inst->opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL ||
inst->opcode == SHADER_OPCODE_TYPED_ATOMIC_LOGICAL;
+ const bool is_surface_access = is_typed_access ||
+ inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL ||
+ inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL ||
+ inst->opcode == SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL;
+
+ const bool is_stateless =
+ surface.file == IMM && (surface.ud == BRW_BTI_STATELESS ||
+ surface.ud == GEN8_BTI_STATELESS_NON_COHERENT);
+
const bool has_side_effects = inst->has_side_effects();
fs_reg sample_mask = has_side_effects ? bld.sample_mask_reg() :
fs_reg(brw_imm_d(0xffff));
* we don't attempt to implement sample masks via predication for such
* messages prior to Gen9, since we have to provide a header anyway. On
* Gen11+ the header has been removed so we can only use predication.
+ *
+ * For all stateless A32 messages, we also need a header
*/
fs_reg header;
- if (devinfo->gen < 9 && is_typed_access) {
+ if ((devinfo->gen < 9 && is_typed_access) || is_stateless) {
fs_builder ubld = bld.exec_all().group(8, 0);
header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
ubld.MOV(header, brw_imm_d(0));
- ubld.group(1, 0).MOV(component(header, 7), sample_mask);
+ if (is_stateless) {
+ /* Both the typed and scattered byte/dword A32 messages take a buffer
+ * base address in R0.5:[31:0] (See MH1_A32_PSM for typed messages or
+ * MH_A32_GO for byte/dword scattered messages in the SKL PRM Vol. 2d
+ * for more details.) This is conveniently where the HW places the
+ * scratch surface base address.
+ *
+ * From the SKL PRM Vol. 7 "Per-Thread Scratch Space":
+ *
+ * "When a thread becomes 'active' it is allocated a portion of
+ * scratch space, sized according to PerThreadScratchSpace. The
+ * starting location of each thread’s scratch space allocation,
+ * ScratchSpaceOffset, is passed in the thread payload in
+ * R0.5[31:10] and is specified as a 1KB-granular offset from the
+ * GeneralStateBaseAddress. The computation of ScratchSpaceOffset
+ * includes the starting address of the stage’s scratch space
+ * allocation, as programmed by ScratchSpaceBasePointer."
+ *
+ * The base address is passed in bits R0.5[31:10] and the bottom 10
+ * bits of R0.5 are used for other things. Therefore, we have to
+ * mask off the bottom 10 bits so that we don't get a garbage base
+ * address.
+ */
+ ubld.group(1, 0).AND(component(header, 5),
+ retype(brw_vec1_grf(0, 5), BRW_REGISTER_TYPE_UD),
+ brw_imm_ud(0xfffffc00));
+ }
+ if (is_surface_access)
+ ubld.group(1, 0).MOV(component(header, 7), sample_mask);
}
const unsigned header_sz = header.file != BAD_FILE ? 1 : 0;
fs_reg payload, payload2;
unsigned mlen, ex_mlen = 0;
- if (devinfo->gen >= 9) {
+ if (devinfo->gen >= 9 &&
+ (src.file == BAD_FILE || header.file == BAD_FILE)) {
/* We have split sends on gen9 and above */
- assert(header.file == BAD_FILE);
- payload = bld.move_to_vgrf(addr, addr_sz);
- payload2 = bld.move_to_vgrf(src, src_sz);
- mlen = addr_sz * (inst->exec_size / 8);
- ex_mlen = src_sz * (inst->exec_size / 8);
+ if (header.file == BAD_FILE) {
+ payload = bld.move_to_vgrf(addr, addr_sz);
+ payload2 = bld.move_to_vgrf(src, src_sz);
+ mlen = addr_sz * (inst->exec_size / 8);
+ ex_mlen = src_sz * (inst->exec_size / 8);
+ } else {
+ assert(src.file == BAD_FILE);
+ payload = header;
+ payload2 = bld.move_to_vgrf(addr, addr_sz);
+ mlen = header_sz;
+ ex_mlen = addr_sz * (inst->exec_size / 8);
+ }
} else {
/* Allocate space for the payload. */
const unsigned sz = header_sz + addr_sz + src_sz;
/* Predicate the instruction on the sample mask if no header is
* provided.
*/
- if (header.file == BAD_FILE && sample_mask.file != BAD_FILE &&
- sample_mask.file != IMM) {
+ if ((header.file == BAD_FILE || !is_surface_access) &&
+ sample_mask.file != BAD_FILE && sample_mask.file != IMM) {
const fs_builder ubld = bld.group(1, 0).exec_all();
if (inst->predicate) {
assert(inst->predicate == BRW_PREDICATE_NORMAL);
nir_intrinsic_instr *instr);
fs_reg get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
nir_intrinsic_instr *instr);
+ fs_reg swizzle_nir_scratch_addr(const brw::fs_builder &bld,
+ const fs_reg &addr,
+ bool in_dwords);
void nir_emit_intrinsic(const brw::fs_builder &bld,
nir_intrinsic_instr *instr);
void nir_emit_tes_intrinsic(const brw::fs_builder &bld,
int *push_constant_loc;
fs_reg subgroup_id;
+ fs_reg scratch_base;
fs_reg frag_depth;
fs_reg frag_stencil;
fs_reg sample_mask;
case SHADER_OPCODE_SEND:
generate_send(inst, dst, src[0], src[1], src[2],
inst->ex_mlen > 0 ? src[3] : brw_null_reg());
- send_count++;
+ if ((inst->desc & 0xff) == BRW_BTI_STATELESS ||
+ (inst->desc & 0xff) == GEN8_BTI_STATELESS_NON_COHERENT) {
+ if (inst->size_written)
+ fill_count++;
+ else
+ spill_count++;
+ } else {
+ send_count++;
+ }
break;
case SHADER_OPCODE_GET_BUFFER_SIZE:
nir_setup_outputs();
nir_setup_uniforms();
nir_emit_system_values();
+ last_scratch = ALIGN(nir->scratch_size, 4) * dispatch_width;
nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
}
}
}
+/**
+ * The offsets we get from NIR act as if each SIMD channel has it's own blob
+ * of contiguous space. However, if we actually place each SIMD channel in
+ * it's own space, we end up with terrible cache performance because each SIMD
+ * channel accesses a different cache line even when they're all accessing the
+ * same byte offset. To deal with this problem, we swizzle the address using
+ * a simple algorithm which ensures that any time a SIMD message reads or
+ * writes the same address, it's all in the same cache line. We have to keep
+ * the bottom two bits fixed so that we can read/write up to a dword at a time
+ * and the individual element is contiguous. We do this by splitting the
+ * address as follows:
+ *
+ * 31 4-6 2 0
+ * +-------------------------------+------------+----------+
+ * | Hi address bits | chan index | addr low |
+ * +-------------------------------+------------+----------+
+ *
+ * In other words, the bottom two address bits stay, and the top 30 get
+ * shifted up so that we can stick the SIMD channel index in the middle. This
+ * way, we can access 8, 16, or 32-bit elements and, when accessing a 32-bit
+ * at the same logical offset, the scratch read/write instruction acts on
+ * continuous elements and we get good cache locality.
+ */
+fs_reg
+fs_visitor::swizzle_nir_scratch_addr(const brw::fs_builder &bld,
+ const fs_reg &nir_addr,
+ bool in_dwords)
+{
+ const fs_reg &chan_index =
+ nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
+ const unsigned chan_index_bits = ffs(dispatch_width) - 1;
+
+ fs_reg addr = bld.vgrf(BRW_REGISTER_TYPE_UD);
+ if (in_dwords) {
+ /* In this case, we know the address is aligned to a DWORD and we want
+ * the final address in DWORDs.
+ */
+ bld.SHL(addr, nir_addr, brw_imm_ud(chan_index_bits - 2));
+ bld.OR(addr, addr, chan_index);
+ } else {
+ /* This case substantially more annoying because we have to pay
+ * attention to those pesky two bottom bits.
+ */
+ fs_reg addr_hi = bld.vgrf(BRW_REGISTER_TYPE_UD);
+ bld.AND(addr_hi, nir_addr, brw_imm_ud(~0x3u));
+ bld.SHL(addr_hi, addr_hi, brw_imm_ud(chan_index_bits));
+ fs_reg chan_addr = bld.vgrf(BRW_REGISTER_TYPE_UD);
+ bld.SHL(chan_addr, chan_index, brw_imm_ud(2));
+ bld.AND(addr, nir_addr, brw_imm_ud(0x3u));
+ bld.OR(addr, addr, addr_hi);
+ bld.OR(addr, addr, chan_addr);
+ }
+ return addr;
+}
+
void
fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
{
break;
}
+ case nir_intrinsic_load_scratch: {
+ assert(devinfo->gen >= 7);
+
+ assert(nir_dest_num_components(instr->dest) == 1);
+ const unsigned bit_size = nir_dest_bit_size(instr->dest);
+ fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
+
+ if (devinfo->gen >= 8) {
+ srcs[SURFACE_LOGICAL_SRC_SURFACE] =
+ brw_imm_ud(GEN8_BTI_STATELESS_NON_COHERENT);
+ } else {
+ srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(BRW_BTI_STATELESS);
+ }
+
+ srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
+ srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
+ const fs_reg nir_addr = get_nir_src(instr->src[0]);
+
+ /* Make dest unsigned because that's what the temporary will be */
+ dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
+
+ /* Read the vector */
+ if (nir_intrinsic_align(instr) >= 4) {
+ assert(nir_dest_bit_size(instr->dest) == 32);
+
+ /* The offset for a DWORD scattered message is in dwords. */
+ srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
+ swizzle_nir_scratch_addr(bld, nir_addr, true);
+
+ bld.emit(SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL,
+ dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
+ } else {
+ assert(nir_dest_bit_size(instr->dest) <= 32);
+
+ srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
+ swizzle_nir_scratch_addr(bld, nir_addr, false);
+
+ fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
+ bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
+ read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
+ bld.MOV(dest, read_result);
+ }
+ break;
+ }
+
+ case nir_intrinsic_store_scratch: {
+ assert(devinfo->gen >= 7);
+
+ assert(nir_src_num_components(instr->src[0]) == 1);
+ const unsigned bit_size = nir_src_bit_size(instr->src[0]);
+ fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
+
+ if (devinfo->gen >= 8) {
+ srcs[SURFACE_LOGICAL_SRC_SURFACE] =
+ brw_imm_ud(GEN8_BTI_STATELESS_NON_COHERENT);
+ } else {
+ srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(BRW_BTI_STATELESS);
+ }
+
+ srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
+ srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
+ const fs_reg nir_addr = get_nir_src(instr->src[1]);
+
+ fs_reg data = get_nir_src(instr->src[0]);
+ data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
+
+ assert(nir_intrinsic_write_mask(instr) ==
+ (1u << instr->num_components) - 1);
+ if (nir_intrinsic_align(instr) >= 4) {
+ assert(nir_src_bit_size(instr->src[0]) == 32);
+ srcs[SURFACE_LOGICAL_SRC_DATA] = data;
+
+ /* The offset for a DWORD scattered message is in dwords. */
+ srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
+ swizzle_nir_scratch_addr(bld, nir_addr, true);
+
+ bld.emit(SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL,
+ fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
+ } else {
+ assert(nir_src_bit_size(instr->src[0]) <= 32);
+
+ srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
+ bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
+
+ srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
+ swizzle_nir_scratch_addr(bld, nir_addr, false);
+
+ bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
+ fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
+ }
+ break;
+ }
+
case nir_intrinsic_load_subgroup_size:
/* This should only happen for fragment shaders because every other case
* is lowered in NIR so we can optimize on it.
lower_mem_load_bit_size(nir_builder *b, nir_intrinsic_instr *intrin,
const struct gen_device_info *devinfo)
{
+ const bool needs_scalar =
+ intrin->intrinsic == nir_intrinsic_load_scratch;
+
assert(intrin->dest.is_ssa);
- if (intrin->dest.ssa.bit_size == 32)
+ if (intrin->dest.ssa.bit_size == 32 &&
+ (!needs_scalar || intrin->num_components == 1))
return false;
const unsigned bit_size = intrin->dest.ssa.bit_size;
} else {
assert(load_offset % 4 == 0);
load_bit_size = 32;
- load_comps = DIV_ROUND_UP(MIN2(bytes_left, 16), 4);
+ load_comps = needs_scalar ? 1 :
+ DIV_ROUND_UP(MIN2(bytes_left, 16), 4);
}
loads[num_loads++] = dup_mem_intrinsic(b, intrin, NULL, load_offset,
lower_mem_store_bit_size(nir_builder *b, nir_intrinsic_instr *intrin,
const struct gen_device_info *devinfo)
{
+ const bool needs_scalar =
+ intrin->intrinsic == nir_intrinsic_store_scratch;
+
assert(intrin->src[0].is_ssa);
nir_ssa_def *value = intrin->src[0].ssa;
assert(writemask < (1 << num_components));
if ((value->bit_size <= 32 && num_components == 1) ||
- (value->bit_size == 32 && writemask == (1 << num_components) - 1))
+ (value->bit_size == 32 &&
+ writemask == (1 << num_components) - 1 &&
+ !needs_scalar))
return false;
nir_src *offset_src = nir_get_io_offset_src(intrin);
while (BITSET_FFS(mask) != 0) {
const int start = BITSET_FFS(mask) - 1;
- assert(start % byte_size == 0);
int end;
for (end = start + 1; end < bytes_written; end++) {
if (chunk_bytes >= 4 && is_dword_aligned) {
store_align = MAX2(align, 4);
store_bit_size = 32;
- store_comps = MIN2(chunk_bytes, 16) / 4;
+ store_comps = needs_scalar ? 1 : MIN2(chunk_bytes, 16) / 4;
} else {
store_align = align;
store_comps = 1;
store_bit_size = 16;
}
const unsigned store_bytes = store_comps * (store_bit_size / 8);
- assert(store_bytes % byte_size == 0);
nir_ssa_def *packed = nir_extract_bits(b, &value, 1, start * 8,
store_comps, store_bit_size);
case nir_intrinsic_load_global:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_shared:
+ case nir_intrinsic_load_scratch:
if (lower_mem_load_bit_size(&b, intrin, devinfo))
progress = true;
break;
case nir_intrinsic_store_global:
case nir_intrinsic_store_ssbo:
case nir_intrinsic_store_shared:
+ case nir_intrinsic_store_scratch:
if (lower_mem_store_bit_size(&b, intrin, devinfo))
progress = true;
break;
* all nir load/store intrinsics into a series of either 8 or 32-bit
* load/store intrinsics with a number of components that we can directly
* handle in hardware and with a trivial write-mask.
+ *
+ * For scratch access, additional consideration has to be made due to the way
+ * that we swizzle the memory addresses to achieve decent cache locality. In
+ * particular, even though untyped surface read/write messages exist and work,
+ * we can't use them to load multiple components in a single SEND. For more
+ * detail on the scratch swizzle, see fs_visitor::swizzle_nir_scratch_addr.
*/
bool
brw_nir_lower_mem_access_bit_sizes(nir_shader *shader,