waaay too big a patch set (957 lines).
authorLuke Kenneth Casson Leighton <lkcl@lkcl.net>
Wed, 13 Oct 2021 11:25:25 +0000 (12:25 +0100)
committerLuke Kenneth Casson Leighton <lkcl@lkcl.net>
Wed, 13 Oct 2021 11:25:25 +0000 (12:25 +0100)
https://bugs.libre-soc.org/show_bug.cgi?id=713#c98
Revert "refactor layout to use SimdScope and XLEN"

This reverts commit 48c4d358fafb59fc7fdc414874c5288b81ec462d.

src/ieee754/part/layout_experiment.py

index 26801a10712b043d22f06112828d799d3993654d..6ddea00d11bbf3301c9266ec10bc5ac1ea693973 100644 (file)
@@ -22,7 +22,7 @@ from functools import reduce
 import operator
 from collections import defaultdict
 import dataclasses
-from ieee754.part.util import XLEN, FpElWid, IntElWid, SimdMap, SimdScope
+
 from ieee754.part_mul_add.partpoints import PartitionPoints
 
 
@@ -49,220 +49,189 @@ class LayoutResult:
         return f"LayoutResult({fields})"
 
 
-class SimdLayout(Shape):
-    def __init__(self, lane_shapes=None, signed=None, *, fixed_width=None,
-                 width_follows_hint=True, scope=None):
-        """calculate a SIMD layout.
-
-        Glossary:
-        * element: a single scalar value that is an element of a SIMD vector.
-            it has a width in bits, and a signedness. Every element is made of
-            1 or more parts. An element optionally includes the padding
-            associated with it.
-        * lane: an element. An element optionally includes the padding
-            associated with it.
-        * ElWid: the element-width (really the element type) of an instruction.
-            Either an integer or a FP type. Integer `ElWid`s are sign-agnostic.
-            In Python, `ElWid` is either an enum type or is `int`.
-            Example `ElWid` definition for integers:
-
-            class ElWid(Enum):
-                I8 = ...
-                I16 = ...
-                I32 = ...
-                I64 = ...
-
-            Example `ElWid` definition for floats:
-
-            class ElWid(Enum):
-                F16 = ...
-                BF16 = ...
-                F32 = ...
-                F64 = ...
-        * part: (not to be confused with a partition) A piece of a SIMD vector,
-            every SIMD vector is made of a non-negative integer of parts.
-            Elements are made of a power-of-two number of parts. A part is a
-            fixed number of bits wide for each different SIMD layout, it
-            doesn't vary when `elwid` changes. A part can have a bit width of
-            any non-negative integer, it is not restricted to power-of-two.
-
-
-        Arguments:
-        * lane_shapes: int or Mapping[ElWid, int] or SimdMap (optional)
-            the bit-width of all elements in this SIMD layout.
-        * signed: bool
-            the signedness of all elements in this SIMD layout
-        * fixed_width: int (optional)
-            the total width of a SIMD vector. One of lane_shapes and fixed_width
-            must be provided.
-        * width_follows_hint: bool
-            if fixed_width defaults to SimdScope.get().simd_full_width_hint
-
-        Values used from SimdScope:
-        * elwid: ElWid or nmigen Value with ElWid as the shape
-            the current ElWid value
-        * part_counts: SimdMap
-            a map from `ElWid` values `k` to the number of parts in an element
-            when `elwid == k`. Values should be minimized, since higher values
-            often create bigger circuits.
-
-            Example:
-            # here, an I8 element is 1 part wide
-            part_counts = SimdMap({
-                IntElWid.I8: 1,
-                IntElWid.I16: 2,
-                IntElWid.I32: 4, 
-                IntElWid.I64: 8,
-            })
-
-            Another Example:
-            # here, an F16 element is 1 part wide
-            part_counts = SimdMap({
-                FpElWid.F16: 1,
-                FpElWid.BF16: 1,
-                FpElWid.F32: 2,
-                FpElWid.F64: 4,
-            })
-        """
-        if scope is None:
-            scope = SimdScope.get()
-        assert isinstance(scope, SimdScope)
-        self.scope = scope
-        elwid = self.scope.elwid
-        part_counts = self.scope.part_counts
-        assert isinstance(part_counts, SimdMap)
-        simd_full_width_hint = self.scope.simd_full_width_hint
-        full_part_count = self.scope.full_part_count
-        print(f"layout(elwid={elwid},\n"
-              f"    signed={signed},\n"
-              f"    part_counts={part_counts},\n"
-              f"    lane_shapes={lane_shapes},\n"
-              f"    fixed_width={fixed_width},\n"
-              f"    simd_full_width_hint={simd_full_width_hint},\n"
-              f"    width_follows_hint={width_follows_hint})")
-
-        # when there are no lane_shapes specified, this indicates a
-        # desire to use the maximum available space based on the fixed width
-        # https://bugs.libre-soc.org/show_bug.cgi?id=713#c67
-        if lane_shapes is None:
-            assert fixed_width is not None, \
-                "both fixed_width and lane_shapes cannot be None"
-            lane_shapes = {}
-            for k, cur_part_count in part_counts.items():
-                cur_element_count = full_part_count // cur_part_count
-                assert fixed_width % cur_element_count == 0, (
-                    f"fixed_width ({fixed_width}) can't be split evenly into "
-                    f"{cur_element_count} elements")
-                lane_shapes[k] = fixed_width // cur_element_count
-            print("lane_shapes", fixed_width, lane_shapes)
-        # convert lane_shapes to a Mapping[ElWid, Any]
-        lane_shapes = SimdMap(lane_shapes).mapping
-        # filter out unsupported elwidths
-        lane_shapes = {i: lane_shapes[i] for i in part_counts.keys()}
-        self.lane_shapes = lane_shapes
-        # calculate the minimum possible bit-width of a part.
-        # we divide each element's width by the number of parts in an element,
-        # giving the number of bits needed per part.
-        min_part_wid = 0
-        for i, c in part_counts.items():
-            # double negate to get ceil division
-            needed = -(-lane_shapes[i] // c)
-            min_part_wid = max(min_part_wid, needed)
-        # calculate the minimum bit-width required
-        min_width = min_part_wid * full_part_count
-        print("width", min_width, min_part_wid, full_part_count)
-        if width_follows_hint \
-                and min_width <= simd_full_width_hint \
-                and fixed_width is None:
-            fixed_width = simd_full_width_hint
-
-        if fixed_width is not None:  # override the width and part_wid
-            assert min_width <= fixed_width, \
-                "not enough space to fit partitions"
-            self.part_wid = fixed_width // full_part_count
-            assert fixed_width % full_part_count == 0, \
-                "fixed_width must be a multiple of full_part_count"
-            width = fixed_width
-            print("part_wid", self.part_wid, "count", full_part_count)
-        else:
-            # go with computed width
-            width = min_width
-            self.part_wid = min_part_wid
-        super().__init__(width, signed)
-        # create the breakpoints dictionary.
-        # do multi-stage version https://bugs.libre-soc.org/show_bug.cgi?id=713#c34
-        # https://stackoverflow.com/questions/26367812/
-        # dpoints: dict from bit-index to dict[ElWid, None]
-        # we use a dict from ElWid to None as the values of dpoints in order to
-        # get an ordered set
-        dpoints = defaultdict(dict)  # if empty key, create a (empty) dict
-        for i, cur_part_count in part_counts.items():
-            def add_p(bit_index):
-                # auto-creates dict if key non-existent
-                dpoints[bit_index][i] = None
-            # go through all elements for elwid `i`, each element starts at
-            # part index `start_part`, and goes for `cur_part_count` parts
-            for start_part in range(0, full_part_count, cur_part_count):
-                start_bit = start_part * self.part_wid
-                add_p(start_bit)  # start of lane
-                add_p(start_bit + lane_shapes[i])  # start of padding
-        # do not need the breakpoints at the very start or the very end
-        dpoints.pop(0, None)
-        dpoints.pop(self.width, None)
-        plist = list(dpoints.keys())
-        plist.sort()
-        dpoints = {k: dpoints[k].keys() for k in plist}
-        self.dpoints = dpoints
-        print("dpoints")
-        for k in plist:
-            print(f"{k}: {list(dpoints[k])}")
-        # second stage, add (map to) the elwidth==i expressions.
-        # TODO: use nmutil.treereduce?
-        points = {}
-        for p in plist:
-            it = map(lambda i: elwid == i, dpoints[p])
-            points[p] = reduce(operator.or_, it)
-        # third stage, create the binary values which *if* elwidth is set to i
-        # *would* result in the mask at that elwidth being set to this value
-        # these can easily be double-checked through Assertion
-        self.bitp = {}
-        for i in part_counts.keys():
-            self.bitp[i] = 0
-            for p, elwidths in dpoints.items():
-                if i in elwidths:
-                    bitpos = plist.index(p)
-                    self.bitp[i] |= 1 << bitpos
-        # fourth stage: determine which partitions are 100% unused.
-        # these can then be "blanked out"
-        self.bmask = (1 << len(plist)) - 1
-        for p in self.bitp.values():
-            self.bmask &= ~p
-        self.ppoints = PartitionPoints(points)
-
-    def __repr__(self):
-        bitp = ", ".join(f"{k}: {bin(v)}" for k, v in self.bitp.items())
-        dpoints = []
-        for k, v in self.dpoints.items():
-            dpoints.append(f"{k}: {list(v)}")
-        dpoints = ",\n        ".join(dpoints)
-        ppoints = []
-        for k, v in self.ppoints.items():
-            ppoints.append(f"{k}: {list(v)}")
-        ppoints = ",\n        ".join(ppoints)
-        return (f"SimdLayout(lane_shapes={self.lane_shapes},\n"
-                f"    signed={self.signed},\n"
-                f"    fixed_width={self.width},\n"
-                f"    scope={self.scope},\n"
-                f"    bitp={{{bitp}}},\n"
-                f"    bmask={bin(self.bmask)},\n"
-                f"    dpoints={{\n"
-                f"        {dpoints}}},\n"
-                f"    part_wid={self.part_wid},\n"
-                f"    ppoints=PartitionPoints({{\n"
-                f"        {ppoints}}}))")
+# main fn, which started out here in the bugtracker:
+# https://bugs.libre-soc.org/show_bug.cgi?id=713#c20
+def layout(elwid, signed, part_counts, lane_shapes=None, fixed_width=None):
+    """calculate a SIMD layout.
+
+    Glossary:
+    * element: a single scalar value that is an element of a SIMD vector.
+        it has a width in bits, and a signedness. Every element is made of 1 or
+        more parts. An element optionally includes the padding associated with
+        it.
+    * lane: an element. An element optionally includes the padding associated
+        with it.
+    * ElWid: the element-width (really the element type) of an instruction.
+        Either an integer or a FP type. Integer `ElWid`s are sign-agnostic.
+        In Python, `ElWid` is either an enum type or is `int`.
+        Example `ElWid` definition for integers:
+
+        class ElWid(Enum):
+            I8 = ...
+            I16 = ...
+            I32 = ...
+            I64 = ...
+
+        Example `ElWid` definition for floats:
+
+        class ElWid(Enum):
+            F16 = ...
+            BF16 = ...
+            F32 = ...
+            F64 = ...
+    * part: (not to be confused with a partition) A piece of a SIMD vector,
+        every SIMD vector is made of a non-negative integer of parts. Elements
+        are made of a power-of-two number of parts. A part is a fixed number
+        of bits wide for each different SIMD layout, it doesn't vary when
+        `elwid` changes. A part can have a bit width of any non-negative
+        integer, it is not restricted to power-of-two. SIMD vectors should
+        have as few parts as necessary, since some circuits have size
+        proportional to the number of parts.
+
+
+    * elwid: ElWid or nmigen Value with ElWid as the shape
+        the current element-width
+    * signed: bool
+        the signedness of all elements in a SIMD layout
+    * part_counts: dict[ElWid, int]
+        a map from `ElWid` values `k` to the number of parts in an element
+        when `elwid == k`. Values should be minimized, since higher values
+        often create bigger circuits.
+
+        Example:
+        # here, an I8 element is 1 part wide
+        part_counts = {ElWid.I8: 1, ElWid.I16: 2, ElWid.I32: 4, ElWid.I64: 8}
+
+        Another Example:
+        # here, an F16 element is 1 part wide
+        part_counts = {ElWid.F16: 1, ElWid.BF16: 1, ElWid.F32: 2, ElWid.F64: 4}
+    * lane_shapes: int or Mapping[ElWid, int] (optional)
+        the bit-width of all elements in a SIMD layout.
+    * fixed_width: int (optional)
+        the total width of a SIMD vector. One of lane_shapes and fixed_width
+        must be provided.
+    """
+    print(f"layout(elwid={elwid},\n"
+          f"    signed={signed},\n"
+          f"    part_counts={part_counts},\n"
+          f"    lane_shapes={lane_shapes},\n"
+          f"    fixed_width={fixed_width})")
+    assert isinstance(part_counts, Mapping)
+    # assert all part_counts are powers of two
+    assert all(v != 0 and (v & (v - 1)) == 0 for v in part_counts.values()),\
+        "part_counts values must all be powers of two"
+
+    full_part_count = max(part_counts.values())
+
+    # when there are no lane_shapes specified, this indicates a
+    # desire to use the maximum available space based on the fixed width
+    # https://bugs.libre-soc.org/show_bug.cgi?id=713#c67
+    if lane_shapes is None:
+        assert fixed_width is not None, \
+            "both fixed_width and lane_shapes cannot be None"
+        lane_shapes = {}
+        for k, cur_part_count in part_counts.items():
+            cur_element_count = full_part_count // cur_part_count
+            assert fixed_width % cur_element_count == 0, (
+                f"fixed_width ({fixed_width}) can't be split evenly into "
+                f"{cur_element_count} elements")
+            lane_shapes[k] = fixed_width // cur_element_count
+        print("lane_shapes", fixed_width, lane_shapes)
+    # identify if the lane_shapes is a mapping (dict, etc.)
+    # if not, then assume that it is an integer (width) that
+    # needs to be requested across all partitions
+    if not isinstance(lane_shapes, Mapping):
+        lane_shapes = {i: lane_shapes for i in part_counts}
+    # calculate the minimum possible bit-width of a part.
+    # we divide each element's width by the number of parts in an element,
+    # giving the number of bits needed per part.
+    # we use `-min(-a // b for ...)` to get `max(ceil(a / b) for ...)`,
+    # but using integers.
+    min_part_wid = -min(-lane_shapes[i] // c for i, c in part_counts.items())
+    # calculate the minimum bit-width required
+    min_width = min_part_wid * full_part_count
+    print("width", min_width, min_part_wid, full_part_count)
+    if fixed_width is not None:  # override the width and part_wid
+        assert min_width <= fixed_width, "not enough space to fit partitions"
+        part_wid = fixed_width // full_part_count
+        assert fixed_width % full_part_count == 0, \
+            "fixed_width must be a multiple of full_part_count"
+        width = fixed_width
+        print("part_wid", part_wid, "count", full_part_count)
+    else:
+        # go with computed width
+        width = min_width
+        part_wid = min_part_wid
+    # create the breakpoints dictionary.
+    # do multi-stage version https://bugs.libre-soc.org/show_bug.cgi?id=713#c34
+    # https://stackoverflow.com/questions/26367812/
+    # dpoints: dict from bit-index to dict[ElWid, None]
+    # we use a dict from ElWid to None as the values of dpoints in order to
+    # get an ordered set
+    dpoints = defaultdict(dict)  # if empty key, create a (empty) dict
+    for i, cur_part_count in part_counts.items():
+        def add_p(bit_index):
+            # auto-creates dict if key non-existent
+            dpoints[bit_index][i] = None
+        # go through all elements for elwid `i`, each element starts at
+        # part index `start_part`, and goes for `cur_part_count` parts
+        for start_part in range(0, full_part_count, cur_part_count):
+            start_bit = start_part * part_wid
+            add_p(start_bit)  # start of lane
+            add_p(start_bit + lane_shapes[i])  # start of padding
+    # do not need the breakpoints at the very start or the very end
+    dpoints.pop(0, None)
+    dpoints.pop(width, None)
+    plist = list(dpoints.keys())
+    plist.sort()
+    print("dpoints")
+    for k in plist:
+        print(f"{k}: {list(dpoints[k].keys())}")
+    # second stage, add (map to) the elwidth==i expressions.
+    # TODO: use nmutil.treereduce?
+    points = {}
+    for p in plist:
+        it = map(lambda i: elwid == i, dpoints[p])
+        points[p] = reduce(operator.or_, it)
+    # third stage, create the binary values which *if* elwidth is set to i
+    # *would* result in the mask at that elwidth being set to this value
+    # these can easily be double-checked through Assertion
+    bitp = {}
+    for i in part_counts.keys():
+        bitp[i] = 0
+        for p, elwidths in dpoints.items():
+            if i in elwidths:
+                bitpos = plist.index(p)
+                bitp[i] |= 1 << bitpos
+    # fourth stage: determine which partitions are 100% unused.
+    # these can then be "blanked out"
+    bmask = (1 << len(plist)) - 1
+    for p in bitp.values():
+        bmask &= ~p
+    return LayoutResult(PartitionPoints(points), bitp, bmask, width,
+                        lane_shapes, part_wid, full_part_count)
 
 
 if __name__ == '__main__':
+
+    class FpElWid(Enum):
+        F64 = 0
+        F32 = 1
+        F16 = 2
+        BF16 = 3
+
+        def __repr__(self):
+            return super().__str__()
+
+    class IntElWid(Enum):
+        I64 = 0
+        I32 = 1
+        I16 = 2
+        I8 = 3
+
+        def __repr__(self):
+            return super().__str__()
+
     # for each element-width (elwidth 0-3) the number of parts in an element
     # is given:
     #                                | part0 | part1 | part2 | part3 |
@@ -286,8 +255,7 @@ if __name__ == '__main__':
     width_for_all_els = 3
 
     for i in FpElWid:
-        with SimdScope(elwid=i, part_counts=part_counts):
-            print(i, SimdLayout(width_for_all_els, True, width_follows_hint=False))
+        print(i, layout(i, True, part_counts, width_for_all_els))
 
     # fixed_width=32 and no lane_widths says "allocate maximum"
     # elwid=F64 1x 32-bit    |<-------i32------->|
@@ -297,8 +265,7 @@ if __name__ == '__main__':
 
     print("maximum allocation from fixed_width=32")
     for i in FpElWid:
-        with SimdScope(elwid=i, part_counts=part_counts):
-            print(i, SimdLayout(signed=True, fixed_width=32))
+        print(i, layout(i, True, part_counts, fixed_width=32))
 
     # specify that the length is to be *different* at each of the elwidths.
     # combined with part_counts we have:
@@ -314,18 +281,18 @@ if __name__ == '__main__':
     }
 
     for i in FpElWid:
-        with SimdScope(elwid=i, part_counts=part_counts):
-            print(i, SimdLayout(widths_at_elwidth,
-                                False, width_follows_hint=False))
+        print(i, layout(i, False, part_counts, widths_at_elwidth))
 
     # this tests elwidth as an actual Signal. layout is allowed to
     # determine arbitrarily the overall length
     # https://bugs.libre-soc.org/show_bug.cgi?id=713#c30
 
-    with SimdScope(elwid_type=FpElWid, part_counts=part_counts) as scope:
-        l = SimdLayout(widths_at_elwidth, False, width_follows_hint=False)
-        elwid = scope.elwid
-    print(l)
+    elwid = Signal(FpElWid)
+    lr = layout(elwid, False, part_counts, widths_at_elwidth)
+    print(lr)
+    for k, v in lr.bitp.items():
+        print(f"bitp elwidth={k}", bin(v))
+    print("bmask", bin(lr.bmask))
 
     m = Module()
 
@@ -334,7 +301,7 @@ if __name__ == '__main__':
             yield elwid.eq(i)
             yield Settle()
             ppt = []
-            for pval in l.ppoints.values():
+            for pval in lr.ppoints.values():
                 val = yield pval  # get nmigen to evaluate pp
                 ppt.append(val)
             print(i, ppt)
@@ -342,36 +309,7 @@ if __name__ == '__main__':
             # https://bugs.libre-soc.org/show_bug.cgi?id=713#c47
             # https://stackoverflow.com/a/27165694
             ival = int(''.join(map(str, ppt[::-1])), 2)
-            assert ival == l.bitp[i]
-
-    sim = Simulator(m)
-    sim.add_process(process)
-    sim.run()
-
-    # this tests elwidth as an actual Signal. layout uses the width hint
-    # https://bugs.libre-soc.org/show_bug.cgi?id=713#c30
-
-    with SimdScope(elwid_type=FpElWid, part_counts=part_counts) as scope:
-        l = SimdLayout(widths_at_elwidth, False)
-        elwid = scope.elwid
-    print(l)
-
-    m = Module()
-
-    def process():
-        for i in FpElWid:
-            yield elwid.eq(i)
-            yield Settle()
-            ppt = []
-            for pval in l.ppoints.values():
-                val = yield pval  # get nmigen to evaluate pp
-                ppt.append(val)
-            print(i, ppt)
-            # check the results against bitp static-expected partition points
-            # https://bugs.libre-soc.org/show_bug.cgi?id=713#c47
-            # https://stackoverflow.com/a/27165694
-            ival = int(''.join(map(str, ppt[::-1])), 2)
-            assert ival == l.bitp[i]
+            assert ival == lr.bitp[i]
 
     sim = Simulator(m)
     sim.add_process(process)
@@ -381,10 +319,12 @@ if __name__ == '__main__':
     # determine arbitrarily the overall length, it is fixed to 64
     # https://bugs.libre-soc.org/show_bug.cgi?id=713#c22
 
-    with SimdScope(elwid_type=FpElWid, part_counts=part_counts) as scope:
-        l = SimdLayout(widths_at_elwidth, False, fixed_width=64)
-        elwid = scope.elwid
-    print(l)
+    elwid = Signal(FpElWid)
+    lr = layout(elwid, False, part_counts, widths_at_elwidth, fixed_width=64)
+    print(lr)
+    for k, v in lr.bitp.items():
+        print(f"bitp elwidth={k}", bin(v))
+    print("bmask", bin(lr.bmask))
 
     m = Module()
 
@@ -393,7 +333,7 @@ if __name__ == '__main__':
             yield elwid.eq(i)
             yield Settle()
             ppt = []
-            for pval in list(l.ppoints.values()):
+            for pval in list(lr.ppoints.values()):
                 val = yield pval  # get nmigen to evaluate pp
                 ppt.append(val)
             print(f"test elwidth={i}")
@@ -402,18 +342,9 @@ if __name__ == '__main__':
             # https://bugs.libre-soc.org/show_bug.cgi?id=713#c47
             # https://stackoverflow.com/a/27165694
             ival = int(''.join(map(str, ppt[::-1])), 2)
-            assert ival == l.bitp[i], \
-                f"ival {bin(ival)} actual {bin(l.bitp[i])}"
+            assert ival == lr.bitp[i], \
+                f"ival {bin(ival)} actual {bin(lr.bitp[i])}"
 
     sim = Simulator(m)
     sim.add_process(process)
     sim.run()
-
-    # test XLEN
-    with SimdScope(elwid_type=IntElWid):
-        print("\nSimdLayout(XLEN):")
-        l1 = SimdLayout(XLEN)
-        print(l1)
-        print("\nSimdLayout(XLEN // 2):")
-        l2 = SimdLayout(XLEN // 2)
-        print(l2)