--- /dev/null
+# SPDX-License-Identifier: LGPL-2.1-or-later
+# See Notices.txt for copyright information
+
+"""
+Copyright (C) 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
+
+dynamically-partitionable "repl" class, directly equivalent
+to nmigen Repl
+
+See:
+
+* http://libre-riscv.org/3d_gpu/architecture/dynamic_simd/repl
+* http://bugs.libre-riscv.org/show_bug.cgi?id=709
+
+"""
+
+from nmigen import Signal, Module, Elaboratable, Cat, Repl
+from nmigen.back.pysim import Simulator, Settle
+from nmigen.cli import rtlil
+
+from ieee754.part_mul_add.partpoints import PartitionPoints
+from ieee754.part.partsig import PartitionedSignal
+
+
+def get_runlengths(pbit, size):
+ res = []
+ count = 1
+ # identify where the 1s are, which indicates "start of a new partition"
+ # we want a list of the lengths of all partitions
+ for i in range(size):
+ if pbit & (1<<i): # it's a 1: ends old partition, starts new
+ res.append(count) # add partition
+ count = 1 # start again
+ else:
+ count += 1
+ # end reached, add whatever is left. could have done this by creating
+ # "fake" extra bit on the partitions, but hey
+ res.append(count)
+
+ print ("get_runlengths", bin(pbit), size, res)
+
+ return res
+
+
+class PartitionedRepl(Elaboratable):
+ def __init__(self, repl, qty, mask):
+ """Create a ``PartitionedRepl`` operator
+ """
+ # work out the length (total of all PartitionedSignals)
+ self.repl = repl
+ self.qty = qty
+ width, signed = repl.shape()
+ if isinstance(mask, dict):
+ mask = list(mask.values())
+ self.mask = mask
+ self.shape = (width * qty), signed
+ self.output = PartitionedSignal(mask, self.shape, reset_less=True)
+ self.partition_points = self.output.partpoints
+ self.mwidth = len(self.partition_points)+1
+
+ def get_chunk(self, y, numparts):
+ x = self.repl
+ if not isinstance(x, PartitionedSignal):
+ # assume Scalar. totally different rules
+ end = numparts * (len(x) // self.mwidth)
+ return x[:end]
+ # PartitionedSignal: start at partition point
+ keys = [0] + list(x.partpoints.keys()) + [len(x)]
+ # get current index and increment it (for next Repl chunk)
+ upto = y[0]
+ y[0] += numparts
+ print ("getting", upto, numparts, keys, len(x))
+ # get the partition point as far as we are up to
+ start = keys[upto]
+ end = keys[upto+numparts]
+ print ("start end", start, end, len(x))
+ return x[start:end]
+
+ def elaborate(self, platform):
+ m = Module()
+ comb = m.d.comb
+
+ keys = list(self.partition_points.keys())
+ print ("keys", keys, "values", self.partition_points.values())
+ print ("mask", self.mask)
+ outpartsize = len(self.output) // self.mwidth
+ width, signed = self.output.shape()
+ print ("width, signed", width, signed)
+
+ with m.Switch(Cat(self.mask)):
+ # for each partition possibility, create a Repl sequence
+ for pbit in range(1<<len(keys)):
+ # set up some indices pointing to where things have got
+ # then when called below in the inner nested loop they give
+ # the relevant sequential chunk
+ output = []
+ y = [0]
+ # get a list of the length of each partition run
+ runlengths = get_runlengths(pbit, len(keys))
+ print ("pbit", bin(pbit), "runs", runlengths)
+ for i in runlengths: # for each partition
+ thing = self.get_chunk(y, i) # get sequential chunk
+ output.append(Repl(thing, self.qty)) # and replicate it
+ with m.Case(pbit):
+ # direct access to the underlying Signal
+ comb += self.output.sig.eq(Cat(*output)) # cat all chunks
+
+ return m
+
+ def ports(self):
+ if isinstance(self.repl, PartitionedSignal):
+ return [self.repl.lower(), self.output.lower()]
+ return [self.repl, self.output.lower()]
+
+
+if __name__ == "__main__":
+ from ieee754.part.test.test_partsig import create_simulator
+ m = Module()
+ mask = Signal(3)
+ a = PartitionedSignal(mask, 32)
+ m.submodules.repl = repl = PartitionedRepl(a, 2, mask)
+ omask = (1<<len(repl.output))-1
+
+ traces = repl.ports()
+ vl = rtlil.convert(repl, ports=traces)
+ with open("part_repl.il", "w") as f:
+ f.write(vl)
+
+ sim = create_simulator(m, traces, "partrepl")
+
+ def process():
+ yield mask.eq(0b000)
+ yield a.sig.eq(0xa12345c7)
+ yield Settle()
+ out = yield repl.output.sig
+ print("out 000", bin(out&omask), hex(out&omask))
+ yield mask.eq(0b010)
+ yield Settle()
+ out = yield repl.output.sig
+ print("out 010", bin(out&omask), hex(out&omask))
+ yield mask.eq(0b110)
+ yield Settle()
+ out = yield repl.output.sig
+ print("out 110", bin(out&omask), hex(out&omask))
+ yield mask.eq(0b111)
+ yield Settle()
+ out = yield repl.output.sig
+ print("out 111", bin(out&omask), hex(out&omask))
+
+ sim.add_process(process)
+ with sim.write_vcd("partition_repl.vcd", "partition_repl.gtkw",
+ traces=traces):
+ sim.run()
+
+ # Scalar
+ m = Module()
+ mask = Signal(3)
+ a = Signal(32)
+ m.submodules.ass = ass = PartitionedRepl(a, 2, mask)
+ omask = (1<<len(ass.output))-1
+
+ traces = ass.ports()
+ sim = create_simulator(m, traces, "partass")
+
+ def process():
+ yield mask.eq(0b000)
+ yield a.eq(0xa12345c7)
+ yield Settle()
+ out = yield ass.output.sig
+ print("out 000", bin(out&omask), hex(out&omask))
+ yield mask.eq(0b010)
+ yield Settle()
+ out = yield ass.output.sig
+ print("out 010", bin(out&omask), hex(out&omask))
+ yield mask.eq(0b110)
+ yield Settle()
+ out = yield ass.output.sig
+ print("out 110", bin(out&omask), hex(out&omask))
+ yield mask.eq(0b111)
+ yield Settle()
+ out = yield ass.output.sig
+ print("out 111", bin(out&omask), hex(out&omask))
+
+ sim.add_process(process)
+ with sim.write_vcd("partition_repl_scalar.vcd",
+ "partition_repl_scalar.gtkw",
+ traces=traces):
+ sim.run()