipe_grid_info info = {0};
+ info.block[0] = 8;
+ info.last_block[0] = tex->width0 % 8;
+ info.block[1] = 8;
+ info.last_block[1] = tex->height0 % 8;
+ info.block[2] = 1;
+ info.grid[0] = DIV_ROUND_UP(tex->width0, 8);
+ info.grid[1] = DIV_ROUND_UP(tex->height0, 8);
+ info.grid[2] = is_array ? tex->array_size : 1;
+
+ ctx->launch_grid(ctx, &info);
+
+ /* Flush caches and sync engines. */
+ sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH |
+ (sctx->chip_class <= GFX8 ? SI_CONTEXT_WB_L2 : 0) |
+ si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM);
+
+ /* Restore previous states. */
+ ctx->bind_compute_state(ctx, saved_cs);
+ ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_image);
+ si_compute_internal_end(sctx);
+
+ /* Array of fully expanded FMASK values, arranged by [log2(fragments)][log2(samples)-1]. */
+#define INVALID 0 /* never used */
+ static const uint64_t fmask_expand_values[][4] = {
+ /* samples */
+ /* 2 (8 bpp) 4 (8 bpp) 8 (8-32bpp) 16 (16-64bpp) fragments */
+ {0x02020202, 0x0E0E0E0E, 0xFEFEFEFE, 0xFFFEFFFE}, /* 1 */
+ {0x02020202, 0xA4A4A4A4, 0xAAA4AAA4, 0xAAAAAAA4}, /* 2 */
+ {INVALID, 0xE4E4E4E4, 0x44443210, 0x4444444444443210}, /* 4 */
+ {INVALID, INVALID, 0x76543210, 0x8888888876543210}, /* 8 */
+ };
+
+ /* Clear FMASK to identity. */
+ struct si_texture *stex = (struct si_texture*)tex;
+ si_clear_buffer(sctx, tex, stex->surface.fmask_offset, stex->surface.fmask_size,
+ (uint32_t*)&fmask_expand_values[log_fragments][log_samples - 1],
+ 4, SI_COHERENCY_SHADER, false);
+}
+
void si_init_compute_blit_functions(struct si_context *sctx)
{
sctx->b.clear_buffer = si_pipe_clear_buffer;
bool uses_dcc = vi_dcc_enabled(tex, level);
unsigned access = view->access;
- /* Clear the write flag when writes can't occur.
- * Note that DCC_DECOMPRESS for MSAA doesn't work in some cases,
- * so we don't wanna trigger it.
- */
- if (tex->is_depth ||
- (!fmask_desc && tex->surface.fmask_size != 0)) {
- assert(!"Z/S and MSAA image stores are not supported");
- access &= ~PIPE_IMAGE_ACCESS_WRITE;
- }
-
assert(!tex->is_depth);
- assert(fmask_desc || tex->surface.fmask_size == 0);
+ assert(fmask_desc || tex->surface.fmask_offset == 0);
if (uses_dcc && !skip_decompress &&
- (view->access & PIPE_IMAGE_ACCESS_WRITE ||
+ (access & PIPE_IMAGE_ACCESS_WRITE ||
!vi_dcc_formats_compatible(screen, res->b.b.format, view->format))) {
/* If DCC can't be disabled, at least decompress it.
* The decompression is relatively cheap if the surface
if (sctx->cs_dcc_retile)
sctx->b.delete_compute_state(&sctx->b, sctx->cs_dcc_retile);
+ for (unsigned i = 0; i < ARRAY_SIZE(sctx->cs_fmask_expand); i++) {
+ for (unsigned j = 0; j < ARRAY_SIZE(sctx->cs_fmask_expand[i]); j++) {
+ if (sctx->cs_fmask_expand[i][j]) {
+ sctx->b.delete_compute_state(&sctx->b,
+ sctx->cs_fmask_expand[i][j]);
+ }
+ }
+ }
+
if (sctx->blitter)
util_blitter_destroy(sctx->blitter);
uint16_t stencil_dirty_level_mask; /* each bit says if that mipmap is compressed */
enum pipe_format db_render_format:16;
uint8_t stencil_clear_value;
+ bool fmask_is_not_identity:1;
bool tc_compatible_htile:1;
bool htile_stencil_disabled:1;
bool depth_cleared:1; /* if it was cleared at least once */
void *cs_clear_render_target;
void *cs_clear_render_target_1d_array;
void *cs_dcc_retile;
+ void *cs_fmask_expand[3][2]; /* [log2(samples)-1][is_array] */
struct si_screen *screen;
struct pipe_debug_callback debug;
struct ac_llvm_compiler compiler; /* only non-threaded compilation */
unsigned width, unsigned height,
bool render_condition_enabled);
void si_retile_dcc(struct si_context *sctx, struct si_texture *tex);
+void si_compute_expand_fmask(struct pipe_context *ctx, struct pipe_resource *tex);
void si_init_compute_blit_functions(struct si_context *sctx);
/* si_cp_dma.c */
void *si_clear_render_target_shader(struct pipe_context *ctx);
void *si_clear_render_target_shader_1d_array(struct pipe_context *ctx);
void *si_create_dcc_retile_cs(struct pipe_context *ctx);
+void *si_create_fmask_expand_cs(struct pipe_context *ctx, unsigned num_samples,
+ bool is_array);
void *si_create_query_result_cs(struct si_context *sctx);
void *gfx10_create_sh_query_result_cs(struct si_context *sctx);
return ctx->create_compute_state(ctx, &state);
}
+/* Load samples from the image, and copy them to the same image. This looks like
+ * a no-op, but it's not. Loads use FMASK, while stores don't, so samples are
+ * reordered to match expanded FMASK.
+ *
+ * After the shader finishes, FMASK should be cleared to identity.
+ */
+void *si_create_fmask_expand_cs(struct pipe_context *ctx, unsigned num_samples,
+ bool is_array)
+{
+ enum tgsi_texture_type target = is_array ? TGSI_TEXTURE_2D_ARRAY_MSAA :
+ TGSI_TEXTURE_2D_MSAA;
+ struct ureg_program *ureg = ureg_create(PIPE_SHADER_COMPUTE);
+ if (!ureg)
+ return NULL;
+
+ ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH, 8);
+ ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT, 8);
+ ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH, 1);
+
+ /* Compute the image coordinates. */
+ struct ureg_src image = ureg_DECL_image(ureg, 0, target, 0, true, false);
+ struct ureg_src tid = ureg_DECL_system_value(ureg, TGSI_SEMANTIC_THREAD_ID, 0);
+ struct ureg_src blk = ureg_DECL_system_value(ureg, TGSI_SEMANTIC_BLOCK_ID, 0);
+ struct ureg_dst coord = ureg_writemask(ureg_DECL_temporary(ureg),
+ TGSI_WRITEMASK_XYZ);
+ ureg_UMAD(ureg, ureg_writemask(coord, TGSI_WRITEMASK_XY),
+ ureg_swizzle(blk, 0, 1, 1, 1), ureg_imm2u(ureg, 8, 8),
+ ureg_swizzle(tid, 0, 1, 1, 1));
+ if (is_array) {
+ ureg_MOV(ureg, ureg_writemask(coord, TGSI_WRITEMASK_Z),
+ ureg_scalar(blk, TGSI_SWIZZLE_Z));
+ }
+
+ /* Load samples, resolving FMASK. */
+ struct ureg_dst sample[8];
+ assert(num_samples <= ARRAY_SIZE(sample));
+
+ for (unsigned i = 0; i < num_samples; i++) {
+ sample[i] = ureg_DECL_temporary(ureg);
+
+ ureg_MOV(ureg, ureg_writemask(coord, TGSI_WRITEMASK_W),
+ ureg_imm1u(ureg, i));
+
+ struct ureg_src srcs[] = {image, ureg_src(coord)};
+ ureg_memory_insn(ureg, TGSI_OPCODE_LOAD, &sample[i], 1, srcs, 2,
+ TGSI_MEMORY_RESTRICT, target, 0);
+ }
+
+ /* Store samples, ignoring FMASK. */
+ for (unsigned i = 0; i < num_samples; i++) {
+ ureg_MOV(ureg, ureg_writemask(coord, TGSI_WRITEMASK_W),
+ ureg_imm1u(ureg, i));
+
+ struct ureg_dst dst_image = ureg_dst(image);
+ struct ureg_src srcs[] = {ureg_src(coord), ureg_src(sample[i])};
+ ureg_memory_insn(ureg, TGSI_OPCODE_STORE, &dst_image, 1, srcs, 2,
+ TGSI_MEMORY_RESTRICT, target, 0);
+ }
+ ureg_END(ureg);
+
+ struct pipe_compute_state state = {};
+ state.ir_type = PIPE_SHADER_IR_TGSI;
+ state.prog = ureg_get_tokens(ureg, NULL);
+
+ void *cs = ctx->create_compute_state(ctx, &state);
+ ureg_destroy(ureg);
+ return cs;
+}
+
/* Create the compute shader that is used to collect the results of gfx10+
* shader queries.
*
struct pipe_surface *surf = sctx->framebuffer.state.cbufs[i];
struct si_texture *tex = (struct si_texture*)surf->texture;
- if (tex->surface.fmask_offset)
+ if (tex->surface.fmask_offset) {
tex->dirty_level_mask |= 1 << surf->u.tex.level;
+ tex->fmask_is_not_identity = true;
+ }
if (tex->dcc_gather_statistics)
tex->separate_dcc_dirty = true;
}