intel/fs: Implement the new load/store_scratch intrinsics
authorJason Ekstrand <jason.ekstrand@intel.com>
Thu, 28 Feb 2019 14:15:30 +0000 (08:15 -0600)
committerJason Ekstrand <jason@jlekstrand.net>
Mon, 11 Nov 2019 17:17:02 +0000 (17:17 +0000)
This commit fills in a number of different pieces:

 1. We add support to brw_nir_lower_mem_access_bit_sizes to handle the
    new intrinsics.  This involves simple plumbing work as well as a
    tiny bit of extra logic to always scalarize scratch intrinsics

 2. Add code to brw_fs_nir.cpp to turn nir_load/store_scratch intrinsics
    into byte/dword scattered read/write messages which use the A32
    stateless model.

 3. Add code to lower_surface_logical_send to handle dword scattered
    messages and the A32 stateless model.

Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com>
src/intel/compiler/brw_fs.cpp
src/intel/compiler/brw_fs.h
src/intel/compiler/brw_fs_generator.cpp
src/intel/compiler/brw_fs_nir.cpp
src/intel/compiler/brw_nir_lower_mem_access_bit_sizes.c

index fafc5fc22c90c3927615d9785bdf0ba0ebcf3e40..92a9c9902e4c84d5cb496d2843d51ef803bf8f09 100644 (file)
@@ -5368,6 +5368,15 @@ lower_surface_logical_send(const fs_builder &bld, fs_inst *inst)
       inst->opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL ||
       inst->opcode == SHADER_OPCODE_TYPED_ATOMIC_LOGICAL;
 
+   const bool is_surface_access = is_typed_access ||
+      inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL ||
+      inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL ||
+      inst->opcode == SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL;
+
+   const bool is_stateless =
+      surface.file == IMM && (surface.ud == BRW_BTI_STATELESS ||
+                              surface.ud == GEN8_BTI_STATELESS_NON_COHERENT);
+
    const bool has_side_effects = inst->has_side_effects();
    fs_reg sample_mask = has_side_effects ? bld.sample_mask_reg() :
                                            fs_reg(brw_imm_d(0xffff));
@@ -5381,25 +5390,63 @@ lower_surface_logical_send(const fs_builder &bld, fs_inst *inst)
     * we don't attempt to implement sample masks via predication for such
     * messages prior to Gen9, since we have to provide a header anyway.  On
     * Gen11+ the header has been removed so we can only use predication.
+    *
+    * For all stateless A32 messages, we also need a header
     */
    fs_reg header;
-   if (devinfo->gen < 9 && is_typed_access) {
+   if ((devinfo->gen < 9 && is_typed_access) || is_stateless) {
       fs_builder ubld = bld.exec_all().group(8, 0);
       header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
       ubld.MOV(header, brw_imm_d(0));
-      ubld.group(1, 0).MOV(component(header, 7), sample_mask);
+      if (is_stateless) {
+         /* Both the typed and scattered byte/dword A32 messages take a buffer
+          * base address in R0.5:[31:0] (See MH1_A32_PSM for typed messages or
+          * MH_A32_GO for byte/dword scattered messages in the SKL PRM Vol. 2d
+          * for more details.)  This is conveniently where the HW places the
+          * scratch surface base address.
+          *
+          * From the SKL PRM Vol. 7 "Per-Thread Scratch Space":
+          *
+          *    "When a thread becomes 'active' it is allocated a portion of
+          *    scratch space, sized according to PerThreadScratchSpace. The
+          *    starting location of each thread’s scratch space allocation,
+          *    ScratchSpaceOffset, is passed in the thread payload in
+          *    R0.5[31:10] and is specified as a 1KB-granular offset from the
+          *    GeneralStateBaseAddress.  The computation of ScratchSpaceOffset
+          *    includes the starting address of the stage’s scratch space
+          *    allocation, as programmed by ScratchSpaceBasePointer."
+          *
+          * The base address is passed in bits R0.5[31:10] and the bottom 10
+          * bits of R0.5 are used for other things.  Therefore, we have to
+          * mask off the bottom 10 bits so that we don't get a garbage base
+          * address.
+          */
+         ubld.group(1, 0).AND(component(header, 5),
+                              retype(brw_vec1_grf(0, 5), BRW_REGISTER_TYPE_UD),
+                              brw_imm_ud(0xfffffc00));
+      }
+      if (is_surface_access)
+         ubld.group(1, 0).MOV(component(header, 7), sample_mask);
    }
    const unsigned header_sz = header.file != BAD_FILE ? 1 : 0;
 
    fs_reg payload, payload2;
    unsigned mlen, ex_mlen = 0;
-   if (devinfo->gen >= 9) {
+   if (devinfo->gen >= 9 &&
+       (src.file == BAD_FILE || header.file == BAD_FILE)) {
       /* We have split sends on gen9 and above */
-      assert(header.file == BAD_FILE);
-      payload = bld.move_to_vgrf(addr, addr_sz);
-      payload2 = bld.move_to_vgrf(src, src_sz);
-      mlen = addr_sz * (inst->exec_size / 8);
-      ex_mlen = src_sz * (inst->exec_size / 8);
+      if (header.file == BAD_FILE) {
+         payload = bld.move_to_vgrf(addr, addr_sz);
+         payload2 = bld.move_to_vgrf(src, src_sz);
+         mlen = addr_sz * (inst->exec_size / 8);
+         ex_mlen = src_sz * (inst->exec_size / 8);
+      } else {
+         assert(src.file == BAD_FILE);
+         payload = header;
+         payload2 = bld.move_to_vgrf(addr, addr_sz);
+         mlen = header_sz;
+         ex_mlen = addr_sz * (inst->exec_size / 8);
+      }
    } else {
       /* Allocate space for the payload. */
       const unsigned sz = header_sz + addr_sz + src_sz;
@@ -5426,8 +5473,8 @@ lower_surface_logical_send(const fs_builder &bld, fs_inst *inst)
    /* Predicate the instruction on the sample mask if no header is
     * provided.
     */
-   if (header.file == BAD_FILE && sample_mask.file != BAD_FILE &&
-       sample_mask.file != IMM) {
+   if ((header.file == BAD_FILE || !is_surface_access) &&
+       sample_mask.file != BAD_FILE && sample_mask.file != IMM) {
       const fs_builder ubld = bld.group(1, 0).exec_all();
       if (inst->predicate) {
          assert(inst->predicate == BRW_PREDICATE_NORMAL);
index ede5b0a701cb734c5cb4d897e90e8c0ba37850e6..fd5a1a9071ad4c8f31b11e64d1a5e11ac8339840 100644 (file)
@@ -228,6 +228,9 @@ public:
                                         nir_intrinsic_instr *instr);
    fs_reg get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
                                        nir_intrinsic_instr *instr);
+   fs_reg swizzle_nir_scratch_addr(const brw::fs_builder &bld,
+                                   const fs_reg &addr,
+                                   bool in_dwords);
    void nir_emit_intrinsic(const brw::fs_builder &bld,
                            nir_intrinsic_instr *instr);
    void nir_emit_tes_intrinsic(const brw::fs_builder &bld,
@@ -341,6 +344,7 @@ public:
    int *push_constant_loc;
 
    fs_reg subgroup_id;
+   fs_reg scratch_base;
    fs_reg frag_depth;
    fs_reg frag_stencil;
    fs_reg sample_mask;
index 036aa58cc7c7d7c426551fcad4cdc112d9c50f7d..65beebf6d095751e9164c70424dd23629f7840e1 100644 (file)
@@ -2062,7 +2062,15 @@ fs_generator::generate_code(const cfg_t *cfg, int dispatch_width,
       case SHADER_OPCODE_SEND:
          generate_send(inst, dst, src[0], src[1], src[2],
                        inst->ex_mlen > 0 ? src[3] : brw_null_reg());
-         send_count++;
+         if ((inst->desc & 0xff) == BRW_BTI_STATELESS ||
+             (inst->desc & 0xff) == GEN8_BTI_STATELESS_NON_COHERENT) {
+            if (inst->size_written)
+               fill_count++;
+            else
+               spill_count++;
+         } else {
+            send_count++;
+         }
          break;
 
       case SHADER_OPCODE_GET_BUFFER_SIZE:
index d63ef8c324765e011b2eee6737eb40b44db7d174..d767b12303639a5aada030cb6430a372b3eda6e0 100644 (file)
@@ -42,6 +42,7 @@ fs_visitor::emit_nir_code()
    nir_setup_outputs();
    nir_setup_uniforms();
    nir_emit_system_values();
+   last_scratch = ALIGN(nir->scratch_size, 4) * dispatch_width;
 
    nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
 }
@@ -4023,6 +4024,61 @@ image_intrinsic_coord_components(nir_intrinsic_instr *instr)
    }
 }
 
+/**
+ * The offsets we get from NIR act as if each SIMD channel has it's own blob
+ * of contiguous space.  However, if we actually place each SIMD channel in
+ * it's own space, we end up with terrible cache performance because each SIMD
+ * channel accesses a different cache line even when they're all accessing the
+ * same byte offset.  To deal with this problem, we swizzle the address using
+ * a simple algorithm which ensures that any time a SIMD message reads or
+ * writes the same address, it's all in the same cache line.  We have to keep
+ * the bottom two bits fixed so that we can read/write up to a dword at a time
+ * and the individual element is contiguous.  We do this by splitting the
+ * address as follows:
+ *
+ *    31                             4-6           2          0
+ *    +-------------------------------+------------+----------+
+ *    |        Hi address bits        | chan index | addr low |
+ *    +-------------------------------+------------+----------+
+ *
+ * In other words, the bottom two address bits stay, and the top 30 get
+ * shifted up so that we can stick the SIMD channel index in the middle.  This
+ * way, we can access 8, 16, or 32-bit elements and, when accessing a 32-bit
+ * at the same logical offset, the scratch read/write instruction acts on
+ * continuous elements and we get good cache locality.
+ */
+fs_reg
+fs_visitor::swizzle_nir_scratch_addr(const brw::fs_builder &bld,
+                                     const fs_reg &nir_addr,
+                                     bool in_dwords)
+{
+   const fs_reg &chan_index =
+      nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
+   const unsigned chan_index_bits = ffs(dispatch_width) - 1;
+
+   fs_reg addr = bld.vgrf(BRW_REGISTER_TYPE_UD);
+   if (in_dwords) {
+      /* In this case, we know the address is aligned to a DWORD and we want
+       * the final address in DWORDs.
+       */
+      bld.SHL(addr, nir_addr, brw_imm_ud(chan_index_bits - 2));
+      bld.OR(addr, addr, chan_index);
+   } else {
+      /* This case substantially more annoying because we have to pay
+       * attention to those pesky two bottom bits.
+       */
+      fs_reg addr_hi = bld.vgrf(BRW_REGISTER_TYPE_UD);
+      bld.AND(addr_hi, nir_addr, brw_imm_ud(~0x3u));
+      bld.SHL(addr_hi, addr_hi, brw_imm_ud(chan_index_bits));
+      fs_reg chan_addr = bld.vgrf(BRW_REGISTER_TYPE_UD);
+      bld.SHL(chan_addr, chan_index, brw_imm_ud(2));
+      bld.AND(addr, nir_addr, brw_imm_ud(0x3u));
+      bld.OR(addr, addr, addr_hi);
+      bld.OR(addr, addr, chan_addr);
+   }
+   return addr;
+}
+
 void
 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
 {
@@ -4682,6 +4738,99 @@ fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr
       break;
    }
 
+   case nir_intrinsic_load_scratch: {
+      assert(devinfo->gen >= 7);
+
+      assert(nir_dest_num_components(instr->dest) == 1);
+      const unsigned bit_size = nir_dest_bit_size(instr->dest);
+      fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
+
+      if (devinfo->gen >= 8) {
+         srcs[SURFACE_LOGICAL_SRC_SURFACE] =
+            brw_imm_ud(GEN8_BTI_STATELESS_NON_COHERENT);
+      } else {
+         srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(BRW_BTI_STATELESS);
+      }
+
+      srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
+      srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
+      const fs_reg nir_addr = get_nir_src(instr->src[0]);
+
+      /* Make dest unsigned because that's what the temporary will be */
+      dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
+
+      /* Read the vector */
+      if (nir_intrinsic_align(instr) >= 4) {
+         assert(nir_dest_bit_size(instr->dest) == 32);
+
+         /* The offset for a DWORD scattered message is in dwords. */
+         srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
+            swizzle_nir_scratch_addr(bld, nir_addr, true);
+
+         bld.emit(SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL,
+                  dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
+      } else {
+         assert(nir_dest_bit_size(instr->dest) <= 32);
+
+         srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
+            swizzle_nir_scratch_addr(bld, nir_addr, false);
+
+         fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
+         bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
+                  read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
+         bld.MOV(dest, read_result);
+      }
+      break;
+   }
+
+   case nir_intrinsic_store_scratch: {
+      assert(devinfo->gen >= 7);
+
+      assert(nir_src_num_components(instr->src[0]) == 1);
+      const unsigned bit_size = nir_src_bit_size(instr->src[0]);
+      fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
+
+      if (devinfo->gen >= 8) {
+         srcs[SURFACE_LOGICAL_SRC_SURFACE] =
+            brw_imm_ud(GEN8_BTI_STATELESS_NON_COHERENT);
+      } else {
+         srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(BRW_BTI_STATELESS);
+      }
+
+      srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
+      srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
+      const fs_reg nir_addr = get_nir_src(instr->src[1]);
+
+      fs_reg data = get_nir_src(instr->src[0]);
+      data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
+
+      assert(nir_intrinsic_write_mask(instr) ==
+             (1u << instr->num_components) - 1);
+      if (nir_intrinsic_align(instr) >= 4) {
+         assert(nir_src_bit_size(instr->src[0]) == 32);
+         srcs[SURFACE_LOGICAL_SRC_DATA] = data;
+
+         /* The offset for a DWORD scattered message is in dwords. */
+         srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
+            swizzle_nir_scratch_addr(bld, nir_addr, true);
+
+         bld.emit(SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL,
+                  fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
+      } else {
+         assert(nir_src_bit_size(instr->src[0]) <= 32);
+
+         srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
+         bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
+
+         srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
+            swizzle_nir_scratch_addr(bld, nir_addr, false);
+
+         bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
+                  fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
+      }
+      break;
+   }
+
    case nir_intrinsic_load_subgroup_size:
       /* This should only happen for fragment shaders because every other case
        * is lowered in NIR so we can optimize on it.
index 564cb6dabe3c7cd78c352e3f888f068a3b0e564e..ef9aa206b445e585da8c59738e8a903f5bd8848f 100644 (file)
@@ -77,8 +77,12 @@ static bool
 lower_mem_load_bit_size(nir_builder *b, nir_intrinsic_instr *intrin,
                         const struct gen_device_info *devinfo)
 {
+   const bool needs_scalar =
+      intrin->intrinsic == nir_intrinsic_load_scratch;
+
    assert(intrin->dest.is_ssa);
-   if (intrin->dest.ssa.bit_size == 32)
+   if (intrin->dest.ssa.bit_size == 32 &&
+       (!needs_scalar || intrin->num_components == 1))
       return false;
 
    const unsigned bit_size = intrin->dest.ssa.bit_size;
@@ -119,7 +123,8 @@ lower_mem_load_bit_size(nir_builder *b, nir_intrinsic_instr *intrin,
          } else {
             assert(load_offset % 4 == 0);
             load_bit_size = 32;
-            load_comps = DIV_ROUND_UP(MIN2(bytes_left, 16), 4);
+            load_comps = needs_scalar ? 1 :
+                         DIV_ROUND_UP(MIN2(bytes_left, 16), 4);
          }
 
          loads[num_loads++] = dup_mem_intrinsic(b, intrin, NULL, load_offset,
@@ -144,6 +149,9 @@ static bool
 lower_mem_store_bit_size(nir_builder *b, nir_intrinsic_instr *intrin,
                          const struct gen_device_info *devinfo)
 {
+   const bool needs_scalar =
+      intrin->intrinsic == nir_intrinsic_store_scratch;
+
    assert(intrin->src[0].is_ssa);
    nir_ssa_def *value = intrin->src[0].ssa;
 
@@ -159,7 +167,9 @@ lower_mem_store_bit_size(nir_builder *b, nir_intrinsic_instr *intrin,
    assert(writemask < (1 << num_components));
 
    if ((value->bit_size <= 32 && num_components == 1) ||
-       (value->bit_size == 32 && writemask == (1 << num_components) - 1))
+       (value->bit_size == 32 &&
+        writemask == (1 << num_components) - 1 &&
+        !needs_scalar))
       return false;
 
    nir_src *offset_src = nir_get_io_offset_src(intrin);
@@ -180,7 +190,6 @@ lower_mem_store_bit_size(nir_builder *b, nir_intrinsic_instr *intrin,
 
    while (BITSET_FFS(mask) != 0) {
       const int start = BITSET_FFS(mask) - 1;
-      assert(start % byte_size == 0);
 
       int end;
       for (end = start + 1; end < bytes_written; end++) {
@@ -198,7 +207,7 @@ lower_mem_store_bit_size(nir_builder *b, nir_intrinsic_instr *intrin,
       if (chunk_bytes >= 4 && is_dword_aligned) {
          store_align = MAX2(align, 4);
          store_bit_size = 32;
-         store_comps = MIN2(chunk_bytes, 16) / 4;
+         store_comps = needs_scalar ? 1 : MIN2(chunk_bytes, 16) / 4;
       } else {
          store_align = align;
          store_comps = 1;
@@ -208,7 +217,6 @@ lower_mem_store_bit_size(nir_builder *b, nir_intrinsic_instr *intrin,
             store_bit_size = 16;
       }
       const unsigned store_bytes = store_comps * (store_bit_size / 8);
-      assert(store_bytes % byte_size == 0);
 
       nir_ssa_def *packed = nir_extract_bits(b, &value, 1, start * 8,
                                              store_comps, store_bit_size);
@@ -245,6 +253,7 @@ lower_mem_access_bit_sizes_impl(nir_function_impl *impl,
          case nir_intrinsic_load_global:
          case nir_intrinsic_load_ssbo:
          case nir_intrinsic_load_shared:
+         case nir_intrinsic_load_scratch:
             if (lower_mem_load_bit_size(&b, intrin, devinfo))
                progress = true;
             break;
@@ -252,6 +261,7 @@ lower_mem_access_bit_sizes_impl(nir_function_impl *impl,
          case nir_intrinsic_store_global:
          case nir_intrinsic_store_ssbo:
          case nir_intrinsic_store_shared:
+         case nir_intrinsic_store_scratch:
             if (lower_mem_store_bit_size(&b, intrin, devinfo))
                progress = true;
             break;
@@ -285,6 +295,12 @@ lower_mem_access_bit_sizes_impl(nir_function_impl *impl,
  * all nir load/store intrinsics into a series of either 8 or 32-bit
  * load/store intrinsics with a number of components that we can directly
  * handle in hardware and with a trivial write-mask.
+ *
+ * For scratch access, additional consideration has to be made due to the way
+ * that we swizzle the memory addresses to achieve decent cache locality.  In
+ * particular, even though untyped surface read/write messages exist and work,
+ * we can't use them to load multiple components in a single SEND.  For more
+ * detail on the scratch swizzle, see fs_visitor::swizzle_nir_scratch_addr.
  */
 bool
 brw_nir_lower_mem_access_bit_sizes(nir_shader *shader,