m.next = "normalise_1"
+class FPNormaliseModSingle:
+
+ def __init__(self, width):
+ self.width = width
+ self.in_z = FPNumBase(width, False)
+ self.out_z = FPNumBase(width, False)
+
+ def setup(self, m, in_z, out_z, modname):
+ """ links module to inputs and outputs
+ """
+ m.submodules.normalise = self
+ m.d.comb += self.in_z.copy(in_z)
+ m.d.comb += out_z.copy(self.out_z)
+
+ def elaborate(self, platform):
+ m = Module()
+
+ mwid = self.out_z.m_width+2
+ pe = PriorityEncoder(mwid)
+ m.submodules.norm_pe = pe
+
+ m.submodules.norm1_out_z = self.out_z
+ m.submodules.norm1_in_z = self.in_z
+
+ in_z = FPNumBase(self.width, False)
+ in_of = Overflow()
+ m.submodules.norm1_insel_z = in_z
+ m.submodules.norm1_insel_overflow = in_of
+
+ espec = (len(in_z.e), True)
+ ediff_n126 = Signal(espec, reset_less=True)
+ msr = MultiShiftRMerge(mwid, espec)
+ m.submodules.multishift_r = msr
+
+ m.d.comb += in_z.copy(self.in_z)
+ m.d.comb += in_of.copy(self.in_of)
+ # initialise out from in (overridden below)
+ m.d.comb += self.out_z.copy(in_z)
+ m.d.comb += self.out_of.copy(in_of)
+ # normalisation increase/decrease conditions
+ decrease = Signal(reset_less=True)
+ m.d.comb += decrease.eq(in_z.m_msbzero)
+ # decrease exponent
+ with m.If(decrease):
+ # *sigh* not entirely obvious: count leading zeros (clz)
+ # with a PriorityEncoder: to find from the MSB
+ # we reverse the order of the bits.
+ temp_m = Signal(mwid, reset_less=True)
+ temp_s = Signal(mwid+1, reset_less=True)
+ clz = Signal((len(in_z.e), True), reset_less=True)
+ m.d.comb += [
+ # cat round and guard bits back into the mantissa
+ temp_m.eq(Cat(in_of.round_bit, in_of.guard, in_z.m)),
+ pe.i.eq(temp_m[::-1]), # inverted
+ clz.eq(pe.o), # count zeros from MSB down
+ temp_s.eq(temp_m << clz), # shift mantissa UP
+ self.out_z.e.eq(in_z.e - clz), # DECREASE exponent
+ self.out_z.m.eq(temp_s[2:]), # exclude bits 0&1
+ ]
+
+ return m
+
+
class FPNorm1ModSingle:
def __init__(self, width):