self.assertFormal(m, mode="prove", depth=2)
+class PhasedDualPortRegfile(Elaboratable):
+ """
+ Builds, from a pair of 1RW blocks, a pseudo 1W/1R RAM, where the
+ read port works every cycle, but the write port is only available on
+ either even (1eW/1R) or odd (1oW/1R) cycles.
+
+ :param addr_width: width of the address bus
+ :param data_width: width of the data bus
+ :param we_width: number of write enable lines
+ :param write_phase: indicates on which phase the write port will
+ accept data
+ """
+
+ def __init__(self, addr_width, data_width, we_width, write_phase):
+ self.addr_width = addr_width
+ self.data_width = data_width
+ self.we_width = we_width
+ self.write_phase = write_phase
+ self.wr_addr_i = Signal(addr_width)
+ """write port address"""
+ self.wr_data_i = Signal(data_width)
+ """write port data"""
+ self.wr_we_i = Signal(we_width)
+ """write port enable"""
+ self.rd_addr_i = Signal(addr_width)
+ """read port address"""
+ self.rd_data_o = Signal(data_width)
+ """read port data"""
+ self.phase = Signal()
+ """even/odd cycle indicator"""
+
+ def elaborate(self, _):
+ m = Module()
+ # instantiate the two 1RW memory blocks
+ mem1 = SinglePortSRAM(self.addr_width, self.data_width, self.we_width)
+ mem2 = SinglePortSRAM(self.addr_width, self.data_width, self.we_width)
+ m.submodules.mem1 = mem1
+ m.submodules.mem2 = mem2
+ # wire write port to first memory, and its output to the second
+ m.d.comb += mem1.d.eq(self.wr_data_i)
+ m.d.comb += mem2.d.eq(mem1.q)
+ # holding registers for the write port of the second memory
+ last_wr_addr = Signal(self.addr_width)
+ last_wr_we = Signal(self.we_width)
+ with m.If(self.phase == self.write_phase):
+ # write phase, start a write on the first memory
+ m.d.comb += mem1.a.eq(self.wr_addr_i)
+ m.d.comb += mem1.we.eq(self.wr_we_i)
+ # save write address and write select for repeating the write
+ # on the second memory, later
+ m.d.sync += last_wr_we.eq(self.wr_we_i)
+ m.d.sync += last_wr_addr.eq(self.wr_addr_i)
+ # start a read on the second memory
+ m.d.comb += mem2.a.eq(self.rd_addr_i)
+ # output previously read data from the first memory
+ m.d.comb += self.rd_data_o.eq(mem1.q)
+ with m.Else():
+ # read phase, write last written data on second memory
+ m.d.comb += mem2.a.eq(last_wr_addr)
+ m.d.comb += mem2.we.eq(last_wr_we)
+ # start a read on the first memory
+ m.d.comb += mem1.a.eq(self.rd_addr_i)
+ # output previously read data from the second memory
+ m.d.comb += self.rd_data_o.eq(mem2.q)
+ return m
+
+
+class PhasedDualPortRegfileTestCase(FHDLTestCase):
+
+ def do_test_phased_dual_port_regfile(self, write_phase):
+ """
+ Simulate some read/write/modify operations on the phased write memory
+ """
+ dut = PhasedDualPortRegfile(7, 32, 4, write_phase)
+ sim = Simulator(dut)
+ sim.add_clock(1e-6)
+
+ # compare read data with previously written data
+ # and start a new read
+ def read(rd_addr_i, expected=None):
+ if expected is not None:
+ self.assertEqual((yield dut.rd_data_o), expected)
+ yield dut.rd_addr_i.eq(rd_addr_i)
+
+ # start a write, and set write phase
+ def write(wr_addr_i, wr_we_i, wr_data_i):
+ yield dut.wr_addr_i.eq(wr_addr_i)
+ yield dut.wr_we_i.eq(wr_we_i)
+ yield dut.wr_data_i.eq(wr_data_i)
+ yield dut.phase.eq(write_phase)
+
+ # disable writes, and start read phase
+ def skip_write():
+ yield dut.wr_addr_i.eq(0)
+ yield dut.wr_we_i.eq(0)
+ yield dut.wr_data_i.eq(0)
+ yield dut.phase.eq(~write_phase)
+
+ # writes a few values on the write port, and read them back
+ # ... reads can happen every cycle
+ # ... writes, only every two cycles.
+ # since reads have a one cycle delay, the expected value on
+ # each read refers to the last read performed, not the
+ # current one, which is in progress.
+ def process():
+ yield from read(0)
+ yield from write(0x42, 0b1111, 0x12345678)
+ yield
+ yield from read(0x42)
+ yield from skip_write()
+ yield
+ yield from read(0x42)
+ yield from write(0x43, 0b1111, 0x9ABCDEF0)
+ yield
+ yield from read(0x43, 0x12345678)
+ yield from skip_write()
+ yield
+ yield from read(0x42, 0x12345678)
+ yield from write(0x43, 0b1001, 0xF0FFFF9A)
+ yield
+ yield from read(0x43, 0x9ABCDEF0)
+ yield from skip_write()
+ yield
+ yield from read(0x43, 0x12345678)
+ yield from write(0x42, 0b0110, 0xFF5634FF)
+ yield
+ yield from read(0x42, 0xF0BCDE9A)
+ yield from skip_write()
+ yield
+ yield from read(0, 0xF0BCDE9A)
+ yield from write(0, 0, 0)
+ yield
+ yield from read(0, 0x12563478)
+ yield from skip_write()
+
+ sim.add_sync_process(process)
+ traces = ['clk', 'phase',
+ 'wr_addr_i[6:0]', 'wr_we_i[3:0]', 'wr_data_i[31:0]',
+ 'rd_addr_i[6:0]', 'rd_data_o[31:0]']
+ write_gtkw(f'test_phased_dual_port_{write_phase}.gtkw',
+ f'test_phased_dual_port_{write_phase}.vcd',
+ traces, module='top', zoom=-22)
+ sim_writer = sim.write_vcd(f'test_phased_dual_port_{write_phase}.vcd')
+ with sim_writer:
+ sim.run()
+
+ def test_phased_dual_port_regfile(self):
+ """test both types (odd and even write ports) of phased write memory"""
+ with self.subTest("writes happen on phase 0"):
+ self.do_test_phased_dual_port_regfile(0)
+ with self.subTest("writes happen on phase 1"):
+ self.do_test_phased_dual_port_regfile(1)
+
+
if __name__ == "__main__":
unittest.main()