+import sys
+import subprocess
+from random import randint
+from random import seed
+from sfpy import Float32
+
from nmigen import Module, Signal
from nmigen.compat.sim import run_simulation
from nmigen_add_experiment import FPADD
-class ORGate:
- def __init__(self):
- self.a = Signal()
- self.b = Signal()
- self.x = Signal()
+def get_mantissa(x):
+ return 0x7fffff & x
- def get_fragment(self, platform=None):
+def get_exponent(x):
+ return ((x & 0x7f800000) >> 23) - 127
- m = Module()
- m.d.comb += self.x.eq(self.a | self.b)
+def get_sign(x):
+ return ((x & 0x80000000) >> 31)
- return m
+def is_nan(x):
+ return get_exponent(x) == 128 and get_mantissa(x) != 0
-def check_case(dut, a, b, z):
+def is_inf(x):
+ return get_exponent(x) == 128 and get_mantissa(x) == 0
+
+def is_pos_inf(x):
+ return is_inf(x) and not get_sign(x)
+
+def is_neg_inf(x):
+ return is_inf(x) and get_sign(x)
+
+def match(x, y):
+ return (
+ (is_pos_inf(x) and is_pos_inf(y)) or
+ (is_neg_inf(x) and is_neg_inf(y)) or
+ (is_nan(x) and is_nan(y)) or
+ (x == y)
+ )
+
+def get_case(dut, a, b):
yield dut.in_a.v.eq(a)
yield dut.in_a.stb.eq(1)
yield
break
out_z = yield dut.out_z.v
+ return out_z
+
+def check_case(dut, a, b, z):
+ out_z = yield from get_case(dut, a, b)
assert out_z == z, "Output z 0x%x not equal to expected 0x%x" % (out_z, z)
+
+def run_test(dut, stimulus_a, stimulus_b):
+
+ expected_responses = []
+ actual_responses = []
+ for a, b in zip(stimulus_a, stimulus_b):
+ af = Float32.from_bits(a)
+ bf = Float32.from_bits(b)
+ z = af + bf
+ expected_responses.append(z.get_bits())
+ print (af, bf, z)
+ actual = yield from get_case(dut, a, b)
+ actual_responses.append(actual)
+
+ if len(actual_responses) < len(expected_responses):
+ print ("Fail ... not enough results")
+ exit(0)
+
+ for expected, actual, a, b in zip(expected_responses, actual_responses,
+ stimulus_a, stimulus_b):
+ passed = match(expected, actual)
+
+ if not passed:
+
+ print ("Fail ... expected:", hex(expected), "actual:", hex(actual))
+
+ print (hex(a))
+ print ("a mantissa:", a & 0x7fffff)
+ print ("a exponent:", ((a & 0x7f800000) >> 23) - 127)
+ print ("a sign:", ((a & 0x80000000) >> 31))
+
+ print (hex(b))
+ print ("b mantissa:", b & 0x7fffff)
+ print ("b exponent:", ((b & 0x7f800000) >> 23) - 127)
+ print ("b sign:", ((b & 0x80000000) >> 31))
+
+ print (hex(expected))
+ print ("expected mantissa:", expected & 0x7fffff)
+ print ("expected exponent:", ((expected & 0x7f800000) >> 23) - 127)
+ print ("expected sign:", ((expected & 0x80000000) >> 31))
+
+ print (hex(actual))
+ print ("actual mantissa:", actual & 0x7fffff)
+ print ("actual exponent:", ((actual & 0x7f800000) >> 23) - 127)
+ print ("actual sign:", ((actual & 0x80000000) >> 31))
+
+ sys.exit(0)
+
def testbench(dut):
yield from check_case(dut, 0, 0, 0)
+ yield from check_case(dut, 0x40000000, 0xc0000000, 0x00000000)
yield from check_case(dut, 0x3F800000, 0x40000000, 0x40400000)
yield from check_case(dut, 0x40000000, 0x3F800000, 0x40400000)
yield from check_case(dut, 0x447A0000, 0x4488B000, 0x4502D800)
#yield from check_case(dut, 1, 0, 1)
#yield from check_case(dut, 1, 1, 1)
+ count = 0
+
+ #regression tests
+ stimulus_a = [0x22cb525a, 0x40000000, 0x83e73d5c, 0xbf9b1e94, 0x34082401, 0x5e8ef81, 0x5c75da81, 0x2b017]
+ stimulus_b = [0xadd79efa, 0xC0000000, 0x1c800000, 0xc038ed3a, 0xb328cd45, 0x114f3db, 0x2f642a39, 0xff3807ab]
+ yield from run_test(dut, stimulus_a, stimulus_b)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ #corner cases
+ from itertools import permutations
+ stimulus_a = [i[0] for i in permutations([0x80000000, 0x00000000, 0x7f800000, 0xff800000, 0x7fc00000, 0xffc00000], 2)]
+ stimulus_b = [i[1] for i in permutations([0x80000000, 0x00000000, 0x7f800000, 0xff800000, 0x7fc00000, 0xffc00000], 2)]
+ yield from run_test(dut, stimulus_a, stimulus_b)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ #edge cases
+ stimulus_a = [0x80000000 for i in xrange(1000)]
+ stimulus_b = [randint(0, 1<<32) for i in xrange(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_a = [0x00000000 for i in xrange(1000)]
+ stimulus_b = [randint(0, 1<<32) for i in xrange(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0x80000000 for i in xrange(1000)]
+ stimulus_a = [randint(0, 1<<32) for i in xrange(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0x00000000 for i in xrange(1000)]
+ stimulus_a = [randint(0, 1<<32) for i in xrange(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_a = [0x7F800000 for i in xrange(1000)]
+ stimulus_b = [randint(0, 1<<32) for i in xrange(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_a = [0xFF800000 for i in xrange(1000)]
+ stimulus_b = [randint(0, 1<<32) for i in xrange(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0x7F800000 for i in xrange(1000)]
+ stimulus_a = [randint(0, 1<<32) for i in xrange(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0xFF800000 for i in xrange(1000)]
+ stimulus_a = [randint(0, 1<<32) for i in xrange(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_a = [0x7FC00000 for i in xrange(1000)]
+ stimulus_b = [randint(0, 1<<32) for i in xrange(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_a = [0xFFC00000 for i in xrange(1000)]
+ stimulus_b = [randint(0, 1<<32) for i in xrange(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0x7FC00000 for i in xrange(1000)]
+ stimulus_a = [randint(0, 1<<32) for i in xrange(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0xFFC00000 for i in xrange(1000)]
+ stimulus_a = [randint(0, 1<<32) for i in xrange(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ #seed(0)
+ for i in xrange(100000):
+ stimulus_a = [randint(0, 1<<32) for i in xrange(1000)]
+ stimulus_b = [randint(0, 1<<32) for i in xrange(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b)
+ count += 1000
+ print (count, "vectors passed")
+
if __name__ == '__main__':
dut = FPADD(width=32, single_cycle=True)
run_simulation(dut, testbench(dut), vcd_name="test_add.vcd")