--- /dev/null
+from nmigen.compat.sim import run_simulation
+from nmigen.cli import verilog, rtlil
+from nmigen import Module, Const, Signal, Array, Cat, Elaboratable
+
+from regfile.regfile import RegFileArray, treereduce
+from scoreboard.ldst_matrix import LDSTDepMatrix
+from scoreboard.mem_fu_matrix import MemFUDepMatrix
+from scoreboard.global_pending import GlobalPending
+from scoreboard.group_picker import GroupPicker
+from scoreboard.issue_unit import IssueUnitGroup, IssueUnitArray, RegDecode
+from scoreboard.shadow import ShadowMatrix, BranchSpeculationRecord
+
+from nmutil.latch import SRLatch
+from nmutil.nmoperator import eq
+
+from random import randint, seed
+from copy import deepcopy
+from math import log
+
+
+class Memory(Elaboratable):
+ def __init__(self, regwid, addrw):
+ self.ddepth = regwid/8
+ depth = (1<<addrw) / self.ddepth
+ self.adr = Signal(addrw)
+ self.dat_r = Signal(regwid)
+ self.dat_w = Signal(regwid)
+ self.we = Signal()
+ self.mem = Memory(width=regwid, depth=depth, init=range(0, depth))
+
+ def elaborate(self, platform):
+ m = Module()
+ m.submodules.rdport = rdport = self.mem.read_port()
+ m.submodules.wrport = wrport = self.mem.write_port()
+ m.d.comb += [
+ rdport.addr.eq(self.adr[self.ddepth:]), # ignore low bits
+ self.dat_r.eq(rdport.data),
+ wrport.addr.eq(self.adr),
+ wrport.data.eq(self.dat_w),
+ wrport.en.eq(self.we),
+ ]
+ return m
+
+
+class MemSim:
+ def __init__(self, regwid, addrw):
+ self.regwid = regwid
+ self.ddepth = regwid//8
+ depth = (1<<addrw) // self.ddepth
+ self.mem = list(range(0, depth))
+
+ def ld(self, addr):
+ return self.mem[addr>>self.ddepth]
+
+ def st(self, addr, data):
+ self.mem[addr>>self.ddepth] = data & ((1<<self.regwid)-1)
+
+
+class MemFunctionUnits(Elaboratable):
+
+ def __init__(self, n_int_alus):
+ self.n_int_alus = n_int_alus
+
+ self.ld_i = Signal(n_int_alus, reset_less=True) # Dest R# in
+ self.st_i = Signal(n_int_alus, reset_less=True) # oper1 R# in
+
+ self.load_hit_i = Signal(n_int_alus, reset_less=True) # Load Hit
+ self.stwd_hit_i = Signal(n_int_alus, reset_less=True) # Store Hit
+
+ self.g_int_st_pend_o = Signal(n_int_alus, reset_less=True)
+ self.g_int_ld_pend_o = Signal(n_int_alus, reset_less=True)
+
+ self.ld_rsel_o = Signal(n_int_alus, reset_less=True) # dest reg (bot)
+ self.st_rsel_o = Signal(n_int_alus, reset_less=True) # src1 reg (bot)
+
+ self.req_rel_i = Signal(n_int_alus, reset_less = True)
+ self.ld_hold_st_o = Signal(n_int_alus, reset_less=True)
+ self.st_hold_ld_o = Signal(n_int_alus, reset_less=True)
+
+ self.go_st_i = Signal(n_int_alus, reset_less=True)
+ self.go_ld_i = Signal(n_int_alus, reset_less=True)
+ self.go_die_i = Signal(n_int_alus, reset_less=True)
+ self.req_rel_o = Signal(n_int_alus, reset_less=True)
+ self.fn_issue_i = Signal(n_int_alus, reset_less=True)
+
+ # Note: FURegs ld_pend_o is also outputted from here, for use in WaWGrid
+
+ def elaborate(self, platform):
+ m = Module()
+ comb = m.d.comb
+ sync = m.d.sync
+
+ n_intfus = self.n_int_alus
+
+ # Integer FU-FU Dep Matrix
+ ldstdeps = LDSTDepMatrix(n_intfus)
+ m.submodules.ldstdeps = ldstdeps
+ # Integer FU-Reg Dep Matrix
+ memfudeps = MemFUDepMatrix(n_intfus, n_intfus)
+ m.submodules.memfudeps = memfudeps
+
+ comb += self.g_int_st_pend_o.eq(memfudeps.v_st_rsel_o)
+ comb += self.g_int_ld_pend_o.eq(memfudeps.v_ld_rsel_o)
+
+ comb += memfudeps.st_pend_i.eq(memfudeps.v_st_rsel_o)
+ comb += memfudeps.ld_pend_i.eq(memfudeps.v_ld_rsel_o)
+
+ comb += ldstdeps.st_pend_i.eq(memfudeps.st_pend_o)
+ comb += ldstdeps.ld_pend_i.eq(memfudeps.ld_pend_o)
+ self.ld_pend_o = memfudeps.ld_pend_o # also output for use in WaWGrid
+
+ comb += ldstdeps.issue_i.eq(self.fn_issue_i)
+ comb += ldstdeps.load_hit_i.eq(self.load_hit_i)
+ comb += ldstdeps.stwd_hit_i.eq(self.stwd_hit_i)
+ comb += ldstdeps.go_die_i.eq(self.go_die_i)
+ comb += self.ld_hold_st_o.eq(ldstdeps.ld_hold_st_o)
+ comb += self.st_hold_ld_o.eq(ldstdeps.st_hold_ld_o)
+
+ # Connect function issue / arrays, and dest/src1/src2
+ comb += memfudeps.ld_i.eq(self.ld_i)
+ comb += memfudeps.st_i.eq(self.st_i)
+
+ comb += memfudeps.go_st_i.eq(self.go_st_i)
+ comb += memfudeps.go_ld_i.eq(self.go_ld_i)
+ comb += memfudeps.go_die_i.eq(self.go_die_i)
+ comb += memfudeps.issue_i.eq(self.fn_issue_i)
+
+ comb += self.ld_rsel_o.eq(memfudeps.ld_rsel_o)
+ comb += self.st_rsel_o.eq(memfudeps.st_rsel_o)
+
+ return m
+
+ def __iter__(self):
+ yield self.ld_i
+ yield self.st_i
+ yield self.g_int_st_pend_o
+ yield self.g_int_ld_pend_o
+ yield self.ld_rsel_o
+ yield self.st_rsel_o
+ yield self.req_rel_i
+ yield self.ld_hold_st_o
+ yield self.st_hold_ld_o
+ yield self.load_hit_i
+ yield self.stwd_hit_i
+ yield self.go_st_i
+ yield self.go_ld_i
+ yield self.go_die_i
+ yield self.req_rel_o
+ yield self.fn_issue_i
+
+ def ports(self):
+ return list(self)
+
+
+class Scoreboard(Elaboratable):
+ def __init__(self, rwid, n_regs):
+ """ Inputs:
+
+ * :rwid: bit width of register file(s) - both FP and INT
+ * :n_regs: depth of register file(s) - number of FP and INT regs
+ """
+ self.rwid = rwid
+ self.n_regs = n_regs
+
+ # Register Files
+ self.intregs = RegFileArray(rwid, n_regs)
+ self.fpregs = RegFileArray(rwid, n_regs)
+
+ # issue q needs to get at these
+ self.aluissue = IssueUnitGroup(4)
+ self.brissue = IssueUnitGroup(1)
+ # and these
+ self.alu_oper_i = Signal(4, reset_less=True)
+ self.alu_imm_i = Signal(rwid, reset_less=True)
+ self.br_oper_i = Signal(4, reset_less=True)
+ self.br_imm_i = Signal(rwid, reset_less=True)
+
+ # inputs
+ self.int_dest_i = Signal(max=n_regs, reset_less=True) # Dest R# in
+ self.int_src1_i = Signal(max=n_regs, reset_less=True) # oper1 R# in
+ self.int_src2_i = Signal(max=n_regs, reset_less=True) # oper2 R# in
+ self.reg_enable_i = Signal(reset_less=True) # enable reg decode
+
+ # outputs
+ self.issue_o = Signal(reset_less=True) # instruction was accepted
+ self.busy_o = Signal(reset_less=True) # at least one CU is busy
+
+ # for branch speculation experiment. branch_direction = 0 if
+ # the branch hasn't been met yet. 1 indicates "success", 2 is "fail"
+ # branch_succ and branch_fail are requests to have the current
+ # instruction be dependent on the branch unit "shadow" capability.
+ self.branch_succ_i = Signal(reset_less=True)
+ self.branch_fail_i = Signal(reset_less=True)
+ self.branch_direction_o = Signal(2, reset_less=True)
+
+ def elaborate(self, platform):
+ m = Module()
+ comb = m.d.comb
+ sync = m.d.sync
+
+ m.submodules.intregs = self.intregs
+ m.submodules.fpregs = self.fpregs
+
+ # register ports
+ int_dest = self.intregs.write_port("dest")
+ int_src1 = self.intregs.read_port("src1")
+ int_src2 = self.intregs.read_port("src2")
+
+ fp_dest = self.fpregs.write_port("dest")
+ fp_src1 = self.fpregs.read_port("src1")
+ fp_src2 = self.fpregs.read_port("src2")
+
+ # Int ALUs and Comp Units
+ n_int_alus = 5
+ cua = CompUnitALUs(self.rwid, 3)
+ cub = CompUnitBR(self.rwid, 3)
+ m.submodules.cu = cu = CompUnitsBase(self.rwid, [cua, cub])
+ bgt = cub.bgt # get at the branch computation unit
+ br1 = cub.br1
+
+ # Int FUs
+ m.submodules.intfus = intfus = FunctionUnits(self.n_regs, n_int_alus)
+
+ # Count of number of FUs
+ n_intfus = n_int_alus
+ n_fp_fus = 0 # for now
+
+ # Integer Priority Picker 1: Adder + Subtractor
+ intpick1 = GroupPicker(n_intfus) # picks between add, sub, mul and shf
+ m.submodules.intpick1 = intpick1
+
+ # INT/FP Issue Unit
+ regdecode = RegDecode(self.n_regs)
+ m.submodules.regdecode = regdecode
+ issueunit = IssueUnitArray([self.aluissue, self.brissue])
+ m.submodules.issueunit = issueunit
+
+ # Shadow Matrix. currently n_intfus shadows, to be used for
+ # write-after-write hazards. NOTE: there is one extra for branches,
+ # so the shadow width is increased by 1
+ m.submodules.shadows = shadows = ShadowMatrix(n_intfus, n_intfus, True)
+ m.submodules.bshadow = bshadow = ShadowMatrix(n_intfus, 1, False)
+
+ # record previous instruction to cast shadow on current instruction
+ prev_shadow = Signal(n_intfus)
+
+ # Branch Speculation recorder. tracks the success/fail state as
+ # each instruction is issued, so that when the branch occurs the
+ # allow/cancel can be issued as appropriate.
+ m.submodules.specrec = bspec = BranchSpeculationRecord(n_intfus)
+
+ #---------
+ # ok start wiring things together...
+ # "now hear de word of de looord... dem bones dem bones dem dryy bones"
+ # https://www.youtube.com/watch?v=pYb8Wm6-QfA
+ #---------
+
+ #---------
+ # Issue Unit is where it starts. set up some in/outs for this module
+ #---------
+ comb += [ regdecode.dest_i.eq(self.int_dest_i),
+ regdecode.src1_i.eq(self.int_src1_i),
+ regdecode.src2_i.eq(self.int_src2_i),
+ regdecode.enable_i.eq(self.reg_enable_i),
+ self.issue_o.eq(issueunit.issue_o)
+ ]
+
+ # take these to outside (issue needs them)
+ comb += cua.oper_i.eq(self.alu_oper_i)
+ comb += cua.imm_i.eq(self.alu_imm_i)
+ comb += cub.oper_i.eq(self.br_oper_i)
+ comb += cub.imm_i.eq(self.br_imm_i)
+
+ # TODO: issueunit.f (FP)
+
+ # and int function issue / busy arrays, and dest/src1/src2
+ comb += intfus.dest_i.eq(regdecode.dest_o)
+ comb += intfus.src1_i.eq(regdecode.src1_o)
+ comb += intfus.src2_i.eq(regdecode.src2_o)
+
+ fn_issue_o = issueunit.fn_issue_o
+
+ comb += intfus.fn_issue_i.eq(fn_issue_o)
+ comb += issueunit.busy_i.eq(cu.busy_o)
+ comb += self.busy_o.eq(cu.busy_o.bool())
+
+ #---------
+ # merge shadow matrices outputs
+ #---------
+
+ # these are explained in ShadowMatrix docstring, and are to be
+ # connected to the FUReg and FUFU Matrices, to get them to reset
+ anydie = Signal(n_intfus, reset_less=True)
+ allshadown = Signal(n_intfus, reset_less=True)
+ shreset = Signal(n_intfus, reset_less=True)
+ comb += allshadown.eq(shadows.shadown_o & bshadow.shadown_o)
+ comb += anydie.eq(shadows.go_die_o | bshadow.go_die_o)
+ comb += shreset.eq(bspec.match_g_o | bspec.match_f_o)
+
+ #---------
+ # connect fu-fu matrix
+ #---------
+
+ # Group Picker... done manually for now.
+ go_rd_o = intpick1.go_rd_o
+ go_wr_o = intpick1.go_wr_o
+ go_rd_i = intfus.go_rd_i
+ go_wr_i = intfus.go_wr_i
+ go_die_i = intfus.go_die_i
+ # NOTE: connect to the shadowed versions so that they can "die" (reset)
+ comb += go_rd_i[0:n_intfus].eq(go_rd_o[0:n_intfus]) # rd
+ comb += go_wr_i[0:n_intfus].eq(go_wr_o[0:n_intfus]) # wr
+ comb += go_die_i[0:n_intfus].eq(anydie[0:n_intfus]) # die
+
+ # Connect Picker
+ #---------
+ comb += intpick1.rd_rel_i[0:n_intfus].eq(cu.rd_rel_o[0:n_intfus])
+ comb += intpick1.req_rel_i[0:n_intfus].eq(cu.req_rel_o[0:n_intfus])
+ int_rd_o = intfus.readable_o
+ int_wr_o = intfus.writable_o
+ comb += intpick1.readable_i[0:n_intfus].eq(int_rd_o[0:n_intfus])
+ comb += intpick1.writable_i[0:n_intfus].eq(int_wr_o[0:n_intfus])
+
+ #---------
+ # Shadow Matrix
+ #---------
+
+ comb += shadows.issue_i.eq(fn_issue_o)
+ #comb += shadows.reset_i[0:n_intfus].eq(bshadow.go_die_o[0:n_intfus])
+ comb += shadows.reset_i[0:n_intfus].eq(bshadow.go_die_o[0:n_intfus])
+ #---------
+ # NOTE; this setup is for the instruction order preservation...
+
+ # connect shadows / go_dies to Computation Units
+ comb += cu.shadown_i[0:n_intfus].eq(allshadown)
+ comb += cu.go_die_i[0:n_intfus].eq(anydie)
+
+ # ok connect first n_int_fu shadows to busy lines, to create an
+ # instruction-order linked-list-like arrangement, using a bit-matrix
+ # (instead of e.g. a ring buffer).
+ # XXX TODO
+
+ # when written, the shadow can be cancelled (and was good)
+ for i in range(n_intfus):
+ comb += shadows.s_good_i[i][0:n_intfus].eq(go_wr_o[0:n_intfus])
+
+ # *previous* instruction shadows *current* instruction, and, obviously,
+ # if the previous is completed (!busy) don't cast the shadow!
+ comb += prev_shadow.eq(~fn_issue_o & cu.busy_o)
+ for i in range(n_intfus):
+ comb += shadows.shadow_i[i][0:n_intfus].eq(prev_shadow)
+
+ #---------
+ # ... and this is for branch speculation. it uses the extra bit
+ # tacked onto the ShadowMatrix (hence shadow_wid=n_intfus+1)
+ # only needs to set shadow_i, s_fail_i and s_good_i
+
+ # issue captures shadow_i (if enabled)
+ comb += bshadow.reset_i[0:n_intfus].eq(shreset[0:n_intfus])
+
+ bactive = Signal(reset_less=True)
+ comb += bactive.eq((bspec.active_i | br1.issue_i) & ~br1.go_wr_i)
+
+ # instruction being issued (fn_issue_o) has a shadow cast by the branch
+ with m.If(bactive & (self.branch_succ_i | self.branch_fail_i)):
+ comb += bshadow.issue_i.eq(fn_issue_o)
+ for i in range(n_intfus):
+ with m.If(fn_issue_o & (Const(1<<i))):
+ comb += bshadow.shadow_i[i][0].eq(1)
+
+ # finally, we need an indicator to the test infrastructure as to
+ # whether the branch succeeded or failed, plus, link up to the
+ # "recorder" of whether the instruction was under shadow or not
+
+ with m.If(br1.issue_i):
+ sync += bspec.active_i.eq(1)
+ with m.If(self.branch_succ_i):
+ comb += bspec.good_i.eq(fn_issue_o & 0x1f)
+ with m.If(self.branch_fail_i):
+ comb += bspec.fail_i.eq(fn_issue_o & 0x1f)
+
+ # branch is active (TODO: a better signal: this is over-using the
+ # go_write signal - actually the branch should not be "writing")
+ with m.If(br1.go_wr_i):
+ sync += self.branch_direction_o.eq(br1.data_o+Const(1, 2))
+ sync += bspec.active_i.eq(0)
+ comb += bspec.br_i.eq(1)
+ # branch occurs if data == 1, failed if data == 0
+ comb += bspec.br_ok_i.eq(br1.data_o == 1)
+ for i in range(n_intfus):
+ # *expected* direction of the branch matched against *actual*
+ comb += bshadow.s_good_i[i][0].eq(bspec.match_g_o[i])
+ # ... or it didn't
+ comb += bshadow.s_fail_i[i][0].eq(bspec.match_f_o[i])
+
+ #---------
+ # Connect Register File(s)
+ #---------
+ comb += int_dest.wen.eq(intfus.dest_rsel_o)
+ comb += int_src1.ren.eq(intfus.src1_rsel_o)
+ comb += int_src2.ren.eq(intfus.src2_rsel_o)
+
+ # connect ALUs to regfule
+ comb += int_dest.data_i.eq(cu.data_o)
+ comb += cu.src1_i.eq(int_src1.data_o)
+ comb += cu.src2_i.eq(int_src2.data_o)
+
+ # connect ALU Computation Units
+ comb += cu.go_rd_i[0:n_intfus].eq(go_rd_o[0:n_intfus])
+ comb += cu.go_wr_i[0:n_intfus].eq(go_wr_o[0:n_intfus])
+ comb += cu.issue_i[0:n_intfus].eq(fn_issue_o[0:n_intfus])
+
+ return m
+
+ def __iter__(self):
+ yield from self.intregs
+ yield from self.fpregs
+ yield self.int_dest_i
+ yield self.int_src1_i
+ yield self.int_src2_i
+ yield self.issue_o
+ yield self.branch_succ_i
+ yield self.branch_fail_i
+ yield self.branch_direction_o
+
+ def ports(self):
+ return list(self)
+
+
+
+
+def int_instr(dut, op, imm, src1, src2, dest, branch_success, branch_fail):
+ yield from disable_issue(dut)
+ yield dut.int_dest_i.eq(dest)
+ yield dut.int_src1_i.eq(src1)
+ yield dut.int_src2_i.eq(src2)
+ if (op & (0x3<<2)) != 0: # branch
+ yield dut.brissue.insn_i.eq(1)
+ yield dut.br_oper_i.eq(Const(op & 0x3, 2))
+ yield dut.br_imm_i.eq(imm)
+ dut_issue = dut.brissue
+ else:
+ yield dut.aluissue.insn_i.eq(1)
+ yield dut.alu_oper_i.eq(Const(op & 0x3, 2))
+ yield dut.alu_imm_i.eq(imm)
+ dut_issue = dut.aluissue
+ yield dut.reg_enable_i.eq(1)
+
+ # these indicate that the instruction is to be made shadow-dependent on
+ # (either) branch success or branch fail
+ yield dut.branch_fail_i.eq(branch_fail)
+ yield dut.branch_succ_i.eq(branch_success)
+
+ yield
+ yield from wait_for_issue(dut, dut_issue)
+
+
+def print_reg(dut, rnums):
+ rs = []
+ for rnum in rnums:
+ reg = yield dut.intregs.regs[rnum].reg
+ rs.append("%x" % reg)
+ rnums = map(str, rnums)
+ print ("reg %s: %s" % (','.join(rnums), ','.join(rs)))
+
+
+def create_random_ops(dut, n_ops, shadowing=False, max_opnums=3):
+ insts = []
+ for i in range(n_ops):
+ src1 = randint(1, dut.n_regs-1)
+ src2 = randint(1, dut.n_regs-1)
+ imm = randint(1, (1<<dut.rwid)-1)
+ dest = randint(1, dut.n_regs-1)
+ op = randint(0, max_opnums)
+ opi = 0 if randint(0, 2) else 1 # set true if random is nonzero
+
+ if shadowing:
+ insts.append((src1, src2, dest, op, opi, imm, (0, 0)))
+ else:
+ insts.append((src1, src2, dest, op, opi, imm))
+ return insts
+
+
+
+def scoreboard_sim(dut, alusim):
+
+ seed(0)
+
+ for i in range(50):
+
+ # set random values in the registers
+ for i in range(1, dut.n_regs):
+ val = randint(0, (1<<alusim.rwidth)-1)
+ #val = 31+i*3
+ #val = i
+ yield dut.intregs.regs[i].reg.eq(val)
+ alusim.setval(i, val)
+
+ # create some instructions (some random, some regression tests)
+ instrs = []
+ if True:
+ instrs = create_random_ops(dut, 15, True, 4)
+
+ if False:
+ instrs.append( (1, 2, 2, 1, 1, 20, (0, 0)) )
+
+ if False:
+ instrs.append( (7, 3, 2, 4, (0, 0)) )
+ instrs.append( (7, 6, 6, 2, (0, 0)) )
+ instrs.append( (1, 7, 2, 2, (0, 0)) )
+
+ if False:
+ instrs.append((2, 3, 3, 0, 0, 0, (0, 0)))
+ instrs.append((5, 3, 3, 1, 0, 0, (0, 0)))
+ instrs.append((3, 5, 5, 2, 0, 0, (0, 0)))
+ instrs.append((5, 3, 3, 3, 0, 0, (0, 0)))
+ instrs.append((3, 5, 5, 0, 0, 0, (0, 0)))
+
+ if False:
+ instrs.append( (3, 3, 4, 0, 0, 13979, (0, 0)))
+ instrs.append( (6, 4, 1, 2, 0, 40976, (0, 0)))
+ instrs.append( (1, 4, 7, 4, 1, 23652, (0, 0)))
+
+ if False:
+ instrs.append((5, 6, 2, 1))
+ instrs.append((2, 2, 4, 0))
+ #instrs.append((2, 2, 3, 1))
+
+ if False:
+ instrs.append((2, 1, 2, 3))
+
+ if False:
+ instrs.append((2, 6, 2, 1))
+ instrs.append((2, 1, 2, 0))
+
+ if False:
+ instrs.append((1, 2, 7, 2))
+ instrs.append((7, 1, 5, 0))
+ instrs.append((4, 4, 1, 1))
+
+ if False:
+ instrs.append((5, 6, 2, 2))
+ instrs.append((1, 1, 4, 1))
+ instrs.append((6, 5, 3, 0))
+
+ if False:
+ # Write-after-Write Hazard
+ instrs.append( (3, 6, 7, 2) )
+ instrs.append( (4, 4, 7, 1) )
+
+ if False:
+ # self-read/write-after-write followed by Read-after-Write
+ instrs.append((1, 1, 1, 1))
+ instrs.append((1, 5, 3, 0))
+
+ if False:
+ # Read-after-Write followed by self-read-after-write
+ instrs.append((5, 6, 1, 2))
+ instrs.append((1, 1, 1, 1))
+
+ if False:
+ # self-read-write sandwich
+ instrs.append((5, 6, 1, 2))
+ instrs.append((1, 1, 1, 1))
+ instrs.append((1, 5, 3, 0))
+
+ if False:
+ # very weird failure
+ instrs.append( (5, 2, 5, 2) )
+ instrs.append( (2, 6, 3, 0) )
+ instrs.append( (4, 2, 2, 1) )
+
+ if False:
+ v1 = 4
+ yield dut.intregs.regs[5].reg.eq(v1)
+ alusim.setval(5, v1)
+ yield dut.intregs.regs[3].reg.eq(5)
+ alusim.setval(3, 5)
+ instrs.append((5, 3, 3, 4, (0, 0)))
+ instrs.append((4, 2, 1, 2, (0, 1)))
+
+ if False:
+ v1 = 6
+ yield dut.intregs.regs[5].reg.eq(v1)
+ alusim.setval(5, v1)
+ yield dut.intregs.regs[3].reg.eq(5)
+ alusim.setval(3, 5)
+ instrs.append((5, 3, 3, 4, (0, 0)))
+ instrs.append((4, 2, 1, 2, (1, 0)))
+
+ if False:
+ instrs.append( (4, 3, 5, 1, 0, (0, 0)) )
+ instrs.append( (5, 2, 3, 1, 0, (0, 0)) )
+ instrs.append( (7, 1, 5, 2, 0, (0, 0)) )
+ instrs.append( (5, 6, 6, 4, 0, (0, 0)) )
+ instrs.append( (7, 5, 2, 2, 0, (1, 0)) )
+ instrs.append( (1, 7, 5, 0, 0, (0, 1)) )
+ instrs.append( (1, 6, 1, 2, 0, (1, 0)) )
+ instrs.append( (1, 6, 7, 3, 0, (0, 0)) )
+ instrs.append( (6, 7, 7, 0, 0, (0, 0)) )
+
+ # issue instruction(s), wait for issue to be free before proceeding
+ for i, instr in enumerate(instrs):
+ src1, src2, dest, op, opi, imm, (br_ok, br_fail) = instr
+
+ print ("instr %d: (%d, %d, %d, %d, %d, %d)" % \
+ (i, src1, src2, dest, op, opi, imm))
+ alusim.op(op, opi, imm, src1, src2, dest)
+ yield from instr_q(dut, op, opi, imm, src1, src2, dest,
+ br_ok, br_fail)
+
+ # wait for all instructions to stop before checking
+ while True:
+ iqlen = yield dut.qlen_o
+ if iqlen == 0:
+ break
+ yield
+ yield
+ yield
+ yield
+ yield
+ yield from wait_for_busy_clear(dut)
+
+ # check status
+ yield from alusim.check(dut)
+ yield from alusim.dump(dut)
+
+
+def test_scoreboard():
+ dut = IssueToScoreboard(2, 1, 1, 16, 8, 8)
+ alusim = RegSim(16, 8)
+ memsim = MemSim(16, 16)
+ vl = rtlil.convert(dut, ports=dut.ports())
+ with open("test_scoreboard6600.il", "w") as f:
+ f.write(vl)
+
+ run_simulation(dut, scoreboard_sim(dut, alusim),
+ vcd_name='test_scoreboard6600.vcd')
+
+ #run_simulation(dut, scoreboard_branch_sim(dut, alusim),
+ # vcd_name='test_scoreboard6600.vcd')
+
+
+def test_mem_fus():
+ dut = MemFunctionUnits(4)
+ vl = rtlil.convert(dut, ports=dut.ports())
+ with open("test_mem_fus.il", "w") as f:
+ f.write(vl)
+
+
+if __name__ == '__main__':
+ test_mem_fus()