Relevant bugreport: http://bugs.libre-riscv.org/show_bug.cgi?id=99
"""
-from nmigen import Module, Signal, Cat, Elaboratable, Const
+from nmigen import Module, Signal, Cat, Elaboratable, Const, Mux
from nmigen.cli import main, verilog
from ieee754.fpcommon.fpbase import (FPNumBaseRecord, Overflow)
from ieee754.fpcommon.denorm import FPSCData
from ieee754.fpcommon.getop import FPPipeContext
from ieee754.div_rem_sqrt_rsqrt.div_pipe import DivPipeInputData
+from ieee754.div_rem_sqrt_rsqrt.core import DivPipeCoreOperation as DPCOp
class FPDivStage0Mod(Elaboratable):
# it is PURELY the *ENTRY* point into the chain, performing
# "preparation" work.
- with m.If(~self.i.out_do_z):
- # do conversion here, of both self.i.a and self.i.b,
- # into DivPipeInputData dividend and divisor.
-
- # XXX *sigh* magic constants...
- if self.pspec.width == 16:
- if self.pspec.log2_radix == 1:
- extra = 2
- elif self.pspec.log2_radix == 3:
- extra = 2
- else:
- extra = 3
- elif self.pspec.width == 32:
- if self.pspec.log2_radix == 1:
- extra = 3
- else:
- extra = 4
- elif self.pspec.width == 64:
- if self.pspec.log2_radix == 1:
- extra = 2
- elif self.pspec.log2_radix == 3:
- extra = 2
- else:
- extra = 3
-
- # the mantissas, having been de-normalised (and containing
- # a "1" in the MSB) represent numbers in the range 0.5 to
- # 0.9999999-recurring. the min and max range of the
- # result is therefore 0.4999999 (0.5/0.99999) and 1.9999998
- # (0.99999/0.5).
+ # mantissas start in the range [1.0, 2.0)
+
+ is_div = Signal(reset_less=True)
+ need_exp_adj = Signal(reset_less=True)
+
+ # ``self.i.a.rmw`` fractional bits and 2 integer bits
+ adj_a_m_fract_width = self.i.a.rmw
+ adj_a_m = Signal(self.i.a.rmw + 2, reset_less=True)
+
+ adj_a_e = Signal((len(self.i.a.e), True), reset_less=True)
+
+ m.d.comb += [is_div.eq(self.i.ctx.op == int(DPCOp.UDivRem)),
+ need_exp_adj.eq(~is_div & self.i.a.e[0]),
+ adj_a_m.eq(self.i.a.m << need_exp_adj),
+ adj_a_e.eq(self.i.a.e - need_exp_adj)]
+
+ # adj_a_m now in the range [1.0, 4.0) for sqrt/rsqrt
+ # and [1.0, 2.0) for div
+
+ dividend_fract_width = self.pspec.core_config.fract_width * 2
+ dividend = Signal(len(self.o.dividend),
+ reset_less=True)
+ divr_rad_fract_width = self.pspec.core_config.fract_width
+ divr_rad = Signal(len(self.o.divisor_radicand),
+ reset_less=True)
+
+ a_m_fract_width = self.i.a.rmw
+ b_m_fract_width = self.i.b.rmw
+
+ m.d.comb += [
+ dividend.eq(self.i.a.m << (
+ dividend_fract_width - a_m_fract_width)),
+ divr_rad.eq(Mux(is_div,
+ self.i.b.m << (
+ divr_rad_fract_width - b_m_fract_width),
+ adj_a_m << (
+ divr_rad_fract_width - adj_a_m_fract_width))),
+ ]
+
+ m.d.comb += [
+ self.o.dividend.eq(dividend),
+ self.o.divisor_radicand.eq(divr_rad),
+ ]
+
+ # set default since it's not always set; non-zero value for debugging
+ m.d.comb += self.o.operation.eq(1)
+
+ with m.If(~self.i.out_do_z):
# DIV
- with m.If(self.i.ctx.op == 0):
- am0 = Signal(len(self.i.a.m)+1, reset_less=True)
- bm0 = Signal(len(self.i.b.m)+1, reset_less=True)
- m.d.comb += [
- am0.eq(Cat(self.i.a.m, 0)),
- bm0.eq(Cat(self.i.b.m, 0)),
- ]
-
- # zero-extend the mantissas (room for sticky/round/guard)
- # plus the extra MSB.
- m.d.comb += [self.o.z.e.eq(self.i.a.e - self.i.b.e + 1),
+ with m.If(self.i.ctx.op == int(DPCOp.UDivRem)):
+ m.d.comb += [self.o.z.e.eq(self.i.a.e - self.i.b.e),
self.o.z.s.eq(self.i.a.s ^ self.i.b.s),
- self.o.dividend[len(self.i.a.m)+extra:].eq(am0),
- self.o.divisor_radicand.eq(bm0),
- self.o.operation.eq(Const(0)) # XXX DIV operation
- ]
+ self.o.operation.eq(int(DPCOp.UDivRem))
+ ]
# SQRT
- with m.Elif(self.i.ctx.op == 1):
- am0 = Signal(len(self.i.a.m)+3, reset_less=True)
- with m.If(self.i.a.e[0]):
- m.d.comb += am0.eq(Cat(self.i.a.m, 0)<<(extra-2))
- m.d.comb += self.o.z.e.eq(((self.i.a.e+1) >> 1)+1)
- with m.Else():
- m.d.comb += am0.eq(Cat(0, self.i.a.m)<<(extra-2))
- m.d.comb += self.o.z.e.eq((self.i.a.e >> 1)+1)
-
- m.d.comb += [self.o.z.s.eq(self.i.a.s),
- self.o.divisor_radicand.eq(am0),
- self.o.operation.eq(Const(1)) # XXX SQRT operation
- ]
+ with m.Elif(self.i.ctx.op == int(DPCOp.SqrtRem)):
+ m.d.comb += [self.o.z.e.eq(adj_a_e >> 1),
+ self.o.z.s.eq(self.i.a.s),
+ self.o.operation.eq(int(DPCOp.SqrtRem))
+ ]
# RSQRT
- with m.Elif(self.i.ctx.op == 2):
- am0 = Signal(len(self.i.a.m)+3, reset_less=True)
- with m.If(self.i.a.e[0]):
- m.d.comb += am0.eq(Cat(self.i.a.m, 0)<<(extra-3))
- m.d.comb += self.o.z.e.eq(-((self.i.a.e+1) >> 1)+4)
- with m.Else():
- m.d.comb += am0.eq(Cat(self.i.a.m)<<(extra-2))
- m.d.comb += self.o.z.e.eq(-(self.i.a.e >> 1)+4)
-
- m.d.comb += [self.o.z.s.eq(self.i.a.s),
- self.o.divisor_radicand.eq(am0),
- self.o.operation.eq(Const(2)) # XXX RSQRT operation
- ]
+ with m.Elif(self.i.ctx.op == int(DPCOp.RSqrtRem)):
+ m.d.comb += [self.o.z.e.eq(-(adj_a_e >> 1)),
+ self.o.z.s.eq(self.i.a.s),
+ self.o.operation.eq(int(DPCOp.RSqrtRem))
+ ]
# these are required and must not be touched
m.d.comb += self.o.oz.eq(self.i.oz)
self.o = self.ospec()
def ispec(self):
- return DivPipeOutputData(self.pspec) # Q/Rem in...
+ return DivPipeOutputData(self.pspec) # Q/Rem in...
def ospec(self):
# XXX REQUIRED. MUST NOT BE CHANGED. this is the format
# required for ongoing processing (normalisation, correction etc.)
- return FPAddStage1Data(self.pspec) # out to post-process
+ return FPAddStage1Data(self.pspec) # out to post-process
def process(self, i):
return self.o
def elaborate(self, platform):
m = Module()
- # copies sign and exponent and mantissa (mantissa to be overridden
- # below)
+ # copies sign and exponent and mantissa (mantissa and exponent to be
+ # overridden below)
m.d.comb += self.o.z.eq(self.i.z)
# TODO: this is "phase 3" of divide (the very end of the pipeline)
# NOTE: this phase does NOT do ACTUAL DIV processing, it ONLY
# does "conversion" *out* of the Q/REM last stage
+ # Operations and input/output mantissa ranges:
+ # fdiv:
+ # dividend [1.0, 2.0)
+ # divisor [1.0, 2.0)
+ # result (0.5, 2.0)
+ #
+ # fsqrt:
+ # radicand [1.0, 4.0)
+ # result [1.0, 2.0)
+ #
+ # frsqrt:
+ # radicand [1.0, 4.0)
+ # result (0.5, 1.0]
+
+ # following section partially normalizes result to the range [1.0, 2.0)
+
+ qr_int_part = Signal(2, reset_less=True)
+ m.d.comb += qr_int_part.eq(
+ self.i.quotient_root[self.pspec.core_config.fract_width:][:2])
+
+ need_shift = Signal(reset_less=True)
+
+ # shift left when result is less than 2.0 since result_m has 1 more
+ # fraction bit, making assigning to it the equivalent of dividing by 2.
+ # this all comes out to:
+ # if quotient_root < 2.0:
+ # # div by 2 from assign; mul by 2 from shift left
+ # result = (quotient_root * 2) / 2
+ # else:
+ # # div by 2 from assign
+ # result = quotient_root / 2
+ m.d.comb += need_shift.eq(qr_int_part < 2)
+
+ # one extra fraction bit to accommodate the result when not shifting
+ # and for effective div by 2
+ result_m_fract_width = self.pspec.core_config.fract_width + 1
+ # 1 integer bit since the numbers are less than 2.0
+ result_m = Signal(1 + result_m_fract_width, reset_less=True)
+ result_e = Signal(len(self.i.z.e), reset_less=True)
+
+ m.d.comb += [
+ result_m.eq(self.i.quotient_root << need_shift),
+ result_e.eq(self.i.z.e + (1 - need_shift))
+ ]
+
+ # result_m is now in the range [1.0, 2.0)
+
+ # FIXME: below comment block out of date
# NOTE: see FPDivStage0Mod comment. the quotient is assumed
# to be in the range 0.499999-recurring to 1.999998. normalisation
# will take care of that, *however*, it *might* be necessary to
# mantissa to compensate. this is pretty much exactly what's
# done in FPMUL, due to 0.5-0.9999 * 0.5-0.9999 also producing
# values within the range 0.5 to 1.999998
+ # FIXME: above comment block out of date
- with m.If(~self.i.out_do_z):
- mw = self.o.z.m_width
- # TODO: compensate for answer being in range 0.49999 to 1.99998
- pl = len(self.i.quotient_root) + 1
- pt = Signal(pl, reset_less=True)
- m.d.comb += pt.eq(Cat(0, self.i.quotient_root))
- p = Signal(pl-1, reset_less=True) # drop top bit
- with m.If(self.i.quotient_root[-1]):
- m.d.comb += p.eq(pt[1:])
- with m.Else():
- # get 1 bit of extra accuracy if the mantissa top bit is zero
- m.d.comb += p.eq(pt)
- m.d.comb += self.o.z.e.eq(self.i.z.e-1)
-
- # TODO: use p here instead of quotient_root, direct.
- # XXX what to do about remainder? shift that as well?
- # hmm, how about concatenate remainder and quotient...
+ with m.If(~self.i.out_do_z): # FIXME: does this need to be conditional?
m.d.comb += [
- self.o.z.m.eq(p[-mw:]),
- self.o.of.m0.eq(p[-mw]), # copy of LSB
- self.o.of.guard.eq(p[-mw-1]),
- self.o.of.round_bit.eq(p[-mw-2]),
- self.o.of.sticky.eq(p[:-mw-2].bool() | self.i.remainder.bool())
+ self.o.z.m.eq(result_m[3:]),
+ self.o.of.m0.eq(result_m[3]), # copy of LSB
+ self.o.of.guard.eq(result_m[2]),
+ self.o.of.round_bit.eq(result_m[1]),
+ self.o.of.sticky.eq(result_m[0] | self.i.remainder.bool()),
+ self.o.z.e.eq(result_e),
]
m.d.comb += self.o.out_do_z.eq(self.i.out_do_z)
"""
self.mod.setup(m, i)
- m.d.sync += self.norm_stb.eq(0) # sets to zero when not in div1 state
+ m.d.sync += self.norm_stb.eq(0) # sets to zero when not in div1 state
m.d.sync += self.out_of.eq(self.mod.out_of)
m.d.sync += self.out_z.eq(self.mod.out_z)
def action(self, m):
m.next = "normalise_1"
-
# get number of stages, set up loop.
n_stages = pspec.core_config.n_stages
max_n_comb_stages = self.pspec.n_comb_stages
- print ("n_stages", n_stages)
+ print("n_stages", n_stages)
stage_idx = 0
end = False
# needs to convert input from pipestart ospec
if stage_idx == 0:
n_comb_stages -= 1
- kls = FPDivStagesSetup # does n_comb_stages-1 calcs as well
+ kls = FPDivStagesSetup # does n_comb_stages-1 calcs as well
# needs to convert output to pipeend ispec
elif stage_idx + n_comb_stages >= n_stages:
- kls = FPDivStagesFinal # does n_comb_stages-1 calcs as well
+ kls = FPDivStagesFinal # does n_comb_stages-1 calcs as well
end = True
n_comb_stages = n_stages - stage_idx
# intermediary stage
else:
- kls = FPDivStagesIntermediate # does n_comb_stages calcs
+ kls = FPDivStagesIntermediate # does n_comb_stages calcs
# create (in each pipe) a StageChain n_comb_stages in length
pipechain.append(kls(self.pspec, n_comb_stages, stage_idx))
- stage_idx += n_comb_stages # increment so that each CalcStage
- # gets a (correct) unique index
+ stage_idx += n_comb_stages # increment so that each CalcStage
+ # gets a (correct) unique index
self.pipechain = pipechain
return m
+
def roundup(x, mod):
return x if x % mod == 0 else x + mod - x % mod
# get the standard mantissa width, store in the pspec HOWEVER...
fmt = FPFormat.standard(width)
log2_radix = 3 # tested options so far: 1, 2 and 3.
- n_comb_stages = 3 # TODO (depends on how many RS's we want)
-
- # ...5 extra bits on the mantissa: MSB is zero, MSB-1 is 1
- # then there is guard, round and sticky at the LSB end.
- # also: round up to nearest radix
- if width == 16:
- extra = 5
- elif width == 32:
- extra = 6
- elif width == 64:
- extra = 5
- fmt.m_width = roundup(fmt.m_width + extra, log2_radix)
- print ("width", fmt.m_width)
-
- cfg = DivPipeCoreConfig(fmt.m_width, fmt.fraction_width, log2_radix)
+
+ # TODO (depends on how many RS's we want)
+ #n_comb_stages = width // (2 * log2_radix) # 2 compute steps per stage
+ n_comb_stages = 2 # FIXME: switch back
+
+ fraction_width = fmt.fraction_width
+
+ # extra bits needed: guard + round
+ fraction_width += 2
+
+ # rounding width to a multiple of log2_radix is not needed,
+ # DivPipeCoreCalculateStage just internally reduces log2_radix on
+ # the last stage
+ cfg = DivPipeCoreConfig(fmt.width, fraction_width, log2_radix)
self.pspec.fpformat = fmt
- self.pspec.log2_radix = log2_radix
self.pspec.n_comb_stages = n_comb_stages
self.pspec.core_config = cfg