compiler/brw_nir_attribute_workarounds.c \
compiler/brw_nir_lower_cs_intrinsics.c \
compiler/brw_nir_lower_image_load_store.c \
+ compiler/brw_nir_lower_mem_access_bit_sizes.c \
compiler/brw_nir_opt_peephole_ffma.c \
compiler/brw_nir_tcs_workarounds.c \
compiler/brw_packed_float.c \
#include "brw_fs_surface_builder.h"
#include "brw_nir.h"
#include "util/u_math.h"
+#include "util/bitscan.h"
using namespace brw;
using namespace brw::surface_access;
return get_nir_src(*offset_src);
}
-static void
-do_untyped_vector_read(const fs_builder &bld,
- const fs_reg dest,
- const fs_reg surf_index,
- const fs_reg offset_reg,
- unsigned num_components)
-{
- if (type_sz(dest.type) <= 2) {
- assert(dest.stride == 1);
- boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
-
- if (is_const_offset) {
- uint32_t start = offset_reg.ud & ~3;
- uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
- end = ALIGN(end, 4);
- assert (end - start <= 16);
-
- /* At this point we have 16-bit component/s that have constant
- * offset aligned to 4-bytes that can be read with untyped_reads.
- * untyped_read message requires 32-bit aligned offsets.
- */
- unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
- unsigned num_components_32bit = (end - start) / 4;
-
- fs_reg read_result =
- emit_untyped_read(bld, surf_index, brw_imm_ud(start),
- 1 /* dims */,
- num_components_32bit,
- BRW_PREDICATE_NONE);
- shuffle_from_32bit_read(bld, dest, read_result, first_component,
- num_components);
- } else {
- fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
- for (unsigned i = 0; i < num_components; i++) {
- if (i == 0) {
- bld.MOV(read_offset, offset_reg);
- } else {
- bld.ADD(read_offset, offset_reg,
- brw_imm_ud(i * type_sz(dest.type)));
- }
- /* Non constant offsets are not guaranteed to be aligned 32-bits
- * so they are read using one byte_scattered_read message
- * for each component.
- */
- fs_reg read_result =
- emit_byte_scattered_read(bld, surf_index, read_offset,
- 1 /* dims */, 1,
- type_sz(dest.type) * 8 /* bit_size */,
- BRW_PREDICATE_NONE);
- bld.MOV(offset(dest, bld, i),
- subscript (read_result, dest.type, 0));
- }
- }
- } else if (type_sz(dest.type) == 4) {
- fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
- 1 /* dims */,
- num_components,
- BRW_PREDICATE_NONE);
- read_result.type = dest.type;
- for (unsigned i = 0; i < num_components; i++)
- bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
- } else if (type_sz(dest.type) == 8) {
- /* Reading a dvec, so we need to:
- *
- * 1. Multiply num_components by 2, to account for the fact that we
- * need to read 64-bit components.
- * 2. Shuffle the result of the load to form valid 64-bit elements
- * 3. Emit a second load (for components z/w) if needed.
- */
- fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
- bld.MOV(read_offset, offset_reg);
-
- int iters = num_components <= 2 ? 1 : 2;
-
- /* Load the dvec, the first iteration loads components x/y, the second
- * iteration, if needed, loads components z/w
- */
- for (int it = 0; it < iters; it++) {
- /* Compute number of components to read in this iteration */
- int iter_components = MIN2(2, num_components);
- num_components -= iter_components;
-
- /* Read. Since this message reads 32-bit components, we need to
- * read twice as many components.
- */
- fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
- 1 /* dims */,
- iter_components * 2,
- BRW_PREDICATE_NONE);
-
- /* Shuffle the 32-bit load result into valid 64-bit data */
- shuffle_from_32bit_read(bld, offset(dest, bld, it * 2),
- read_result, 0, iter_components);
-
- bld.ADD(read_offset, read_offset, brw_imm_ud(16));
- }
- } else {
- unreachable("Unsupported type");
- }
-}
-
void
fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
nir_intrinsic_instr *instr)
case nir_intrinsic_load_shared: {
assert(devinfo->gen >= 7);
+ assert(stage == MESA_SHADER_COMPUTE);
- fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
+ const unsigned bit_size = nir_dest_bit_size(instr->dest);
+ fs_reg offset_reg = retype(get_nir_src(instr->src[0]),
+ BRW_REGISTER_TYPE_UD);
- /* Get the offset to read from */
- fs_reg offset_reg;
- if (nir_src_is_const(instr->src[0])) {
- offset_reg = brw_imm_ud(instr->const_index[0] +
- nir_src_as_uint(instr->src[0]));
- } else {
- offset_reg = vgrf(glsl_type::uint_type);
- bld.ADD(offset_reg,
- retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
- brw_imm_ud(instr->const_index[0]));
- }
+ /* Make dest unsigned because that's what the temporary will be */
+ dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
/* Read the vector */
- do_untyped_vector_read(bld, dest, surf_index, offset_reg,
- instr->num_components);
+ if (nir_intrinsic_align(instr) >= 4) {
+ assert(nir_dest_bit_size(instr->dest) == 32);
+ fs_reg read_result = emit_untyped_read(bld, brw_imm_ud(GEN7_BTI_SLM),
+ offset_reg, 1 /* dims */,
+ instr->num_components,
+ BRW_PREDICATE_NONE);
+ for (unsigned i = 0; i < instr->num_components; i++)
+ bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
+ } else {
+ assert(nir_dest_bit_size(instr->dest) <= 32);
+ assert(nir_dest_num_components(instr->dest) == 1);
+ fs_reg read_result =
+ emit_byte_scattered_read(bld, brw_imm_ud(GEN7_BTI_SLM), offset_reg,
+ 1 /* dims */, 1, bit_size,
+ BRW_PREDICATE_NONE);
+ bld.MOV(dest, read_result);
+ }
break;
}
case nir_intrinsic_store_shared: {
assert(devinfo->gen >= 7);
+ assert(stage == MESA_SHADER_COMPUTE);
- /* Block index */
- fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
-
- /* Value */
+ const unsigned bit_size = nir_src_bit_size(instr->src[0]);
fs_reg val_reg = get_nir_src(instr->src[0]);
+ fs_reg offset_reg = retype(get_nir_src(instr->src[1]),
+ BRW_REGISTER_TYPE_UD);
- /* Writemask */
- unsigned writemask = instr->const_index[1];
-
- /* get_nir_src() retypes to integer. Be wary of 64-bit types though
- * since the untyped writes below operate in units of 32-bits, which
- * means that we need to write twice as many components each time.
- * Also, we have to suffle 64-bit data to be in the appropriate layout
- * expected by our 32-bit write messages.
- */
- unsigned type_size = 4;
- if (nir_src_bit_size(instr->src[0]) == 64) {
- type_size = 8;
- val_reg = shuffle_for_32bit_write(bld, val_reg, 0,
- instr->num_components);
- }
-
- unsigned type_slots = type_size / 4;
-
- /* Combine groups of consecutive enabled channels in one write
- * message. We use ffs to find the first enabled channel and then ffs on
- * the bit-inverse, down-shifted writemask to determine the length of
- * the block of enabled bits.
- */
- while (writemask) {
- unsigned first_component = ffs(writemask) - 1;
- unsigned length = ffs(~(writemask >> first_component)) - 1;
-
- /* We can't write more than 2 64-bit components at once. Limit the
- * length of the write to what we can do and let the next iteration
- * handle the rest
- */
- if (type_size > 4)
- length = MIN2(2, length);
-
- fs_reg offset_reg;
- if (nir_src_is_const(instr->src[1])) {
- offset_reg = brw_imm_ud(instr->const_index[0] +
- nir_src_as_uint(instr->src[1]) +
- type_size * first_component);
- } else {
- offset_reg = vgrf(glsl_type::uint_type);
- bld.ADD(offset_reg,
- retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
- brw_imm_ud(instr->const_index[0] + type_size * first_component));
- }
+ val_reg.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
- emit_untyped_write(bld, surf_index, offset_reg,
- offset(val_reg, bld, first_component * type_slots),
- 1 /* dims */, length * type_slots,
+ assert(nir_intrinsic_write_mask(instr) ==
+ (1 << instr->num_components) - 1);
+ if (nir_intrinsic_align(instr) >= 4) {
+ assert(nir_src_bit_size(instr->src[0]) == 32);
+ assert(nir_src_num_components(instr->src[0]) <= 4);
+ emit_untyped_write(bld, brw_imm_ud(GEN7_BTI_SLM), offset_reg, val_reg,
+ 1 /* dims */, instr->num_components,
BRW_PREDICATE_NONE);
-
- /* Clear the bits in the writemask that we just wrote, then try
- * again to see if more channels are left.
- */
- writemask &= (15 << (first_component + length));
+ } else {
+ assert(nir_src_bit_size(instr->src[0]) <= 32);
+ assert(nir_src_num_components(instr->src[0]) == 1);
+ fs_reg write_src = bld.vgrf(BRW_REGISTER_TYPE_UD);
+ bld.MOV(write_src, val_reg);
+ emit_byte_scattered_write(bld, brw_imm_ud(GEN7_BTI_SLM), offset_reg,
+ write_src, 1 /* dims */, bit_size,
+ BRW_PREDICATE_NONE);
}
-
break;
}
case nir_intrinsic_load_ssbo: {
assert(devinfo->gen >= 7);
+ const unsigned bit_size = nir_dest_bit_size(instr->dest);
fs_reg surf_index = get_nir_ssbo_intrinsic_index(bld, instr);
- fs_reg offset_reg = get_nir_src_imm(instr->src[1]);
+ fs_reg offset_reg = retype(get_nir_src(instr->src[1]),
+ BRW_REGISTER_TYPE_UD);
- /* Read the vector */
- do_untyped_vector_read(bld, dest, surf_index, offset_reg,
- instr->num_components);
+ /* Make dest unsigned because that's what the temporary will be */
+ dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
+ /* Read the vector */
+ if (nir_intrinsic_align(instr) >= 4) {
+ assert(nir_dest_bit_size(instr->dest) == 32);
+ fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
+ 1 /* dims */,
+ instr->num_components,
+ BRW_PREDICATE_NONE);
+ for (unsigned i = 0; i < instr->num_components; i++)
+ bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
+ } else {
+ assert(nir_dest_bit_size(instr->dest) <= 32);
+ assert(nir_dest_num_components(instr->dest) == 1);
+ fs_reg read_result =
+ emit_byte_scattered_read(bld, surf_index, offset_reg,
+ 1 /* dims */, 1, bit_size,
+ BRW_PREDICATE_NONE);
+ bld.MOV(dest, read_result);
+ }
break;
}
if (stage == MESA_SHADER_FRAGMENT)
brw_wm_prog_data(prog_data)->has_side_effects = true;
- fs_reg surf_index = get_nir_ssbo_intrinsic_index(bld, instr);
-
- /* Value */
+ const unsigned bit_size = nir_src_bit_size(instr->src[0]);
fs_reg val_reg = get_nir_src(instr->src[0]);
+ fs_reg surf_index = get_nir_ssbo_intrinsic_index(bld, instr);
+ fs_reg offset_reg = retype(get_nir_src(instr->src[2]),
+ BRW_REGISTER_TYPE_UD);
- /* Writemask */
- unsigned writemask = instr->const_index[0];
-
- /* get_nir_src() retypes to integer. Be wary of 64-bit types though
- * since the untyped writes below operate in units of 32-bits, which
- * means that we need to write twice as many components each time.
- * Also, we have to suffle 64-bit data to be in the appropriate layout
- * expected by our 32-bit write messages.
- */
- unsigned bit_size = nir_src_bit_size(instr->src[0]);
- unsigned type_size = bit_size / 8;
-
- /* Combine groups of consecutive enabled channels in one write
- * message. We use ffs to find the first enabled channel and then ffs on
- * the bit-inverse, down-shifted writemask to determine the num_components
- * of the block of enabled bits.
- */
- while (writemask) {
- unsigned first_component = ffs(writemask) - 1;
- unsigned num_components = ffs(~(writemask >> first_component)) - 1;
- fs_reg write_src = offset(val_reg, bld, first_component);
-
- if (type_size > 4) {
- /* We can't write more than 2 64-bit components at once. Limit
- * the num_components of the write to what we can do and let the next
- * iteration handle the rest.
- */
- num_components = MIN2(2, num_components);
- write_src = shuffle_for_32bit_write(bld, write_src, 0,
- num_components);
- } else if (type_size < 4) {
- /* For 16-bit types we pack two consecutive values into a 32-bit
- * word and use an untyped write message. For single values or not
- * 32-bit-aligned we need to use byte-scattered writes because
- * untyped writes works with 32-bit components with 32-bit
- * alignment. byte_scattered_write messages only support one
- * 16-bit component at a time. As VK_KHR_relaxed_block_layout
- * could be enabled we can not guarantee that not constant offsets
- * to be 32-bit aligned for 16-bit types. For example an array, of
- * 16-bit vec3 with array element stride of 6.
- *
- * In the case of 32-bit aligned constant offsets if there is
- * a 3-components vector we submit one untyped-write message
- * of 32-bit (first two components), and one byte-scattered
- * write message (the last component).
- */
-
- if (!nir_src_is_const(instr->src[2]) ||
- ((nir_src_as_uint(instr->src[2]) +
- type_size * first_component) % 4)) {
- /* If we use a .yz writemask we also need to emit 2
- * byte-scattered write messages because of y-component not
- * being aligned to 32-bit.
- */
- num_components = 1;
- } else if (num_components * type_size > 4 &&
- (num_components * type_size % 4)) {
- /* If the pending components size is not a multiple of 4 bytes
- * we left the not aligned components for following emits of
- * length == 1 with byte_scattered_write.
- */
- num_components -= (num_components * type_size % 4) / type_size;
- } else if (num_components * type_size < 4) {
- num_components = 1;
- }
- /* For num_components == 1 we are also shuffling the component
- * because byte scattered writes of 16-bit need values to be dword
- * aligned. Shuffling only one component would be the same as
- * striding it.
- */
- write_src = shuffle_for_32bit_write(bld, write_src, 0,
- num_components);
- }
-
- fs_reg offset_reg;
-
- if (nir_src_is_const(instr->src[2])) {
- offset_reg = brw_imm_ud(nir_src_as_uint(instr->src[2]) +
- type_size * first_component);
- } else {
- offset_reg = vgrf(glsl_type::uint_type);
- bld.ADD(offset_reg,
- retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
- brw_imm_ud(type_size * first_component));
- }
-
- if (type_size < 4 && num_components == 1) {
- /* Untyped Surface messages have a fixed 32-bit size, so we need
- * to rely on byte scattered in order to write 16-bit elements.
- * The byte_scattered_write message needs that every written 16-bit
- * type to be aligned 32-bits (stride=2).
- */
- emit_byte_scattered_write(bld, surf_index, offset_reg,
- write_src,
- 1 /* dims */,
- bit_size,
- BRW_PREDICATE_NONE);
- } else {
- assert(num_components * type_size <= 16);
- assert((num_components * type_size) % 4 == 0);
- assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
- offset_reg.ud % 4 == 0);
- unsigned num_slots = (num_components * type_size) / 4;
-
- emit_untyped_write(bld, surf_index, offset_reg,
- write_src,
- 1 /* dims */, num_slots,
- BRW_PREDICATE_NONE);
- }
+ val_reg.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
- /* Clear the bits in the writemask that we just wrote, then try
- * again to see if more channels are left.
- */
- writemask &= (15 << (first_component + num_components));
+ assert(nir_intrinsic_write_mask(instr) ==
+ (1 << instr->num_components) - 1);
+ if (nir_intrinsic_align(instr) >= 4) {
+ assert(nir_src_bit_size(instr->src[0]) == 32);
+ assert(nir_src_num_components(instr->src[0]) <= 4);
+ emit_untyped_write(bld, surf_index, offset_reg, val_reg,
+ 1 /* dims */, instr->num_components,
+ BRW_PREDICATE_NONE);
+ } else {
+ assert(nir_src_bit_size(instr->src[0]) <= 32);
+ assert(nir_src_num_components(instr->src[0]) == 1);
+ fs_reg write_src = bld.vgrf(BRW_REGISTER_TYPE_UD);
+ bld.MOV(write_src, val_reg);
+ emit_byte_scattered_write(bld, surf_index, offset_reg,
+ write_src, 1 /* dims */, bit_size,
+ BRW_PREDICATE_NONE);
}
break;
}
brw_nir_no_indirect_mask(compiler, nir->info.stage);
OPT(nir_lower_indirect_derefs, indirect_mask);
+ OPT(brw_nir_lower_mem_access_bit_sizes);
+
/* Get rid of split copies */
nir = brw_nir_optimize(nir, compiler, is_scalar, false);
void brw_nir_rewrite_image_intrinsic(nir_intrinsic_instr *intrin,
nir_ssa_def *index);
+bool brw_nir_lower_mem_access_bit_sizes(nir_shader *shader);
+
nir_shader *brw_postprocess_nir(nir_shader *nir,
const struct brw_compiler *compiler,
bool is_scalar);
--- /dev/null
+/*
+ * Copyright © 2018 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include "brw_nir.h"
+#include "compiler/nir/nir_builder.h"
+#include "util/u_math.h"
+#include "util/bitscan.h"
+
+static nir_ssa_def *
+dup_mem_intrinsic(nir_builder *b, nir_intrinsic_instr *intrin,
+ nir_ssa_def *store_src, int offset,
+ unsigned num_components, unsigned bit_size,
+ unsigned align)
+{
+ const nir_intrinsic_info *info = &nir_intrinsic_infos[intrin->intrinsic];
+
+ nir_intrinsic_instr *dup =
+ nir_intrinsic_instr_create(b->shader, intrin->intrinsic);
+
+ nir_src *intrin_offset_src = nir_get_io_offset_src(intrin);
+ for (unsigned i = 0; i < info->num_srcs; i++) {
+ assert(intrin->src[i].is_ssa);
+ if (i == 0 && store_src) {
+ assert(!info->has_dest);
+ assert(&intrin->src[i] != intrin_offset_src);
+ dup->src[i] = nir_src_for_ssa(store_src);
+ } else if (&intrin->src[i] == intrin_offset_src) {
+ dup->src[i] = nir_src_for_ssa(nir_iadd_imm(b, intrin->src[i].ssa,
+ offset));
+ } else {
+ dup->src[i] = nir_src_for_ssa(intrin->src[i].ssa);
+ }
+ }
+
+ dup->num_components = num_components;
+
+ for (unsigned i = 0; i < info->num_indices; i++)
+ dup->const_index[i] = intrin->const_index[i];
+
+ nir_intrinsic_set_align(dup, align, 0);
+
+ if (info->has_dest) {
+ assert(intrin->dest.is_ssa);
+ nir_ssa_dest_init(&dup->instr, &dup->dest,
+ num_components, bit_size,
+ intrin->dest.ssa.name);
+ } else {
+ nir_intrinsic_set_write_mask(dup, (1 << num_components) - 1);
+ }
+
+ nir_builder_instr_insert(b, &dup->instr);
+
+ return info->has_dest ? &dup->dest.ssa : NULL;
+}
+
+static bool
+lower_mem_load_bit_size(nir_builder *b, nir_intrinsic_instr *intrin)
+{
+ assert(intrin->dest.is_ssa);
+ if (intrin->dest.ssa.bit_size == 32)
+ return false;
+
+ const unsigned bit_size = intrin->dest.ssa.bit_size;
+ const unsigned num_components = intrin->dest.ssa.num_components;
+ const unsigned bytes_read = num_components * (bit_size / 8);
+ const unsigned align = nir_intrinsic_align(intrin);
+
+ nir_ssa_def *result[4] = { NULL, };
+
+ nir_src *offset_src = nir_get_io_offset_src(intrin);
+ if (bit_size < 32 && nir_src_is_const(*offset_src)) {
+ /* The offset is constant so we can use a 32-bit load and just shift it
+ * around as needed.
+ */
+ const int load_offset = nir_src_as_uint(*offset_src) % 4;
+ assert(load_offset % (bit_size / 8) == 0);
+ const unsigned load_comps32 = DIV_ROUND_UP(bytes_read + load_offset, 4);
+ /* A 16-bit vec4 is a 32-bit vec2. We add an extra component in case
+ * we offset into a component with load_offset.
+ */
+ assert(load_comps32 <= 3);
+
+ nir_ssa_def *load = dup_mem_intrinsic(b, intrin, NULL, -load_offset,
+ load_comps32, 32, 4);
+ nir_ssa_def *unpacked[3];
+ for (unsigned i = 0; i < load_comps32; i++)
+ unpacked[i] = nir_unpack_bits(b, nir_channel(b, load, i), bit_size);
+
+ assert(load_offset % (bit_size / 8) == 0);
+ const unsigned divisor = 32 / bit_size;
+
+ for (unsigned i = 0; i < num_components; i++) {
+ unsigned load_i = i + load_offset / (bit_size / 8);
+ result[i] = nir_channel(b, unpacked[load_i / divisor],
+ load_i % divisor);
+ }
+ } else {
+ /* Otherwise, we have to break it into smaller loads */
+ unsigned res_idx = 0;
+ int load_offset = 0;
+ while (load_offset < bytes_read) {
+ const unsigned bytes_left = bytes_read - load_offset;
+ unsigned load_bit_size, load_comps;
+ if (align < 4) {
+ load_comps = 1;
+ /* Choose a byte, word, or dword */
+ load_bit_size = util_next_power_of_two(MIN2(bytes_left, 4)) * 8;
+ } else {
+ assert(load_offset % 4 == 0);
+ load_bit_size = 32;
+ load_comps = DIV_ROUND_UP(MIN2(bytes_left, 16), 4);
+ }
+
+ nir_ssa_def *load = dup_mem_intrinsic(b, intrin, NULL, load_offset,
+ load_comps, load_bit_size,
+ align);
+
+ nir_ssa_def *unpacked = nir_bitcast_vector(b, load, bit_size);
+ for (unsigned i = 0; i < unpacked->num_components; i++) {
+ if (res_idx < num_components)
+ result[res_idx++] = nir_channel(b, unpacked, i);
+ }
+
+ load_offset += load_comps * (load_bit_size / 8);
+ }
+ }
+
+ nir_ssa_def *vec_result = nir_vec(b, result, num_components);
+ nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
+ nir_src_for_ssa(vec_result));
+ nir_instr_remove(&intrin->instr);
+
+ return true;
+}
+
+static bool
+lower_mem_store_bit_size(nir_builder *b, nir_intrinsic_instr *intrin)
+{
+ assert(intrin->src[0].is_ssa);
+ nir_ssa_def *value = intrin->src[0].ssa;
+
+ assert(intrin->num_components == value->num_components);
+ const unsigned bit_size = value->bit_size;
+ const unsigned num_components = intrin->num_components;
+ const unsigned bytes_written = num_components * (bit_size / 8);
+ const unsigned align_mul = nir_intrinsic_align_mul(intrin);
+ const unsigned align_offset = nir_intrinsic_align_offset(intrin);
+ const unsigned align = nir_intrinsic_align(intrin);
+
+ nir_component_mask_t writemask = nir_intrinsic_write_mask(intrin);
+ assert(writemask < (1 << num_components));
+
+ if ((value->bit_size <= 32 && num_components == 1) ||
+ (value->bit_size == 32 && writemask == (1 << num_components) - 1))
+ return false;
+
+ nir_src *offset_src = nir_get_io_offset_src(intrin);
+ const bool offset_is_const = nir_src_is_const(*offset_src);
+ const unsigned const_offset =
+ offset_is_const ? nir_src_as_uint(*offset_src) : 0;
+
+ assert(num_components * (bit_size / 8) <= 32);
+ uint32_t byte_mask = 0;
+ for (unsigned i = 0; i < num_components; i++) {
+ if (writemask & (1 << i))
+ byte_mask |= ((1 << (bit_size / 8)) - 1) << i * (bit_size / 8);
+ }
+
+ while (byte_mask) {
+ const int start = ffs(byte_mask) - 1;
+ assert(start % (bit_size / 8) == 0);
+
+ int end;
+ for (end = start + 1; end < bytes_written; end++) {
+ if (!(byte_mask & (1 << end)))
+ break;
+ }
+ /* The size of the current contiguous chunk in bytes */
+ const unsigned chunk_bytes = end - start;
+
+ const bool is_dword_aligned =
+ (align_mul >= 4 && (align_offset + start) % 4 == 0) ||
+ (offset_is_const && (start + const_offset) % 4 == 0);
+
+ unsigned store_comps, store_bit_size, store_align;
+ if (chunk_bytes >= 4 && is_dword_aligned) {
+ store_align = MAX2(align, 4);
+ store_bit_size = 32;
+ store_comps = MIN2(chunk_bytes, 16) / 4;
+ } else {
+ store_align = align;
+ store_comps = 1;
+ store_bit_size = MIN2(chunk_bytes, 4) * 8;
+ /* The bit size must be a power of two */
+ if (store_bit_size == 24)
+ store_bit_size = 16;
+ }
+
+ const unsigned store_bytes = store_comps * (store_bit_size / 8);
+ assert(store_bytes % (bit_size / 8) == 0);
+ const unsigned store_first_src_comp = start / (bit_size / 8);
+ const unsigned store_src_comps = store_bytes / (bit_size / 8);
+ assert(store_first_src_comp + store_src_comps <= num_components);
+
+ unsigned src_swiz[4];
+ for (unsigned i = 0; i < store_src_comps; i++)
+ src_swiz[i] = store_first_src_comp + i;
+ nir_ssa_def *store_value =
+ nir_swizzle(b, value, src_swiz, store_src_comps, false);
+ nir_ssa_def *packed = nir_bitcast_vector(b, store_value, store_bit_size);
+
+ dup_mem_intrinsic(b, intrin, packed, start,
+ store_comps, store_bit_size, store_align);
+
+ byte_mask &= ~(((1u << store_bytes) - 1) << start);
+ }
+
+ nir_instr_remove(&intrin->instr);
+
+ return true;
+}
+
+static bool
+lower_mem_access_bit_sizes_impl(nir_function_impl *impl)
+{
+ bool progress = false;
+
+ nir_builder b;
+ nir_builder_init(&b, impl);
+
+ nir_foreach_block(block, impl) {
+ nir_foreach_instr_safe(instr, block) {
+ if (instr->type != nir_instr_type_intrinsic)
+ continue;
+
+ b.cursor = nir_after_instr(instr);
+
+ nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
+ switch (intrin->intrinsic) {
+ case nir_intrinsic_load_ssbo:
+ case nir_intrinsic_load_shared:
+ if (lower_mem_load_bit_size(&b, intrin))
+ progress = true;
+ break;
+
+ case nir_intrinsic_store_ssbo:
+ case nir_intrinsic_store_shared:
+ if (lower_mem_store_bit_size(&b, intrin))
+ progress = true;
+ break;
+
+ default:
+ break;
+ }
+ }
+ }
+
+ if (progress) {
+ nir_metadata_preserve(impl, nir_metadata_block_index |
+ nir_metadata_dominance);
+ }
+
+ return progress;
+}
+
+/**
+ * This pass loads arbitrary SSBO and shared memory load/store operations to
+ * intrinsics which are natively handleable by GEN hardware. In particular,
+ * we have two general types of memory load/store messages:
+ *
+ * - Untyped surface read/write: These can load/store between one and four
+ * dword components to/from a dword-aligned offset.
+ *
+ * - Byte scattered read/write: These can load/store a single byte, word, or
+ * dword scalar to/from an unaligned byte offset.
+ *
+ * Neither type of message can do a write-masked store. This pass converts
+ * all nir load/store intrinsics into a series of either 8 or 32-bit
+ * load/store intrinsics with a number of components that we can directly
+ * handle in hardware and with a trivial write-mask.
+ */
+bool
+brw_nir_lower_mem_access_bit_sizes(nir_shader *shader)
+{
+ bool progress = false;
+
+ nir_foreach_function(func, shader) {
+ if (func->impl && lower_mem_access_bit_sizes_impl(func->impl))
+ progress = true;
+ }
+
+ return progress;
+}
case nir_intrinsic_store_ssbo: {
assert(devinfo->gen >= 7);
+ /* brw_nir_lower_mem_access_bit_sizes takes care of this */
+ assert(nir_src_bit_size(instr->src[0]) == 32);
+ assert(nir_intrinsic_write_mask(instr) ==
+ (1 << instr->num_components) - 1);
+
src_reg surf_index = get_nir_ssbo_intrinsic_index(instr);
src_reg offset_reg = retype(get_nir_src_imm(instr->src[2]),
BRW_REGISTER_TYPE_UD);
/* Value */
src_reg val_reg = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F, 4);
- /* Writemask */
- unsigned write_mask = instr->const_index[0];
-
/* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
* writes will use SIMD8 mode. In order to hide this and keep symmetry across
* typed and untyped messages and across hardware platforms, the
const vec4_builder bld = vec4_builder(this).at_end()
.annotate(current_annotation, base_ir);
- unsigned type_slots = nir_src_bit_size(instr->src[0]) / 32;
- if (type_slots == 2) {
- dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
- shuffle_64bit_data(tmp, retype(val_reg, tmp.type), true);
- val_reg = src_reg(retype(tmp, BRW_REGISTER_TYPE_F));
- }
-
- uint8_t swizzle[4] = { 0, 0, 0, 0};
- int num_channels = 0;
- unsigned skipped_channels = 0;
- int num_components = instr->num_components;
- for (int i = 0; i < num_components; i++) {
- /* Read components Z/W of a dvec from the appropriate place. We will
- * also have to adjust the swizzle (we do that with the '% 4' below)
- */
- if (i == 2 && type_slots == 2)
- val_reg = byte_offset(val_reg, REG_SIZE);
-
- /* Check if this channel needs to be written. If so, record the
- * channel we need to take the data from in the swizzle array
- */
- int component_mask = 1 << i;
- int write_test = write_mask & component_mask;
- if (write_test) {
- /* If we are writing doubles we have to write 2 channels worth of
- * of data (64 bits) for each double component.
- */
- swizzle[num_channels++] = (i * type_slots) % 4;
- if (type_slots == 2)
- swizzle[num_channels++] = (i * type_slots + 1) % 4;
- }
-
- /* If we don't have to write this channel it means we have a gap in the
- * vector, so write the channels we accumulated until now, if any. Do
- * the same if this was the last component in the vector, if we have
- * enough channels for a full vec4 write or if we have processed
- * components XY of a dvec (since components ZW are not in the same
- * SIMD register)
- */
- if (!write_test || i == num_components - 1 || num_channels == 4 ||
- (i == 1 && type_slots == 2)) {
- if (num_channels > 0) {
- /* We have channels to write, so update the offset we need to
- * write at to skip the channels we skipped, if any.
- */
- if (skipped_channels > 0) {
- if (offset_reg.file == IMM) {
- offset_reg.ud += 4 * skipped_channels;
- } else {
- emit(ADD(dst_reg(offset_reg), offset_reg,
- brw_imm_ud(4 * skipped_channels)));
- }
- }
-
- /* Swizzle the data register so we take the data from the channels
- * we need to write and send the write message. This will write
- * num_channels consecutive dwords starting at offset.
- */
- val_reg.swizzle =
- BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
- emit_untyped_write(bld, surf_index, offset_reg, val_reg,
- 1 /* dims */, num_channels /* size */,
- BRW_PREDICATE_NONE);
-
- /* If we have to do a second write we will have to update the
- * offset so that we jump over the channels we have just written
- * now.
- */
- skipped_channels = num_channels;
-
- /* Restart the count for the next write message */
- num_channels = 0;
- }
-
- /* If we didn't write the channel, increase skipped count */
- if (!write_test)
- skipped_channels += type_slots;
- }
- }
-
+ emit_untyped_write(bld, surf_index, offset_reg, val_reg,
+ 1 /* dims */, instr->num_components /* size */,
+ BRW_PREDICATE_NONE);
break;
}
case nir_intrinsic_load_ssbo: {
assert(devinfo->gen >= 7);
+ /* brw_nir_lower_mem_access_bit_sizes takes care of this */
+ assert(nir_dest_bit_size(instr->dest) == 32);
+
src_reg surf_index = get_nir_ssbo_intrinsic_index(instr);
src_reg offset_reg = retype(get_nir_src_imm(instr->src[1]),
BRW_REGISTER_TYPE_UD);
const vec4_builder bld = vec4_builder(this).at_end()
.annotate(current_annotation, base_ir);
- src_reg read_result;
+ src_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
+ 1 /* dims */, 4 /* size*/,
+ BRW_PREDICATE_NONE);
dst_reg dest = get_nir_dest(instr->dest);
- if (type_sz(dest.type) < 8) {
- read_result = emit_untyped_read(bld, surf_index, offset_reg,
- 1 /* dims */, 4 /* size*/,
- BRW_PREDICATE_NONE);
- } else {
- src_reg shuffled = src_reg(this, glsl_type::dvec4_type);
-
- src_reg temp;
- temp = emit_untyped_read(bld, surf_index, offset_reg,
- 1 /* dims */, 4 /* size*/,
- BRW_PREDICATE_NONE);
- emit(MOV(dst_reg(retype(shuffled, temp.type)), temp));
-
- if (offset_reg.file == IMM)
- offset_reg.ud += 16;
- else
- emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16)));
-
- temp = emit_untyped_read(bld, surf_index, offset_reg,
- 1 /* dims */, 4 /* size*/,
- BRW_PREDICATE_NONE);
- emit(MOV(dst_reg(retype(byte_offset(shuffled, REG_SIZE), temp.type)),
- temp));
-
- read_result = src_reg(this, glsl_type::dvec4_type);
- shuffle_64bit_data(dst_reg(read_result), shuffled, false);
- }
-
read_result.type = dest.type;
read_result.swizzle = brw_swizzle_for_size(instr->num_components);
emit(MOV(dest, read_result));
'brw_nir_attribute_workarounds.c',
'brw_nir_lower_cs_intrinsics.c',
'brw_nir_lower_image_load_store.c',
+ 'brw_nir_lower_mem_access_bit_sizes.c',
'brw_nir_opt_peephole_ffma.c',
'brw_nir_tcs_workarounds.c',
'brw_packed_float.c',