--- /dev/null
+from nmigen import Module, Signal
+
+# NOTE: to use cxxsim, export NMIGEN_SIM_MODE=cxxsim from the shell
+# Also, check out the cxxsim nmigen branch, and latest yosys from git
+from nmutil.sim_tmp_alternative import Simulator, Settle
+
+from nmigen.cli import rtlil
+import unittest
+from soc.decoder.isa.caller import ISACaller, special_sprs
+from soc.decoder.power_decoder import (create_pdecode)
+from soc.decoder.power_decoder2 import (PowerDecode2)
+from soc.decoder.power_enums import (XER_bits, Function, MicrOp, CryIn)
+from soc.decoder.selectable_int import SelectableInt
+from soc.simulator.program import Program
+from soc.decoder.isa.all import ISA
+from soc.config.endian import bigendian
+from soc.consts import MSR
+
+
+from soc.fu.test.common import (
+ TestAccumulatorBase, skip_case, TestCase, ALUHelpers)
+#from soc.fu.spr.pipeline import SPRBasePipe
+#from soc.fu.spr.pipe_data import SPRPipeSpec
+from soc.fu.mmu.fsm import FSMMMUStage
+from soc.fu.mmu.pipe_data import MMUPipeSpec
+import random
+
+from soc.fu.div.test.helper import (log_rand, get_cu_inputs,
+ set_alu_inputs, DivTestHelper)
+
+from soc.simple.core import NonProductionCore
+from soc.config.test.test_loadstore import TestMemPspec
+
+import power_instruction_analyzer as pia
+
+debughang = 1
+
+def set_fsm_inputs(alu, dec2, sim):
+ # TODO: see https://bugs.libre-soc.org/show_bug.cgi?id=305#c43
+ # detect the immediate here (with m.If(self.i.ctx.op.imm_data.imm_ok))
+ # and place it into data_i.b
+
+ print("Error here")
+ inp = yield from get_cu_inputs(dec2, sim)
+ # set int registers a and b
+ yield from ALUHelpers.set_int_ra(alu, dec2, inp)
+ yield from ALUHelpers.set_int_rb(alu, dec2, inp)
+ # TODO set spr register
+ # yield from ALUHelpers.set_spr_spr1(alu, dec2, inp)
+
+ overflow = None
+ a=None
+ b=None
+ # TODO
+ if 'xer_so' in inp:
+ print("xer_so::::::::::::::::::::::::::::::::::::::::::::::::")
+ so = inp['xer_so']
+ print(so)
+ overflow = pia.OverflowFlags(so=bool(so),
+ ov=False,
+ ov32=False)
+ if 'ra' in inp:
+ a = inp['ra']
+ if 'rb' in inp:
+ b = inp['rb']
+ print(inp)
+ return pia.InstructionInput(ra=a, rb=b, overflow=overflow)
+
+
+def check_fsm_outputs(fsm, pdecode2, sim, code):
+ # check that MMUOutputData is correct
+ return None #TODO
+
+
+# TODO use AllFunctionUnits or NonProductionCore instead of
+
+#incomplete test - connect fsm inputs first
+class MMUTestCase(TestAccumulatorBase):
+ # MMU handles MTSPR, MFSPR, DCBZ and TLBIE.
+ # other instructions here -> must be load/store
+
+ #before running the test case: set DISR and DAR
+
+ def case_mfspr_after_invalid_load(self):
+ lst = [ # TODO -- set SPR on both sinulator and port interface
+ "mfspr 1, 18", # DSISR to reg 1
+ "mfspr 2, 19", # DAR to reg 2
+ # TODO -- verify returned sprvals
+ ]
+
+ initial_regs = [0] * 32
+
+ initial_sprs = {'DSISR': 0x12345678, 'DAR': 0x87654321}
+ self.add_case(Program(lst, bigendian),
+ initial_regs, initial_sprs)
+
+ #def case_ilang(self):
+ # pspec = SPRPipeSpec(id_wid=2)
+ # alu = SPRBasePipe(pspec)
+ # vl = rtlil.convert(alu, ports=alu.ports())
+ # with open("trap_pipeline.il", "w") as f:
+ # f.write(vl)
+
+
+class TestRunner(unittest.TestCase):
+ def __init__(self, test_data):
+ super().__init__("run_all")
+ self.test_data = test_data
+
+ def check_fsm_outputs(self, alu, dec2, sim, code, pia_res):
+
+ rc = yield dec2.e.do.rc.data
+ cridx_ok = yield dec2.e.write_cr.ok
+ cridx = yield dec2.e.write_cr.data
+
+ print("check extra output", repr(code), cridx_ok, cridx)
+ if rc:
+ self.assertEqual(cridx, 0, code)
+
+ sim_o = {}
+ res = {}
+
+ #MMUOutputData does not have xer
+
+ yield from ALUHelpers.get_cr_a(res, alu, dec2)
+ #yield from ALUHelpers.get_xer_ov(res, alu, dec2)
+ yield from ALUHelpers.get_int_o(res, alu, dec2)
+ #yield from ALUHelpers.get_xer_so(res, alu, dec2)
+
+
+ print("res output", res)
+
+ yield from ALUHelpers.get_sim_int_o(sim_o, sim, dec2)
+ yield from ALUHelpers.get_wr_sim_cr_a(sim_o, sim, dec2)
+ #yield from ALUHelpers.get_sim_xer_ov(sim_o, sim, dec2)
+ #yield from ALUHelpers.get_sim_xer_so(sim_o, sim, dec2)
+
+ print("sim output", sim_o)
+
+ print("power-instruction-analyzer result:")
+ print(pia_res)
+ #if pia_res is not None:
+ # with self.subTest(check="pia", sim_o=sim_o, pia_res=str(pia_res)):
+ # pia_o = pia_res_to_output(pia_res)
+ # ALUHelpers.check_int_o(self, res, pia_o, code)
+ # ALUHelpers.check_cr_a(self, res, pia_o, code)
+ # #ALUHelpers.check_xer_ov(self, res, pia_o, code)
+ # #ALUHelpers.check_xer_so(self, res, pia_o, code)
+
+ with self.subTest(check="sim", sim_o=sim_o, pia_res=str(pia_res)):
+ #ALUHelpers.check_int_o(self, res, sim_o, code) # mmu is not an alu
+ ALUHelpers.check_cr_a(self, res, sim_o, code)
+ #ALUHelpers.check_xer_ov(self, res, sim_o, code)
+ #ALUHelpers.check_xer_so(self, res, sim_o, code)
+
+ #oe = yield dec2.e.do.oe.oe
+ #oe_ok = yield dec2.e.do.oe.ok
+ #print("oe, oe_ok", oe, oe_ok)
+ #if not oe or not oe_ok:
+ # # if OE not enabled, XER SO and OV must not be activated
+ # so_ok = yield alu.n.data_o.xer_so.ok
+ # ov_ok = yield alu.n.data_o.xer_ov.ok
+ # print("so, ov", so_ok, ov_ok)
+ # self.assertEqual(ov_ok, False, code)
+ # self.assertEqual(so_ok, False, code)
+
+ def execute(self, fsm, instruction, pdecode2, test):
+ program = test.program
+ sim = ISA(pdecode2, test.regs, test.sprs, test.cr,
+ test.mem, test.msr,
+ bigendian=bigendian)
+ gen = program.generate_instructions()
+ instructions = list(zip(gen, program.assembly.splitlines()))
+
+ pc = sim.pc.CIA.value
+ msr = sim.msr.value
+ index = pc//4
+ while index < len(instructions):
+ ins, code = instructions[index]
+
+ print("pc %08x instr: %08x" % (pc, ins & 0xffffffff))
+ print(code)
+
+ if 'XER' in sim.spr:
+ so = 1 if sim.spr['XER'][XER_bits['SO']] else 0
+ ov = 1 if sim.spr['XER'][XER_bits['OV']] else 0
+ ov32 = 1 if sim.spr['XER'][XER_bits['OV32']] else 0
+ print("before: so/ov/32", so, ov, ov32)
+
+ # ask the decoder to decode this binary data (endian'd)
+ yield pdecode2.dec.bigendian.eq(bigendian) # little / big?
+ yield pdecode2.state.msr.eq(msr) # set MSR in pdecode2
+ yield pdecode2.state.pc.eq(pc) # set PC in pdecode2
+ yield instruction.eq(ins) # raw binary instr.
+ yield Settle()
+
+ fast_in = yield pdecode2.e.read_fast1.data
+ spr_in = yield pdecode2.e.read_spr1.data
+ print("dec2 spr/fast in", fast_in, spr_in)
+
+ fast_out = yield pdecode2.e.write_fast1.data
+ spr_out = yield pdecode2.e.write_spr.data
+ print("dec2 spr/fast in", fast_out, spr_out)
+
+ fn_unit = yield pdecode2.e.do.fn_unit
+ #FIXME this fails -- self.assertEqual(fn_unit, Function.SPR.value)
+ pia_res = yield from set_fsm_inputs(fsm, pdecode2, sim)
+ yield
+ opname = code.split(' ')[0]
+ yield from sim.call(opname)
+ pc = sim.pc.CIA.value
+ msr = sim.msr.value
+ index = pc//4
+ print("pc after %08x" % (pc))
+
+ vld = yield fsm.n.valid_o #fsm
+ while not vld:
+ yield
+ if debughang: print("not valid -- hang")
+ vld = yield fsm.n.valid_o
+ if debughang==2: vld=1
+ yield
+
+ yield from self.check_fsm_outputs(fsm, pdecode2, sim, code, pia_res)
+
+ def run_all(self):
+ m = Module()
+ comb = m.d.comb
+ instruction = Signal(32)
+
+ pdecode = create_pdecode()
+
+ m.submodules.pdecode2 = pdecode2 = PowerDecode2(pdecode)
+
+ pspec = TestMemPspec(ldst_ifacetype='testpi',
+ imem_ifacetype='',
+ addr_wid=48,
+ mask_wid=8,
+ reg_wid=64)
+
+ m.submodules.core = NonProductionCore(pspec)
+
+ # TODO connect outputs of power decoder
+ #comb += fsm.p.data_i.ctx.op.eq_from_execute1(pdecode2.do)
+ #comb += fsm.p.valid_i.eq(1)
+ #comb += fsm.n.ready_i.eq(1)
+ comb += pdecode2.dec.raw_opcode_in.eq(instruction)
+ sim = Simulator(m)
+
+ sim.add_clock(1e-6)
+
+ def process():
+ for test in self.test_data:
+ print("test", test.name)
+ print("sprs", test.sprs)
+ program = test.program
+ with self.subTest(test.name):
+ yield from self.execute(fsm, instruction, pdecode2, test)
+
+ sim.add_sync_process(process)
+ with sim.write_vcd("alu_simulator.vcd", "simulator.gtkw",
+ traces=[]):
+ sim.run()
+
+if __name__ == "__main__":
+ unittest.main(exit=False)
+ suite = unittest.TestSuite()
+ suite.addTest(TestRunner(MMUTestCase().test_data))
+
+ runner = unittest.TextTestRunner()
+ runner.run(suite)