--- /dev/null
+from nmigen.compat.sim import run_simulation
+from nmigen.cli import verilog, rtlil
+from nmigen.hdl.ast import unsigned
+from nmigen import Module, Const, Signal, Array, Cat, Elaboratable, Memory
+from nmigen.back.pysim import Delay
+
+from soc.regfile.regfile import RegFileArray, treereduce
+from soc.scoremulti.fu_fu_matrix import FUFUDepMatrix
+from soc.scoremulti.fu_reg_matrix import FURegDepMatrix
+from soc.scoreboard.global_pending import GlobalPending
+from soc.scoreboard.group_picker import GroupPicker
+from soc.scoreboard.issue_unit import IssueUnitGroup, IssueUnitArray, RegDecode
+from soc.scoreboard.shadow import ShadowMatrix, BranchSpeculationRecord
+from soc.scoreboard.instruction_q import Instruction, InstructionQ
+from soc.scoreboard.memfu import MemFunctionUnits
+
+from soc.experiment.compalu import ComputationUnitNoDelay
+from soc.experiment.compldst import LDSTCompUnit
+from soc.experiment.testmem import TestMemory
+
+from soc.experiment.alu_hier import ALU, BranchALU, CompALUOpSubset
+
+from soc.decoder.power_enums import InternalOp, Function
+from soc.decoder.power_decoder import (create_pdecode)
+from soc.decoder.power_decoder2 import (PowerDecode2)
+from soc.simulator.program import Program
+
+
+from nmutil.latch import SRLatch
+from nmutil.nmoperator import eq
+
+from random import randint, seed
+from copy import deepcopy
+from math import log
+
+from soc.experiment.sim import RegSim, MemSim
+from soc.experiment.sim import IADD, ISUB, IMUL, ISHF, IBGT, IBLT, IBEQ, IBNE
+
+
+class CompUnitsBase(Elaboratable):
+ """ Computation Unit Base class.
+
+ Amazingly, this class works recursively. It's supposed to just
+ look after some ALUs (that can handle the same operations),
+ grouping them together, however it turns out that the same code
+ can also group *groups* of Computation Units together as well.
+
+ Basically it was intended just to concatenate the ALU's issue,
+ go_rd etc. signals together, which start out as bits and become
+ sequences. Turns out that the same trick works just as well
+ on Computation Units!
+
+ So this class may be used recursively to present a top-level
+ sequential concatenation of all the signals in and out of
+ ALUs, whilst at the same time making it convenient to group
+ ALUs together.
+
+ At the lower level, the intent is that groups of (identical)
+ ALUs may be passed the same operation. Even beyond that,
+ the intent is that that group of (identical) ALUs actually
+ share the *same pipeline* and as such become a "Concurrent
+ Computation Unit" as defined by Mitch Alsup (see section
+ 11.4.9.3)
+ """
+
+ def __init__(self, rwid, units, ldstmode=False):
+ """ Inputs:
+
+ * :rwid: bit width of register file(s) - both FP and INT
+ * :units: sequence of ALUs (or CompUnitsBase derivatives)
+ """
+ self.units = units
+ self.ldstmode = ldstmode
+ self.rwid = rwid
+ self.rwid = rwid
+ if units and isinstance(units[0], CompUnitsBase):
+ self.n_units = 0
+ for u in self.units:
+ self.n_units += u.n_units
+ else:
+ self.n_units = len(units)
+
+ n_units = self.n_units
+
+ # inputs
+ self.issue_i = Signal(n_units, reset_less=True)
+ self.go_rd_i = Signal(n_units, reset_less=True)
+ self.go_wr_i = Signal(n_units, reset_less=True)
+ self.shadown_i = Signal(n_units, reset_less=True)
+ self.go_die_i = Signal(n_units, reset_less=True)
+ if ldstmode:
+ self.go_ad_i = Signal(n_units, reset_less=True)
+ self.go_st_i = Signal(n_units, reset_less=True)
+
+ # outputs
+ self.busy_o = Signal(n_units, reset_less=True)
+ self.rd_rel_o = Signal(n_units, reset_less=True)
+ self.req_rel_o = Signal(n_units, reset_less=True)
+ self.done_o = Signal(n_units, reset_less=True)
+ if ldstmode:
+ self.ld_o = Signal(n_units, reset_less=True) # op is LD
+ self.st_o = Signal(n_units, reset_less=True) # op is ST
+ self.adr_rel_o = Signal(n_units, reset_less=True)
+ self.sto_rel_o = Signal(n_units, reset_less=True)
+ self.load_mem_o = Signal(n_units, reset_less=True)
+ self.stwd_mem_o = Signal(n_units, reset_less=True)
+ self.addr_o = Signal(rwid, reset_less=True)
+
+ # in/out register data (note: not register#, actual data)
+ self.data_o = Signal(rwid, reset_less=True)
+ self.src1_i = Signal(rwid, reset_less=True)
+ self.src2_i = Signal(rwid, reset_less=True)
+ # input operand
+
+ def elaborate(self, platform):
+ m = Module()
+ comb = m.d.comb
+
+ for i, alu in enumerate(self.units):
+ setattr(m.submodules, "comp%d" % i, alu)
+
+ go_rd_l = []
+ go_wr_l = []
+ issue_l = []
+ busy_l = []
+ req_rel_l = []
+ done_l = []
+ rd_rel_l = []
+ shadow_l = []
+ godie_l = []
+ for alu in self.units:
+ req_rel_l.append(alu.req_rel_o)
+ done_l.append(alu.done_o)
+ rd_rel_l.append(alu.rd_rel_o)
+ shadow_l.append(alu.shadown_i)
+ godie_l.append(alu.go_die_i)
+ go_wr_l.append(alu.go_wr_i)
+ go_rd_l.append(alu.go_rd_i)
+ issue_l.append(alu.issue_i)
+ busy_l.append(alu.busy_o)
+ comb += self.rd_rel_o.eq(Cat(*rd_rel_l))
+ comb += self.req_rel_o.eq(Cat(*req_rel_l))
+ comb += self.done_o.eq(Cat(*done_l))
+ comb += self.busy_o.eq(Cat(*busy_l))
+ comb += Cat(*godie_l).eq(self.go_die_i)
+ comb += Cat(*shadow_l).eq(self.shadown_i)
+ comb += Cat(*go_wr_l).eq(self.go_wr_i)
+ comb += Cat(*go_rd_l).eq(self.go_rd_i)
+ comb += Cat(*issue_l).eq(self.issue_i)
+
+ # connect data register input/output
+
+ # merge (OR) all integer FU / ALU outputs to a single value
+ if self.units:
+ data_o = treereduce(self.units, "data_o")
+ comb += self.data_o.eq(data_o)
+ if self.ldstmode:
+ addr_o = treereduce(self.units, "addr_o")
+ comb += self.addr_o.eq(addr_o)
+
+ for i, alu in enumerate(self.units):
+ comb += alu.src1_i.eq(self.src1_i)
+ comb += alu.src2_i.eq(self.src2_i)
+
+ if not self.ldstmode:
+ return m
+
+ ldmem_l = []
+ stmem_l = []
+ go_ad_l = []
+ go_st_l = []
+ ld_l = []
+ st_l = []
+ adr_rel_l = []
+ sto_rel_l = []
+ for alu in self.units:
+ ld_l.append(alu.ld_o)
+ st_l.append(alu.st_o)
+ adr_rel_l.append(alu.adr_rel_o)
+ sto_rel_l.append(alu.sto_rel_o)
+ ldmem_l.append(alu.load_mem_o)
+ stmem_l.append(alu.stwd_mem_o)
+ go_ad_l.append(alu.go_ad_i)
+ go_st_l.append(alu.go_st_i)
+ comb += self.ld_o.eq(Cat(*ld_l))
+ comb += self.st_o.eq(Cat(*st_l))
+ comb += self.adr_rel_o.eq(Cat(*adr_rel_l))
+ comb += self.sto_rel_o.eq(Cat(*sto_rel_l))
+ comb += self.load_mem_o.eq(Cat(*ldmem_l))
+ comb += self.stwd_mem_o.eq(Cat(*stmem_l))
+ comb += Cat(*go_ad_l).eq(self.go_ad_i)
+ comb += Cat(*go_st_l).eq(self.go_st_i)
+
+ return m
+
+
+class CompUnitLDSTs(CompUnitsBase):
+
+ def __init__(self, rwid, opwid, n_ldsts, mem):
+ """ Inputs:
+
+ * :rwid: bit width of register file(s) - both FP and INT
+ * :opwid: operand bit width
+ """
+ self.opwid = opwid
+
+ # inputs
+ self.oper_i = Signal(opwid, reset_less=True)
+ self.imm_i = Signal(rwid, reset_less=True)
+
+ # Int ALUs
+ self.alus = []
+ for i in range(n_ldsts):
+ self.alus.append(ALU(rwid))
+
+ units = []
+ for alu in self.alus:
+ aluopwid = 4 # see compldst.py for "internal" opcode
+ units.append(LDSTCompUnit(rwid, aluopwid, alu, mem))
+
+ CompUnitsBase.__init__(self, rwid, units, ldstmode=True)
+
+ def elaborate(self, platform):
+ m = CompUnitsBase.elaborate(self, platform)
+ comb = m.d.comb
+
+ # hand the same operation to all units, 4 lower bits though
+ for alu in self.units:
+ comb += alu.oper_i[0:4].eq(self.oper_i)
+ comb += alu.imm_i.eq(self.imm_i)
+ comb += alu.isalu_i.eq(0)
+
+ return m
+
+
+class CompUnitALUs(CompUnitsBase):
+
+ def __init__(self, rwid, opwid, n_alus):
+ """ Inputs:
+
+ * :rwid: bit width of register file(s) - both FP and INT
+ * :opwid: operand bit width
+ """
+ self.opwid = opwid
+
+ # inputs
+ self.op = CompALUOpSubset("cua_i")
+ self.oper_i = Signal(opwid, reset_less=True)
+ self.imm_i = Signal(rwid, reset_less=True)
+
+ # Int ALUs
+ alus = []
+ for i in range(n_alus):
+ alus.append(ALU(rwid))
+
+ units = []
+ for alu in alus:
+ aluopwid = 3 # extra bit for immediate mode
+ units.append(ComputationUnitNoDelay(rwid, alu))
+
+ CompUnitsBase.__init__(self, rwid, units)
+
+ def elaborate(self, platform):
+ m = CompUnitsBase.elaborate(self, platform)
+ comb = m.d.comb
+
+ # hand the subset of operation to ALUs
+ for alu in self.units:
+ comb += alu.oper_i.eq(self.op)
+ #comb += alu.oper_i[0:3].eq(self.oper_i)
+ #comb += alu.imm_i.eq(self.imm_i)
+
+ return m
+
+
+class CompUnitBR(CompUnitsBase):
+
+ def __init__(self, rwid, opwid):
+ """ Inputs:
+
+ * :rwid: bit width of register file(s) - both FP and INT
+ * :opwid: operand bit width
+
+ Note: bgt unit is returned so that a shadow unit can be created
+ for it
+ """
+ self.opwid = opwid
+
+ # inputs
+ self.oper_i = Signal(opwid, reset_less=True)
+ self.imm_i = Signal(rwid, reset_less=True)
+
+ # Branch ALU and CU
+ self.bgt = BranchALU(rwid)
+ aluopwid = 3 # extra bit for immediate mode
+ self.br1 = ComputationUnitNoDelay(rwid, self.bgt)
+ CompUnitsBase.__init__(self, rwid, [self.br1])
+
+ def elaborate(self, platform):
+ m = CompUnitsBase.elaborate(self, platform)
+ comb = m.d.comb
+
+ # hand the same operation to all units
+ for alu in self.units:
+ comb += alu.oper_i.eq(self.oper_i)
+ #comb += alu.imm_i.eq(self.imm_i)
+
+ return m
+
+
+class FunctionUnits(Elaboratable):
+
+ def __init__(self, n_regs, n_int_alus):
+ self.n_regs = n_regs
+ self.n_int_alus = n_int_alus
+
+ self.dest_i = Signal(n_regs, reset_less=True) # Dest R# in
+ self.src1_i = Signal(n_regs, reset_less=True) # oper1 R# in
+ self.src2_i = Signal(n_regs, reset_less=True) # oper2 R# in
+
+ self.g_int_rd_pend_o = Signal(n_regs, reset_less=True)
+ self.g_int_wr_pend_o = Signal(n_regs, reset_less=True)
+
+ self.dest_rsel_o = Signal(n_regs, reset_less=True) # dest reg (bot)
+ self.src1_rsel_o = Signal(n_regs, reset_less=True) # src1 reg (bot)
+ self.src2_rsel_o = Signal(n_regs, reset_less=True) # src2 reg (bot)
+
+ self.readable_o = Signal(n_int_alus, reset_less=True)
+ self.writable_o = Signal(n_int_alus, reset_less=True)
+
+ self.go_rd_i = Signal(n_int_alus, reset_less=True)
+ self.go_wr_i = Signal(n_int_alus, reset_less=True)
+ self.go_die_i = Signal(n_int_alus, reset_less=True)
+ self.fn_issue_i = Signal(n_int_alus, reset_less=True)
+
+ # Note: FURegs wr_pend_o is also outputted from here, for use in WaWGrid
+
+ def elaborate(self, platform):
+ m = Module()
+ comb = m.d.comb
+ sync = m.d.sync
+
+ n_intfus = self.n_int_alus
+
+ # Integer FU-FU Dep Matrix
+ intfudeps = FUFUDepMatrix(n_intfus, n_intfus, 1, 1)
+ m.submodules.intfudeps = intfudeps
+ # Integer FU-Reg Dep Matrix
+ intregdeps = FURegDepMatrix(n_intfus, self.n_regs, 2, 1)
+ m.submodules.intregdeps = intregdeps
+
+ comb += self.g_int_rd_pend_o.eq(intregdeps.v_rd_rsel_o)
+ comb += self.g_int_wr_pend_o.eq(intregdeps.v_wr_rsel_o)
+
+ comb += intregdeps.rd_pend_i.eq(intregdeps.v_rd_rsel_o)
+ comb += intregdeps.wr_pend_i.eq(intregdeps.v_wr_rsel_o)
+
+ comb += intfudeps.rd_pend_i.eq(intregdeps.rd_pend_o)
+ comb += intfudeps.wr_pend_i.eq(intregdeps.wr_pend_o)
+ self.wr_pend_o = intregdeps.wr_pend_o # also output for use in WaWGrid
+
+ comb += intfudeps.issue_i.eq(self.fn_issue_i)
+ comb += intfudeps.go_rd_i[0].eq(self.go_rd_i)
+ comb += intfudeps.go_wr_i[0].eq(self.go_wr_i)
+ comb += intfudeps.go_die_i.eq(self.go_die_i)
+ comb += self.readable_o.eq(intfudeps.readable_o)
+ comb += self.writable_o.eq(intfudeps.writable_o)
+
+ # Connect function issue / arrays, and dest/src1/src2
+ comb += intregdeps.dest_i[0].eq(self.dest_i)
+ comb += intregdeps.src_i[0].eq(self.src1_i)
+ comb += intregdeps.src_i[1].eq(self.src2_i)
+
+ comb += intregdeps.go_rd_i[0].eq(self.go_rd_i)
+ comb += intregdeps.go_rd_i[1].eq(self.go_rd_i)
+ comb += intregdeps.go_wr_i[0].eq(self.go_wr_i)
+ comb += intregdeps.go_die_i.eq(self.go_die_i)
+ comb += intregdeps.issue_i.eq(self.fn_issue_i)
+
+ comb += self.dest_rsel_o.eq(intregdeps.dest_rsel_o[0])
+ comb += self.src1_rsel_o.eq(intregdeps.src_rsel_o[0])
+ comb += self.src2_rsel_o.eq(intregdeps.src_rsel_o[1])
+
+ return m
+
+
+class Scoreboard(Elaboratable):
+ def __init__(self, rwid, n_regs):
+ """ Inputs:
+
+ * :rwid: bit width of register file(s) - both FP and INT
+ * :n_regs: depth of register file(s) - number of FP and INT regs
+ """
+ self.rwid = rwid
+ self.n_regs = n_regs
+
+ # Register Files
+ self.intregs = RegFileArray(rwid, n_regs)
+ self.fpregs = RegFileArray(rwid, n_regs)
+
+ # Memory (test for now)
+ self.mem = TestMemory(self.rwid, 8) # not too big, takes too long
+
+ # issue q needs to get at these
+ self.aluissue = IssueUnitGroup(2)
+ self.lsissue = IssueUnitGroup(2)
+ self.brissue = IssueUnitGroup(1)
+ # and these
+ self.alu_op = CompALUOpSubset("alu")
+ self.br_oper_i = Signal(4, reset_less=True)
+ self.br_imm_i = Signal(rwid, reset_less=True)
+ self.ls_oper_i = Signal(4, reset_less=True)
+ self.ls_imm_i = Signal(rwid, reset_less=True)
+
+ # inputs
+ self.int_dest_i = Signal(range(n_regs), reset_less=True) # Dest R# in
+ self.int_src1_i = Signal(range(n_regs), reset_less=True) # oper1 R# in
+ self.int_src2_i = Signal(range(n_regs), reset_less=True) # oper2 R# in
+ self.reg_enable_i = Signal(reset_less=True) # enable reg decode
+
+ # outputs
+ self.issue_o = Signal(reset_less=True) # instruction was accepted
+ self.busy_o = Signal(reset_less=True) # at least one CU is busy
+
+ # for branch speculation experiment. branch_direction = 0 if
+ # the branch hasn't been met yet. 1 indicates "success", 2 is "fail"
+ # branch_succ and branch_fail are requests to have the current
+ # instruction be dependent on the branch unit "shadow" capability.
+ self.branch_succ_i = Signal(reset_less=True)
+ self.branch_fail_i = Signal(reset_less=True)
+ self.branch_direction_o = Signal(2, reset_less=True)
+
+ def elaborate(self, platform):
+ m = Module()
+ comb = m.d.comb
+ sync = m.d.sync
+
+ m.submodules.intregs = self.intregs
+ m.submodules.fpregs = self.fpregs
+ m.submodules.mem = mem = self.mem
+
+ # register ports
+ int_dest = self.intregs.write_port("dest")
+ int_src1 = self.intregs.read_port("src1")
+ int_src2 = self.intregs.read_port("src2")
+
+ fp_dest = self.fpregs.write_port("dest")
+ fp_src1 = self.fpregs.read_port("src1")
+ fp_src2 = self.fpregs.read_port("src2")
+
+ # Int ALUs and BR ALUs
+ n_int_alus = 5
+ cua = CompUnitALUs(self.rwid, 3, n_alus=self.aluissue.n_insns)
+ cub = CompUnitBR(self.rwid, 3) # 1 BR ALUs
+
+ # LDST Comp Units
+ n_ldsts = 2
+ cul = CompUnitLDSTs(self.rwid, 4, self.lsissue.n_insns, self.mem)
+
+ # Comp Units
+ m.submodules.cu = cu = CompUnitsBase(self.rwid, [cua, cul, cub])
+ bgt = cub.bgt # get at the branch computation unit
+ br1 = cub.br1
+
+ # Int FUs
+ m.submodules.intfus = intfus = FunctionUnits(self.n_regs, n_int_alus)
+
+ # Memory FUs
+ m.submodules.memfus = memfus = MemFunctionUnits(n_ldsts, 5)
+
+ # Memory Priority Picker 1: one gateway per memory port
+ # picks 1 reader and 1 writer to intreg
+ mempick1 = GroupPicker(n_ldsts)
+ m.submodules.mempick1 = mempick1
+
+ # Count of number of FUs
+ n_intfus = n_int_alus
+ n_fp_fus = 0 # for now
+
+ # Integer Priority Picker 1: Adder + Subtractor (and LD/ST)
+ # picks 1 reader and 1 writer to intreg
+ intpick1 = GroupPicker(n_intfus)
+ m.submodules.intpick1 = intpick1
+
+ # INT/FP Issue Unit
+ regdecode = RegDecode(self.n_regs)
+ m.submodules.regdecode = regdecode
+ issueunit = IssueUnitArray([self.aluissue, self.lsissue, self.brissue])
+ m.submodules.issueunit = issueunit
+
+ # Shadow Matrix. currently n_intfus shadows, to be used for
+ # write-after-write hazards. NOTE: there is one extra for branches,
+ # so the shadow width is increased by 1
+ m.submodules.shadows = shadows = ShadowMatrix(n_intfus, n_intfus, True)
+ m.submodules.bshadow = bshadow = ShadowMatrix(n_intfus, 1, False)
+
+ # record previous instruction to cast shadow on current instruction
+ prev_shadow = Signal(n_intfus)
+
+ # Branch Speculation recorder. tracks the success/fail state as
+ # each instruction is issued, so that when the branch occurs the
+ # allow/cancel can be issued as appropriate.
+ m.submodules.specrec = bspec = BranchSpeculationRecord(n_intfus)
+
+ # ---------
+ # ok start wiring things together...
+ # "now hear de word of de looord... dem bones dem bones dem dryy bones"
+ # https://www.youtube.com/watch?v=pYb8Wm6-QfA
+ # ---------
+
+ # ---------
+ # Issue Unit is where it starts. set up some in/outs for this module
+ # ---------
+ comb += [regdecode.dest_i.eq(self.int_dest_i),
+ regdecode.src1_i.eq(self.int_src1_i),
+ regdecode.src2_i.eq(self.int_src2_i),
+ regdecode.enable_i.eq(self.reg_enable_i),
+ self.issue_o.eq(issueunit.issue_o)
+ ]
+
+ # take these to outside (issue needs them)
+ comb += cua.op.eq(self.alu_op)
+ comb += cub.oper_i.eq(self.br_oper_i)
+ comb += cub.imm_i.eq(self.br_imm_i)
+ comb += cul.oper_i.eq(self.ls_oper_i)
+ comb += cul.imm_i.eq(self.ls_imm_i)
+
+ # TODO: issueunit.f (FP)
+
+ # and int function issue / busy arrays, and dest/src1/src2
+ comb += intfus.dest_i.eq(regdecode.dest_o)
+ comb += intfus.src1_i.eq(regdecode.src1_o)
+ comb += intfus.src2_i.eq(regdecode.src2_o)
+
+ fn_issue_o = issueunit.fn_issue_o
+
+ comb += intfus.fn_issue_i.eq(fn_issue_o)
+ comb += issueunit.busy_i.eq(cu.busy_o)
+ comb += self.busy_o.eq(cu.busy_o.bool())
+
+ # ---------
+ # Memory Function Unit
+ # ---------
+ reset_b = Signal(cul.n_units, reset_less=True)
+ sync += reset_b.eq(cul.go_st_i | cul.go_wr_i | cul.go_die_i)
+
+ comb += memfus.fn_issue_i.eq(cul.issue_i) # Comp Unit Issue -> Mem FUs
+ comb += memfus.addr_en_i.eq(cul.adr_rel_o) # Match enable on adr rel
+ comb += memfus.addr_rs_i.eq(reset_b) # reset same as LDSTCompUnit
+
+ # LD/STs have to accumulate prior LD/STs (TODO: multi-issue as well,
+ # in a transitive fashion). This cycle activates based on LDSTCompUnit
+ # issue_i. multi-issue gets a bit more complex but not a lot.
+ prior_ldsts = Signal(cul.n_units, reset_less=True)
+ sync += prior_ldsts.eq(memfus.g_int_ld_pend_o | memfus.g_int_st_pend_o)
+ with m.If(self.ls_oper_i[3]): # LD bit of operand
+ comb += memfus.ld_i.eq(cul.issue_i | prior_ldsts)
+ with m.If(self.ls_oper_i[2]): # ST bit of operand
+ comb += memfus.st_i.eq(cul.issue_i | prior_ldsts)
+
+ # TODO: adr_rel_o needs to go into L1 Cache. for now,
+ # just immediately activate go_adr
+ comb += cul.go_ad_i.eq(cul.adr_rel_o)
+
+ # connect up address data
+ comb += memfus.addrs_i[0].eq(cul.units[0].addr_o)
+ comb += memfus.addrs_i[1].eq(cul.units[1].addr_o)
+
+ # connect loadable / storable to go_ld/go_st.
+ # XXX should only be done when the memory ld/st has actually happened!
+ go_st_i = Signal(cul.n_units, reset_less=True)
+ go_ld_i = Signal(cul.n_units, reset_less=True)
+ comb += go_ld_i.eq(memfus.loadable_o & memfus.addr_nomatch_o &
+ cul.adr_rel_o & cul.ld_o)
+ comb += go_st_i.eq(memfus.storable_o & memfus.addr_nomatch_o &
+ cul.sto_rel_o & cul.st_o)
+ comb += memfus.go_ld_i.eq(go_ld_i)
+ comb += memfus.go_st_i.eq(go_st_i)
+ #comb += cul.go_wr_i.eq(go_ld_i)
+ comb += cul.go_st_i.eq(go_st_i)
+
+ #comb += cu.go_rd_i[0:n_intfus].eq(go_rd_o[0:n_intfus])
+ #comb += cu.go_wr_i[0:n_intfus].eq(go_wr_o[0:n_intfus])
+ #comb += cu.issue_i[0:n_intfus].eq(fn_issue_o[0:n_intfus])
+
+ # ---------
+ # merge shadow matrices outputs
+ # ---------
+
+ # these are explained in ShadowMatrix docstring, and are to be
+ # connected to the FUReg and FUFU Matrices, to get them to reset
+ anydie = Signal(n_intfus, reset_less=True)
+ allshadown = Signal(n_intfus, reset_less=True)
+ shreset = Signal(n_intfus, reset_less=True)
+ comb += allshadown.eq(shadows.shadown_o & bshadow.shadown_o)
+ comb += anydie.eq(shadows.go_die_o | bshadow.go_die_o)
+ comb += shreset.eq(bspec.match_g_o | bspec.match_f_o)
+
+ # ---------
+ # connect fu-fu matrix
+ # ---------
+
+ # Group Picker... done manually for now.
+ go_rd_o = intpick1.go_rd_o
+ go_wr_o = intpick1.go_wr_o
+ go_rd_i = intfus.go_rd_i
+ go_wr_i = intfus.go_wr_i
+ go_die_i = intfus.go_die_i
+ # NOTE: connect to the shadowed versions so that they can "die" (reset)
+ comb += go_rd_i[0:n_intfus].eq(go_rd_o[0:n_intfus]) # rd
+ comb += go_wr_i[0:n_intfus].eq(go_wr_o[0:n_intfus]) # wr
+ comb += go_die_i[0:n_intfus].eq(anydie[0:n_intfus]) # die
+
+ # Connect Picker
+ # ---------
+ comb += intpick1.rd_rel_i[0:n_intfus].eq(cu.rd_rel_o[0:n_intfus])
+ comb += intpick1.req_rel_i[0:n_intfus].eq(cu.done_o[0:n_intfus])
+ int_rd_o = intfus.readable_o
+ int_wr_o = intfus.writable_o
+ comb += intpick1.readable_i[0:n_intfus].eq(int_rd_o[0:n_intfus])
+ comb += intpick1.writable_i[0:n_intfus].eq(int_wr_o[0:n_intfus])
+
+ # ---------
+ # Shadow Matrix
+ # ---------
+
+ comb += shadows.issue_i.eq(fn_issue_o)
+ #comb += shadows.reset_i[0:n_intfus].eq(bshadow.go_die_o[0:n_intfus])
+ comb += shadows.reset_i[0:n_intfus].eq(bshadow.go_die_o[0:n_intfus])
+ # ---------
+ # NOTE; this setup is for the instruction order preservation...
+
+ # connect shadows / go_dies to Computation Units
+ comb += cu.shadown_i[0:n_intfus].eq(allshadown)
+ comb += cu.go_die_i[0:n_intfus].eq(anydie)
+
+ # ok connect first n_int_fu shadows to busy lines, to create an
+ # instruction-order linked-list-like arrangement, using a bit-matrix
+ # (instead of e.g. a ring buffer).
+
+ # when written, the shadow can be cancelled (and was good)
+ for i in range(n_intfus):
+ comb += shadows.s_good_i[i][0:n_intfus].eq(go_wr_o[0:n_intfus])
+
+ # *previous* instruction shadows *current* instruction, and, obviously,
+ # if the previous is completed (!busy) don't cast the shadow!
+ comb += prev_shadow.eq(~fn_issue_o & cu.busy_o)
+ for i in range(n_intfus):
+ comb += shadows.shadow_i[i][0:n_intfus].eq(prev_shadow)
+
+ # ---------
+ # ... and this is for branch speculation. it uses the extra bit
+ # tacked onto the ShadowMatrix (hence shadow_wid=n_intfus+1)
+ # only needs to set shadow_i, s_fail_i and s_good_i
+
+ # issue captures shadow_i (if enabled)
+ comb += bshadow.reset_i[0:n_intfus].eq(shreset[0:n_intfus])
+
+ bactive = Signal(reset_less=True)
+ comb += bactive.eq((bspec.active_i | br1.issue_i) & ~br1.go_wr_i)
+
+ # instruction being issued (fn_issue_o) has a shadow cast by the branch
+ with m.If(bactive & (self.branch_succ_i | self.branch_fail_i)):
+ comb += bshadow.issue_i.eq(fn_issue_o)
+ for i in range(n_intfus):
+ with m.If(fn_issue_o & (Const(1 << i))):
+ comb += bshadow.shadow_i[i][0].eq(1)
+
+ # finally, we need an indicator to the test infrastructure as to
+ # whether the branch succeeded or failed, plus, link up to the
+ # "recorder" of whether the instruction was under shadow or not
+
+ with m.If(br1.issue_i):
+ sync += bspec.active_i.eq(1)
+ with m.If(self.branch_succ_i):
+ comb += bspec.good_i.eq(fn_issue_o & 0x1f) # XXX MAGIC CONSTANT
+ with m.If(self.branch_fail_i):
+ comb += bspec.fail_i.eq(fn_issue_o & 0x1f) # XXX MAGIC CONSTANT
+
+ # branch is active (TODO: a better signal: this is over-using the
+ # go_write signal - actually the branch should not be "writing")
+ with m.If(br1.go_wr_i):
+ sync += self.branch_direction_o.eq(br1.data_o+Const(1, 2))
+ sync += bspec.active_i.eq(0)
+ comb += bspec.br_i.eq(1)
+ # branch occurs if data == 1, failed if data == 0
+ comb += bspec.br_ok_i.eq(br1.data_o == 1)
+ for i in range(n_intfus):
+ # *expected* direction of the branch matched against *actual*
+ comb += bshadow.s_good_i[i][0].eq(bspec.match_g_o[i])
+ # ... or it didn't
+ comb += bshadow.s_fail_i[i][0].eq(bspec.match_f_o[i])
+
+ # ---------
+ # Connect Register File(s)
+ # ---------
+ comb += int_dest.wen.eq(intfus.dest_rsel_o)
+ comb += int_src1.ren.eq(intfus.src1_rsel_o)
+ comb += int_src2.ren.eq(intfus.src2_rsel_o)
+
+ # connect ALUs to regfile
+ comb += int_dest.data_i.eq(cu.data_o)
+ comb += cu.src1_i.eq(int_src1.data_o)
+ comb += cu.src2_i.eq(int_src2.data_o)
+
+ # connect ALU Computation Units
+ comb += cu.go_rd_i[0:n_intfus].eq(go_rd_o[0:n_intfus])
+ comb += cu.go_wr_i[0:n_intfus].eq(go_wr_o[0:n_intfus])
+ comb += cu.issue_i[0:n_intfus].eq(fn_issue_o[0:n_intfus])
+
+ return m
+
+ def __iter__(self):
+ yield from self.intregs
+ yield from self.fpregs
+ yield self.int_dest_i
+ yield self.int_src1_i
+ yield self.int_src2_i
+ yield self.issue_o
+ yield self.branch_succ_i
+ yield self.branch_fail_i
+ yield self.branch_direction_o
+
+ def ports(self):
+ return list(self)
+
+
+class IssueToScoreboard(Elaboratable):
+
+ def __init__(self, qlen, n_in, n_out, rwid, opwid, n_regs):
+ self.qlen = qlen
+ self.n_in = n_in
+ self.n_out = n_out
+ self.rwid = rwid
+ self.opw = opwid
+ self.n_regs = n_regs
+
+ mqbits = unsigned(int(log(qlen) / log(2))+2)
+ self.p_add_i = Signal(mqbits) # instructions to add (from data_i)
+ self.p_ready_o = Signal() # instructions were added
+ self.data_i = Instruction._nq(n_in, "data_i")
+
+ self.busy_o = Signal(reset_less=True) # at least one CU is busy
+ self.qlen_o = Signal(mqbits, reset_less=True)
+
+ def elaborate(self, platform):
+ m = Module()
+ comb = m.d.comb
+ sync = m.d.sync
+
+ iq = InstructionQ(self.rwid, self.opw, self.qlen,
+ self.n_in, self.n_out)
+ sc = Scoreboard(self.rwid, self.n_regs)
+ m.submodules.iq = iq
+ m.submodules.sc = sc
+
+ # get at the regfile for testing
+ self.intregs = sc.intregs
+
+ # and the "busy" signal and instruction queue length
+ comb += self.busy_o.eq(sc.busy_o)
+ comb += self.qlen_o.eq(iq.qlen_o)
+
+ # link up instruction queue
+ comb += iq.p_add_i.eq(self.p_add_i)
+ comb += self.p_ready_o.eq(iq.p_ready_o)
+ for i in range(self.n_in):
+ comb += eq(iq.data_i[i], self.data_i[i])
+
+ # take instruction and process it. note that it's possible to
+ # "inspect" the queue contents *without* actually removing the
+ # items. items are only removed when the
+
+ # in "waiting" state
+ wait_issue_br = Signal()
+ wait_issue_alu = Signal()
+ wait_issue_ls = Signal()
+
+ with m.If(wait_issue_br | wait_issue_alu | wait_issue_ls):
+ # set instruction pop length to 1 if the unit accepted
+ with m.If(wait_issue_ls & (sc.lsissue.fn_issue_o != 0)):
+ with m.If(iq.qlen_o != 0):
+ comb += iq.n_sub_i.eq(1)
+ with m.If(wait_issue_br & (sc.brissue.fn_issue_o != 0)):
+ with m.If(iq.qlen_o != 0):
+ comb += iq.n_sub_i.eq(1)
+ with m.If(wait_issue_alu & (sc.aluissue.fn_issue_o != 0)):
+ with m.If(iq.qlen_o != 0):
+ comb += iq.n_sub_i.eq(1)
+
+ # see if some instruction(s) are here. note that this is
+ # "inspecting" the in-place queue. note also that on the
+ # cycle following "waiting" for fn_issue_o to be set, the
+ # "resetting" done above (insn_i=0) could be re-ASSERTed.
+ with m.If(iq.qlen_o != 0):
+ # get the operands and operation
+ instr = iq.data_o[0]
+ imm = instr.imm_data.data
+ dest = instr.write_reg.data
+ src1 = instr.read_reg1.data
+ src2 = instr.read_reg2.data
+ op = instr.insn_type
+ fu = instr.fn_unit
+ opi = instr.imm_data.ok # immediate set
+
+ # set the src/dest regs
+ comb += sc.int_dest_i.eq(dest)
+ comb += sc.int_src1_i.eq(src1)
+ comb += sc.int_src2_i.eq(src2)
+ comb += sc.reg_enable_i.eq(1) # enable the regfile
+
+ # choose a Function-Unit-Group
+ with m.If(fu == Function.ALU): # alu
+ comb += sc.alu_op.eq_from_execute1(instr)
+ comb += sc.aluissue.insn_i.eq(1)
+ comb += wait_issue_alu.eq(1)
+ with m.Elif((op & (0x3 << 2)) != 0): # branch
+ comb += sc.br_oper_i.eq(Cat(op[0:2], opi))
+ comb += sc.br_imm_i.eq(imm)
+ comb += sc.brissue.insn_i.eq(1)
+ comb += wait_issue_br.eq(1)
+ with m.Elif((op & (0x3 << 4)) != 0): # ld/st
+ # see compldst.py
+ # bit 0: ADD/SUB
+ # bit 1: immed
+ # bit 4: LD
+ # bit 5: ST
+ comb += sc.ls_oper_i.eq(Cat(op[0], opi[0], op[4:6]))
+ comb += sc.ls_imm_i.eq(imm)
+ comb += sc.lsissue.insn_i.eq(1)
+ comb += wait_issue_ls.eq(1)
+
+ # XXX TODO
+ # these indicate that the instruction is to be made
+ # shadow-dependent on
+ # (either) branch success or branch fail
+ # yield sc.branch_fail_i.eq(branch_fail)
+ # yield sc.branch_succ_i.eq(branch_success)
+
+ return m
+
+ def __iter__(self):
+ yield self.p_ready_o
+ for o in self.data_i:
+ yield from list(o)
+ yield self.p_add_i
+
+ def ports(self):
+ return list(self)
+
+
+def power_instr_q(dut, pdecode2, ins, code):
+ instrs = [pdecode2.e]
+
+ sendlen = 1
+ for idx, instr in enumerate(instrs):
+ yield dut.data_i[idx].eq(instr)
+ insn_type = yield instr.insn_type
+ fn_unit = yield instr.fn_unit
+ print("senddata ", idx, insn_type, fn_unit, instr)
+ yield dut.p_add_i.eq(sendlen)
+ yield
+ o_p_ready = yield dut.p_ready_o
+ while not o_p_ready:
+ yield
+ o_p_ready = yield dut.p_ready_o
+
+ yield dut.p_add_i.eq(0)
+
+
+def instr_q(dut, op, funit, op_imm, imm, src1, src2, dest,
+ branch_success, branch_fail):
+ instrs = [{'insn_type': op, 'fn_unit': funit, 'write_reg': dest,
+ 'imm_data': (imm, op_imm),
+ 'read_reg1': src1, 'read_reg2': src2}]
+
+ sendlen = 1
+ for idx, instr in enumerate(instrs):
+ imm, op_imm = instr['imm_data']
+ reg1 = instr['read_reg1']
+ reg2 = instr['read_reg2']
+ dest = instr['write_reg']
+ insn_type = instr['insn_type']
+ fn_unit = instr['fn_unit']
+ yield dut.data_i[idx].insn_type.eq(insn_type)
+ yield dut.data_i[idx].fn_unit.eq(fn_unit)
+ yield dut.data_i[idx].read_reg1.data.eq(reg1)
+ yield dut.data_i[idx].read_reg1.ok.eq(1) # XXX TODO
+ yield dut.data_i[idx].read_reg2.data.eq(reg2)
+ yield dut.data_i[idx].read_reg2.ok.eq(1) # XXX TODO
+ yield dut.data_i[idx].write_reg.data.eq(dest)
+ yield dut.data_i[idx].write_reg.ok.eq(1) # XXX TODO
+ yield dut.data_i[idx].imm_data.data.eq(imm)
+ yield dut.data_i[idx].imm_data.ok.eq(op_imm)
+ di = yield dut.data_i[idx]
+ print("senddata %d %x" % (idx, di))
+ yield dut.p_add_i.eq(sendlen)
+ yield
+ o_p_ready = yield dut.p_ready_o
+ while not o_p_ready:
+ yield
+ o_p_ready = yield dut.p_ready_o
+
+ yield dut.p_add_i.eq(0)
+
+
+def int_instr(dut, op, imm, src1, src2, dest, branch_success, branch_fail):
+ yield from disable_issue(dut)
+ yield dut.int_dest_i.eq(dest)
+ yield dut.int_src1_i.eq(src1)
+ yield dut.int_src2_i.eq(src2)
+ if (op & (0x3 << 2)) != 0: # branch
+ yield dut.brissue.insn_i.eq(1)
+ yield dut.br_oper_i.eq(Const(op & 0x3, 2))
+ yield dut.br_imm_i.eq(imm)
+ dut_issue = dut.brissue
+ else:
+ yield dut.aluissue.insn_i.eq(1)
+ yield dut.alu_oper_i.eq(Const(op & 0x3, 2))
+ yield dut.alu_imm_i.eq(imm)
+ dut_issue = dut.aluissue
+ yield dut.reg_enable_i.eq(1)
+
+ # these indicate that the instruction is to be made shadow-dependent on
+ # (either) branch success or branch fail
+ yield dut.branch_fail_i.eq(branch_fail)
+ yield dut.branch_succ_i.eq(branch_success)
+
+ yield
+ yield from wait_for_issue(dut, dut_issue)
+
+
+def print_reg(dut, rnums):
+ rs = []
+ for rnum in rnums:
+ reg = yield dut.intregs.regs[rnum].reg
+ rs.append("%x" % reg)
+ rnums = map(str, rnums)
+ print("reg %s: %s" % (','.join(rnums), ','.join(rs)))
+
+
+def create_random_ops(dut, n_ops, shadowing=False, max_opnums=3):
+ insts = []
+ for i in range(n_ops):
+ src1 = randint(1, dut.n_regs-1)
+ src2 = randint(1, dut.n_regs-1)
+ imm = randint(1, (1 << dut.rwid)-1)
+ dest = randint(1, dut.n_regs-1)
+ op = randint(0, max_opnums)
+ opi = 0 if randint(0, 2) else 1 # set true if random is nonzero
+
+ if shadowing:
+ insts.append((src1, src2, dest, op, opi, imm, (0, 0)))
+ else:
+ insts.append((src1, src2, dest, op, opi, imm))
+ return insts
+
+
+def wait_for_busy_clear(dut):
+ while True:
+ busy_o = yield dut.busy_o
+ if not busy_o:
+ break
+ print("busy",)
+ yield
+
+
+def disable_issue(dut):
+ yield dut.aluissue.insn_i.eq(0)
+ yield dut.brissue.insn_i.eq(0)
+ yield dut.lsissue.insn_i.eq(0)
+
+
+def wait_for_issue(dut, dut_issue):
+ while True:
+ issue_o = yield dut_issue.fn_issue_o
+ if issue_o:
+ yield from disable_issue(dut)
+ yield dut.reg_enable_i.eq(0)
+ break
+ print("busy",)
+ # yield from print_reg(dut, [1,2,3])
+ yield
+ # yield from print_reg(dut, [1,2,3])
+
+
+def scoreboard_branch_sim(dut, alusim):
+
+ iseed = 3
+
+ for i in range(1):
+
+ print("rseed", iseed)
+ seed(iseed)
+ iseed += 1
+
+ yield dut.branch_direction_o.eq(0)
+
+ # set random values in the registers
+ for i in range(1, dut.n_regs):
+ val = 31+i*3
+ val = randint(0, (1 << alusim.rwidth)-1)
+ yield dut.intregs.regs[i].reg.eq(val)
+ alusim.setval(i, val)
+
+ if False:
+ # create some instructions: branches create a tree
+ insts = create_random_ops(dut, 1, True, 1)
+ #insts.append((6, 6, 1, 2, (0, 0)))
+ #insts.append((4, 3, 3, 0, (0, 0)))
+
+ src1 = randint(1, dut.n_regs-1)
+ src2 = randint(1, dut.n_regs-1)
+ #op = randint(4, 7)
+ op = 4 # only BGT at the moment
+
+ branch_ok = create_random_ops(dut, 1, True, 1)
+ branch_fail = create_random_ops(dut, 1, True, 1)
+
+ insts.append((src1, src2, (branch_ok, branch_fail), op, (0, 0)))
+
+ if True:
+ insts = []
+ insts.append((3, 5, 2, 0, (0, 0)))
+ branch_ok = []
+ branch_fail = []
+ #branch_ok.append ( (5, 7, 5, 1, (1, 0)) )
+ branch_ok.append(None)
+ branch_fail.append((1, 1, 2, 0, (0, 1)))
+ #branch_fail.append( None )
+ insts.append((6, 4, (branch_ok, branch_fail), 4, (0, 0)))
+
+ siminsts = deepcopy(insts)
+
+ # issue instruction(s)
+ i = -1
+ instrs = insts
+ branch_direction = 0
+ while instrs:
+ yield
+ yield
+ i += 1
+ branch_direction = yield dut.branch_direction_o # way branch went
+ (src1, src2, dest, op, (shadow_on, shadow_off)) = insts.pop(0)
+ if branch_direction == 1 and shadow_on:
+ print("skip", i, src1, src2, dest, op, shadow_on, shadow_off)
+ continue # branch was "success" and this is a "failed"... skip
+ if branch_direction == 2 and shadow_off:
+ print("skip", i, src1, src2, dest, op, shadow_on, shadow_off)
+ continue # branch was "fail" and this is a "success"... skip
+ if branch_direction != 0:
+ shadow_on = 0
+ shadow_off = 0
+ is_branch = op >= 4
+ if is_branch:
+ branch_ok, branch_fail = dest
+ dest = src2
+ # ok zip up the branch success / fail instructions and
+ # drop them into the queue, one marked "to have branch success"
+ # the other to be marked shadow branch "fail".
+ # one out of each of these will be cancelled
+ for ok, fl in zip(branch_ok, branch_fail):
+ if ok:
+ instrs.append((ok[0], ok[1], ok[2], ok[3], (1, 0)))
+ if fl:
+ instrs.append((fl[0], fl[1], fl[2], fl[3], (0, 1)))
+ print("instr %d: (%d, %d, %d, %d, (%d, %d))" %
+ (i, src1, src2, dest, op, shadow_on, shadow_off))
+ yield from int_instr(dut, op, src1, src2, dest,
+ shadow_on, shadow_off)
+
+ # wait for all instructions to stop before checking
+ yield
+ yield from wait_for_busy_clear(dut)
+
+ i = -1
+ while siminsts:
+ instr = siminsts.pop(0)
+ if instr is None:
+ continue
+ (src1, src2, dest, op, (shadow_on, shadow_off)) = instr
+ i += 1
+ is_branch = op >= 4
+ if is_branch:
+ branch_ok, branch_fail = dest
+ dest = src2
+ print("sim %d: (%d, %d, %d, %d, (%d, %d))" %
+ (i, src1, src2, dest, op, shadow_on, shadow_off))
+ branch_res = alusim.op(op, src1, src2, dest)
+ if is_branch:
+ if branch_res:
+ siminsts += branch_ok
+ else:
+ siminsts += branch_fail
+
+ # check status
+ yield from alusim.check(dut)
+ yield from alusim.dump(dut)
+
+
+def power_sim(m, dut, pdecode2, instruction, alusim):
+
+ seed(0)
+
+ for i in range(1):
+
+ # set random values in the registers
+ for i in range(1, dut.n_regs):
+ #val = randint(0, (1<<alusim.rwidth)-1)
+ #val = 31+i*3
+ val = i # XXX actually, not random at all
+ yield dut.intregs.regs[i].reg.eq(val)
+ alusim.setval(i, val)
+
+ # create some instructions
+ lst = [#"addi 3, 0, 0x1234",
+ #"addi 2, 0, 0x4321",
+ "add 1, 3, 2"]
+ with Program(lst) as program:
+ gen = program.generate_instructions()
+
+ # issue instruction(s), wait for issue to be free before proceeding
+ for ins, code in zip(gen, program.assembly.splitlines()):
+ yield instruction.eq(ins) # raw binary instr.
+ yield Delay(1e-6)
+
+ print("binary 0x{:X}".format(ins & 0xffffffff))
+ print("assembly", code)
+
+ #alusim.op(op, opi, imm, src1, src2, dest)
+ yield from power_instr_q(dut, pdecode2, ins, code)
+
+ # wait for all instructions to stop before checking
+ while True:
+ iqlen = yield dut.qlen_o
+ if iqlen == 0:
+ break
+ yield
+ yield
+ yield
+ yield
+ yield
+ yield from wait_for_busy_clear(dut)
+
+ # check status
+ yield from alusim.check(dut)
+ yield from alusim.dump(dut)
+
+
+def scoreboard_sim(dut, alusim):
+
+ seed(0)
+
+ for i in range(1):
+
+ # set random values in the registers
+ for i in range(1, dut.n_regs):
+ #val = randint(0, (1<<alusim.rwidth)-1)
+ #val = 31+i*3
+ val = i
+ yield dut.intregs.regs[i].reg.eq(val)
+ alusim.setval(i, val)
+
+ # create some instructions (some random, some regression tests)
+ instrs = []
+ if False:
+ instrs = create_random_ops(dut, 15, True, 4)
+
+ if False: # LD/ST test (with immediate)
+ instrs.append((1, 2, 0, 0x20, 1, 1, (0, 0))) # LD
+ #instrs.append( (1, 2, 0, 0x10, 1, 1, (0, 0)) )
+
+ if False:
+ instrs.append((1, 2, 2, 1, 1, 20, (0, 0)))
+
+ if False:
+ instrs.append((7, 3, 2, 4, 0, 0, (0, 0)))
+ instrs.append((7, 6, 6, 2, 0, 0, (0, 0)))
+ instrs.append((1, 7, 2, 2, 0, 0, (0, 0)))
+
+ if True:
+ instrs.append((2, 3, 3, InternalOp.OP_ADD, Function.ALU,
+ 0, 0, (0, 0)))
+ instrs.append((5, 3, 3, InternalOp.OP_ADD, Function.ALU,
+ 0, 0, (0, 0)))
+ if False:
+ instrs.append((3, 5, 5, InternalOp.OP_MUL_L64, Function.ALU,
+ 1, 7, (0, 0)))
+ if False:
+ instrs.append((2, 3, 3, InternalOp.OP_ADD, Function.ALU,
+ 0, 0, (0, 0)))
+
+ if False:
+ instrs.append((2, 3, 3, 0, 0, 0, (0, 0)))
+ instrs.append((5, 3, 3, 1, 0, 0, (0, 0)))
+ instrs.append((3, 5, 5, 2, 0, 0, (0, 0)))
+ instrs.append((5, 3, 3, 3, 0, 0, (0, 0)))
+ instrs.append((3, 5, 5, 0, 0, 0, (0, 0)))
+
+ if False:
+ instrs.append((3, 3, 4, 0, 0, 13979, (0, 0)))
+ instrs.append((6, 4, 1, 2, 0, 40976, (0, 0)))
+ instrs.append((1, 4, 7, 4, 1, 23652, (0, 0)))
+
+ if False:
+ instrs.append((5, 6, 2, 1))
+ instrs.append((2, 2, 4, 0))
+ #instrs.append((2, 2, 3, 1))
+
+ if False:
+ instrs.append((2, 1, 2, 3))
+
+ if False:
+ instrs.append((2, 6, 2, 1))
+ instrs.append((2, 1, 2, 0))
+
+ if False:
+ instrs.append((1, 2, 7, 2))
+ instrs.append((7, 1, 5, 0))
+ instrs.append((4, 4, 1, 1))
+
+ if False:
+ instrs.append((5, 6, 2, 2))
+ instrs.append((1, 1, 4, 1))
+ instrs.append((6, 5, 3, 0))
+
+ if False:
+ # Write-after-Write Hazard
+ instrs.append((3, 6, 7, 2))
+ instrs.append((4, 4, 7, 1))
+
+ if False:
+ # self-read/write-after-write followed by Read-after-Write
+ instrs.append((1, 1, 1, 1))
+ instrs.append((1, 5, 3, 0))
+
+ if False:
+ # Read-after-Write followed by self-read-after-write
+ instrs.append((5, 6, 1, 2))
+ instrs.append((1, 1, 1, 1))
+
+ if False:
+ # self-read-write sandwich
+ instrs.append((5, 6, 1, 2))
+ instrs.append((1, 1, 1, 1))
+ instrs.append((1, 5, 3, 0))
+
+ if False:
+ # very weird failure
+ instrs.append((5, 2, 5, 2))
+ instrs.append((2, 6, 3, 0))
+ instrs.append((4, 2, 2, 1))
+
+ if False:
+ v1 = 4
+ yield dut.intregs.regs[5].reg.eq(v1)
+ alusim.setval(5, v1)
+ yield dut.intregs.regs[3].reg.eq(5)
+ alusim.setval(3, 5)
+ instrs.append((5, 3, 3, 4, (0, 0)))
+ instrs.append((4, 2, 1, 2, (0, 1)))
+
+ if False:
+ v1 = 6
+ yield dut.intregs.regs[5].reg.eq(v1)
+ alusim.setval(5, v1)
+ yield dut.intregs.regs[3].reg.eq(5)
+ alusim.setval(3, 5)
+ instrs.append((5, 3, 3, 4, (0, 0)))
+ instrs.append((4, 2, 1, 2, (1, 0)))
+
+ if False:
+ instrs.append((4, 3, 5, 1, 0, (0, 0)))
+ instrs.append((5, 2, 3, 1, 0, (0, 0)))
+ instrs.append((7, 1, 5, 2, 0, (0, 0)))
+ instrs.append((5, 6, 6, 4, 0, (0, 0)))
+ instrs.append((7, 5, 2, 2, 0, (1, 0)))
+ instrs.append((1, 7, 5, 0, 0, (0, 1)))
+ instrs.append((1, 6, 1, 2, 0, (1, 0)))
+ instrs.append((1, 6, 7, 3, 0, (0, 0)))
+ instrs.append((6, 7, 7, 0, 0, (0, 0)))
+
+ # issue instruction(s), wait for issue to be free before proceeding
+ for i, instr in enumerate(instrs):
+ print (i, instr)
+ src1, src2, dest, op, fn_unit, opi, imm, (br_ok, br_fail) = instr
+
+ print("instr %d: (%d, %d, %d, %s, %s, %d, %d)" %
+ (i, src1, src2, dest, op, fn_unit, opi, imm))
+ alusim.op(op, opi, imm, src1, src2, dest)
+ yield from instr_q(dut, op, fn_unit, opi, imm, src1, src2, dest,
+ br_ok, br_fail)
+
+ # wait for all instructions to stop before checking
+ while True:
+ iqlen = yield dut.qlen_o
+ if iqlen == 0:
+ break
+ yield
+ yield
+ yield
+ yield
+ yield
+ yield from wait_for_busy_clear(dut)
+
+ # check status
+ yield from alusim.check(dut)
+ yield from alusim.dump(dut)
+
+
+def test_scoreboard():
+ regwidth = 64
+ dut = IssueToScoreboard(2, 1, 1, regwidth, 8, 8)
+ alusim = RegSim(regwidth, 8)
+ memsim = MemSim(16, 8)
+
+ m = Module()
+ comb = m.d.comb
+ instruction = Signal(32)
+
+ # set up the decoder (and simulator, later)
+ pdecode = create_pdecode()
+ #simulator = ISA(pdecode, initial_regs)
+
+ m.submodules.pdecode2 = pdecode2 = PowerDecode2(pdecode)
+ m.submodules.sim = dut
+
+ comb += pdecode2.dec.raw_opcode_in.eq(instruction)
+ comb += pdecode2.dec.bigendian.eq(0) # little / big?
+
+ vl = rtlil.convert(m, ports=dut.ports())
+ with open("test_scoreboard6600.il", "w") as f:
+ f.write(vl)
+
+ run_simulation(m, power_sim(m, dut, pdecode2, instruction, alusim),
+ vcd_name='test_powerboard6600.vcd')
+
+ #run_simulation(dut, scoreboard_sim(dut, alusim),
+ # vcd_name='test_scoreboard6600.vcd')
+
+ # run_simulation(dut, scoreboard_branch_sim(dut, alusim),
+ # vcd_name='test_scoreboard6600.vcd')
+
+
+if __name__ == '__main__':
+ test_scoreboard()