intel/compiler: Lower SSBO and shared loads/stores in NIR
authorJason Ekstrand <jason.ekstrand@intel.com>
Tue, 13 Nov 2018 00:48:10 +0000 (18:48 -0600)
committerJason Ekstrand <jason.ekstrand@intel.com>
Fri, 16 Nov 2018 01:59:49 +0000 (19:59 -0600)
We have a bunch of code to do this in the back-end compiler but it's
fairly specific to typed surface messages and the way we emit them.
This breaks it out into NIR were it's easier to do things a bit more
generally.  It also means we can easily share the code between the vec4
and FS back-ends if we wish.

Reviewed-by: Samuel Iglesias Gonsálvez <siglesias@igalia.com>
src/intel/Makefile.sources
src/intel/compiler/brw_fs_nir.cpp
src/intel/compiler/brw_nir.c
src/intel/compiler/brw_nir.h
src/intel/compiler/brw_nir_lower_mem_access_bit_sizes.c [new file with mode: 0644]
src/intel/compiler/brw_vec4_nir.cpp
src/intel/compiler/meson.build

index 4da887f7ed2295af3d76ed2761231f20b6f1eed3..5e7d32293b7b1ff7a0102b84dfed77e7b09c19ac 100644 (file)
@@ -85,6 +85,7 @@ COMPILER_FILES = \
        compiler/brw_nir_attribute_workarounds.c \
        compiler/brw_nir_lower_cs_intrinsics.c \
        compiler/brw_nir_lower_image_load_store.c \
+       compiler/brw_nir_lower_mem_access_bit_sizes.c \
        compiler/brw_nir_opt_peephole_ffma.c \
        compiler/brw_nir_tcs_workarounds.c \
        compiler/brw_packed_float.c \
index 2b36171136e6695f9fa3d06e409075070aec0d14..84d0c6be6c37746d21efe8a492dfe5b77402ede5 100644 (file)
@@ -26,6 +26,7 @@
 #include "brw_fs_surface_builder.h"
 #include "brw_nir.h"
 #include "util/u_math.h"
+#include "util/bitscan.h"
 
 using namespace brw;
 using namespace brw::surface_access;
@@ -2250,107 +2251,6 @@ fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
    return get_nir_src(*offset_src);
 }
 
-static void
-do_untyped_vector_read(const fs_builder &bld,
-                       const fs_reg dest,
-                       const fs_reg surf_index,
-                       const fs_reg offset_reg,
-                       unsigned num_components)
-{
-   if (type_sz(dest.type) <= 2) {
-      assert(dest.stride == 1);
-      boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
-
-      if (is_const_offset) {
-         uint32_t start = offset_reg.ud & ~3;
-         uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
-         end = ALIGN(end, 4);
-         assert (end - start <= 16);
-
-         /* At this point we have 16-bit component/s that have constant
-          * offset aligned to 4-bytes that can be read with untyped_reads.
-          * untyped_read message requires 32-bit aligned offsets.
-          */
-         unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
-         unsigned num_components_32bit = (end - start) / 4;
-
-         fs_reg read_result =
-            emit_untyped_read(bld, surf_index, brw_imm_ud(start),
-                              1 /* dims */,
-                              num_components_32bit,
-                              BRW_PREDICATE_NONE);
-         shuffle_from_32bit_read(bld, dest, read_result, first_component,
-                                 num_components);
-      } else {
-         fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
-         for (unsigned i = 0; i < num_components; i++) {
-            if (i == 0) {
-               bld.MOV(read_offset, offset_reg);
-            } else {
-               bld.ADD(read_offset, offset_reg,
-                       brw_imm_ud(i * type_sz(dest.type)));
-            }
-            /* Non constant offsets are not guaranteed to be aligned 32-bits
-             * so they are read using one byte_scattered_read message
-             * for each component.
-             */
-            fs_reg read_result =
-               emit_byte_scattered_read(bld, surf_index, read_offset,
-                                        1 /* dims */, 1,
-                                        type_sz(dest.type) * 8 /* bit_size */,
-                                        BRW_PREDICATE_NONE);
-            bld.MOV(offset(dest, bld, i),
-                    subscript (read_result, dest.type, 0));
-         }
-      }
-   } else if (type_sz(dest.type) == 4) {
-      fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
-                                             1 /* dims */,
-                                             num_components,
-                                             BRW_PREDICATE_NONE);
-      read_result.type = dest.type;
-      for (unsigned i = 0; i < num_components; i++)
-         bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
-   } else if (type_sz(dest.type) == 8) {
-      /* Reading a dvec, so we need to:
-       *
-       * 1. Multiply num_components by 2, to account for the fact that we
-       *    need to read 64-bit components.
-       * 2. Shuffle the result of the load to form valid 64-bit elements
-       * 3. Emit a second load (for components z/w) if needed.
-       */
-      fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
-      bld.MOV(read_offset, offset_reg);
-
-      int iters = num_components <= 2 ? 1 : 2;
-
-      /* Load the dvec, the first iteration loads components x/y, the second
-       * iteration, if needed, loads components z/w
-       */
-      for (int it = 0; it < iters; it++) {
-         /* Compute number of components to read in this iteration */
-         int iter_components = MIN2(2, num_components);
-         num_components -= iter_components;
-
-         /* Read. Since this message reads 32-bit components, we need to
-          * read twice as many components.
-          */
-         fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
-                                                1 /* dims */,
-                                                iter_components * 2,
-                                                BRW_PREDICATE_NONE);
-
-         /* Shuffle the 32-bit load result into valid 64-bit data */
-         shuffle_from_32bit_read(bld, offset(dest, bld, it * 2),
-                                 read_result, 0, iter_components);
-
-         bld.ADD(read_offset, read_offset, brw_imm_ud(16));
-      }
-   } else {
-      unreachable("Unsupported type");
-   }
-}
-
 void
 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
                                   nir_intrinsic_instr *instr)
@@ -3572,93 +3472,64 @@ fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
 
    case nir_intrinsic_load_shared: {
       assert(devinfo->gen >= 7);
+      assert(stage == MESA_SHADER_COMPUTE);
 
-      fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
+      const unsigned bit_size = nir_dest_bit_size(instr->dest);
+      fs_reg offset_reg = retype(get_nir_src(instr->src[0]),
+                                 BRW_REGISTER_TYPE_UD);
 
-      /* Get the offset to read from */
-      fs_reg offset_reg;
-      if (nir_src_is_const(instr->src[0])) {
-         offset_reg = brw_imm_ud(instr->const_index[0] +
-                                 nir_src_as_uint(instr->src[0]));
-      } else {
-         offset_reg = vgrf(glsl_type::uint_type);
-         bld.ADD(offset_reg,
-                 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
-                 brw_imm_ud(instr->const_index[0]));
-      }
+      /* Make dest unsigned because that's what the temporary will be */
+      dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
 
       /* Read the vector */
-      do_untyped_vector_read(bld, dest, surf_index, offset_reg,
-                             instr->num_components);
+      if (nir_intrinsic_align(instr) >= 4) {
+         assert(nir_dest_bit_size(instr->dest) == 32);
+         fs_reg read_result = emit_untyped_read(bld, brw_imm_ud(GEN7_BTI_SLM),
+                                                offset_reg, 1 /* dims */,
+                                                instr->num_components,
+                                                BRW_PREDICATE_NONE);
+         for (unsigned i = 0; i < instr->num_components; i++)
+            bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
+      } else {
+         assert(nir_dest_bit_size(instr->dest) <= 32);
+         assert(nir_dest_num_components(instr->dest) == 1);
+         fs_reg read_result =
+            emit_byte_scattered_read(bld, brw_imm_ud(GEN7_BTI_SLM), offset_reg,
+                                     1 /* dims */, 1, bit_size,
+                                     BRW_PREDICATE_NONE);
+         bld.MOV(dest, read_result);
+      }
       break;
    }
 
    case nir_intrinsic_store_shared: {
       assert(devinfo->gen >= 7);
+      assert(stage == MESA_SHADER_COMPUTE);
 
-      /* Block index */
-      fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
-
-      /* Value */
+      const unsigned bit_size = nir_src_bit_size(instr->src[0]);
       fs_reg val_reg = get_nir_src(instr->src[0]);
+      fs_reg offset_reg = retype(get_nir_src(instr->src[1]),
+                                 BRW_REGISTER_TYPE_UD);
 
-      /* Writemask */
-      unsigned writemask = instr->const_index[1];
-
-      /* get_nir_src() retypes to integer. Be wary of 64-bit types though
-       * since the untyped writes below operate in units of 32-bits, which
-       * means that we need to write twice as many components each time.
-       * Also, we have to suffle 64-bit data to be in the appropriate layout
-       * expected by our 32-bit write messages.
-       */
-      unsigned type_size = 4;
-      if (nir_src_bit_size(instr->src[0]) == 64) {
-         type_size = 8;
-         val_reg = shuffle_for_32bit_write(bld, val_reg, 0,
-                                           instr->num_components);
-      }
-
-      unsigned type_slots = type_size / 4;
-
-      /* Combine groups of consecutive enabled channels in one write
-       * message. We use ffs to find the first enabled channel and then ffs on
-       * the bit-inverse, down-shifted writemask to determine the length of
-       * the block of enabled bits.
-       */
-      while (writemask) {
-         unsigned first_component = ffs(writemask) - 1;
-         unsigned length = ffs(~(writemask >> first_component)) - 1;
-
-         /* We can't write more than 2 64-bit components at once. Limit the
-          * length of the write to what we can do and let the next iteration
-          * handle the rest
-          */
-         if (type_size > 4)
-            length = MIN2(2, length);
-
-         fs_reg offset_reg;
-         if (nir_src_is_const(instr->src[1])) {
-            offset_reg = brw_imm_ud(instr->const_index[0] +
-                                    nir_src_as_uint(instr->src[1]) +
-                                    type_size * first_component);
-         } else {
-            offset_reg = vgrf(glsl_type::uint_type);
-            bld.ADD(offset_reg,
-                    retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
-                    brw_imm_ud(instr->const_index[0] + type_size * first_component));
-         }
+      val_reg.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
 
-         emit_untyped_write(bld, surf_index, offset_reg,
-                            offset(val_reg, bld, first_component * type_slots),
-                            1 /* dims */, length * type_slots,
+      assert(nir_intrinsic_write_mask(instr) ==
+             (1 << instr->num_components) - 1);
+      if (nir_intrinsic_align(instr) >= 4) {
+         assert(nir_src_bit_size(instr->src[0]) == 32);
+         assert(nir_src_num_components(instr->src[0]) <= 4);
+         emit_untyped_write(bld, brw_imm_ud(GEN7_BTI_SLM), offset_reg, val_reg,
+                            1 /* dims */, instr->num_components,
                             BRW_PREDICATE_NONE);
-
-         /* Clear the bits in the writemask that we just wrote, then try
-          * again to see if more channels are left.
-          */
-         writemask &= (15 << (first_component + length));
+      } else {
+         assert(nir_src_bit_size(instr->src[0]) <= 32);
+         assert(nir_src_num_components(instr->src[0]) == 1);
+         fs_reg write_src = bld.vgrf(BRW_REGISTER_TYPE_UD);
+         bld.MOV(write_src, val_reg);
+         emit_byte_scattered_write(bld, brw_imm_ud(GEN7_BTI_SLM), offset_reg,
+                                   write_src, 1 /* dims */, bit_size,
+                                   BRW_PREDICATE_NONE);
       }
-
       break;
    }
 
@@ -4155,13 +4026,32 @@ fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr
    case nir_intrinsic_load_ssbo: {
       assert(devinfo->gen >= 7);
 
+      const unsigned bit_size = nir_dest_bit_size(instr->dest);
       fs_reg surf_index = get_nir_ssbo_intrinsic_index(bld, instr);
-      fs_reg offset_reg = get_nir_src_imm(instr->src[1]);
+      fs_reg offset_reg = retype(get_nir_src(instr->src[1]),
+                                 BRW_REGISTER_TYPE_UD);
 
-      /* Read the vector */
-      do_untyped_vector_read(bld, dest, surf_index, offset_reg,
-                             instr->num_components);
+      /* Make dest unsigned because that's what the temporary will be */
+      dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
 
+      /* Read the vector */
+      if (nir_intrinsic_align(instr) >= 4) {
+         assert(nir_dest_bit_size(instr->dest) == 32);
+         fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
+                                                1 /* dims */,
+                                                instr->num_components,
+                                                BRW_PREDICATE_NONE);
+         for (unsigned i = 0; i < instr->num_components; i++)
+            bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
+      } else {
+         assert(nir_dest_bit_size(instr->dest) <= 32);
+         assert(nir_dest_num_components(instr->dest) == 1);
+         fs_reg read_result =
+            emit_byte_scattered_read(bld, surf_index, offset_reg,
+                                     1 /* dims */, 1, bit_size,
+                                     BRW_PREDICATE_NONE);
+         bld.MOV(dest, read_result);
+      }
       break;
    }
 
@@ -4171,125 +4061,30 @@ fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr
       if (stage == MESA_SHADER_FRAGMENT)
          brw_wm_prog_data(prog_data)->has_side_effects = true;
 
-      fs_reg surf_index = get_nir_ssbo_intrinsic_index(bld, instr);
-
-      /* Value */
+      const unsigned bit_size = nir_src_bit_size(instr->src[0]);
       fs_reg val_reg = get_nir_src(instr->src[0]);
+      fs_reg surf_index = get_nir_ssbo_intrinsic_index(bld, instr);
+      fs_reg offset_reg = retype(get_nir_src(instr->src[2]),
+                                 BRW_REGISTER_TYPE_UD);
 
-      /* Writemask */
-      unsigned writemask = instr->const_index[0];
-
-      /* get_nir_src() retypes to integer. Be wary of 64-bit types though
-       * since the untyped writes below operate in units of 32-bits, which
-       * means that we need to write twice as many components each time.
-       * Also, we have to suffle 64-bit data to be in the appropriate layout
-       * expected by our 32-bit write messages.
-       */
-      unsigned bit_size = nir_src_bit_size(instr->src[0]);
-      unsigned type_size = bit_size / 8;
-
-      /* Combine groups of consecutive enabled channels in one write
-       * message. We use ffs to find the first enabled channel and then ffs on
-       * the bit-inverse, down-shifted writemask to determine the num_components
-       * of the block of enabled bits.
-       */
-      while (writemask) {
-         unsigned first_component = ffs(writemask) - 1;
-         unsigned num_components = ffs(~(writemask >> first_component)) - 1;
-         fs_reg write_src = offset(val_reg, bld, first_component);
-
-         if (type_size > 4) {
-            /* We can't write more than 2 64-bit components at once. Limit
-             * the num_components of the write to what we can do and let the next
-             * iteration handle the rest.
-             */
-            num_components = MIN2(2, num_components);
-            write_src = shuffle_for_32bit_write(bld, write_src, 0,
-                                                num_components);
-         } else if (type_size < 4) {
-            /* For 16-bit types we pack two consecutive values into a 32-bit
-             * word and use an untyped write message. For single values or not
-             * 32-bit-aligned we need to use byte-scattered writes because
-             * untyped writes works with 32-bit components with 32-bit
-             * alignment. byte_scattered_write messages only support one
-             * 16-bit component at a time. As VK_KHR_relaxed_block_layout
-             * could be enabled we can not guarantee that not constant offsets
-             * to be 32-bit aligned for 16-bit types. For example an array, of
-             * 16-bit vec3 with array element stride of 6.
-             *
-             * In the case of 32-bit aligned constant offsets if there is
-             * a 3-components vector we submit one untyped-write message
-             * of 32-bit (first two components), and one byte-scattered
-             * write message (the last component).
-             */
-
-            if (!nir_src_is_const(instr->src[2]) ||
-                ((nir_src_as_uint(instr->src[2]) +
-                  type_size * first_component) % 4)) {
-               /* If we use a .yz writemask we also need to emit 2
-                * byte-scattered write messages because of y-component not
-                * being aligned to 32-bit.
-                */
-               num_components = 1;
-            } else if (num_components * type_size > 4 &&
-                       (num_components * type_size % 4)) {
-               /* If the pending components size is not a multiple of 4 bytes
-                * we left the not aligned components for following emits of
-                * length == 1 with byte_scattered_write.
-                */
-               num_components -= (num_components * type_size % 4) / type_size;
-            } else if (num_components * type_size < 4) {
-               num_components = 1;
-            }
-            /* For num_components == 1 we are also shuffling the component
-             * because byte scattered writes of 16-bit need values to be dword
-             * aligned. Shuffling only one component would be the same as
-             * striding it.
-             */
-            write_src = shuffle_for_32bit_write(bld, write_src, 0,
-                                                num_components);
-         }
-
-         fs_reg offset_reg;
-
-         if (nir_src_is_const(instr->src[2])) {
-            offset_reg = brw_imm_ud(nir_src_as_uint(instr->src[2]) +
-                                    type_size * first_component);
-         } else {
-            offset_reg = vgrf(glsl_type::uint_type);
-            bld.ADD(offset_reg,
-                    retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
-                    brw_imm_ud(type_size * first_component));
-         }
-
-         if (type_size < 4 && num_components == 1) {
-            /* Untyped Surface messages have a fixed 32-bit size, so we need
-             * to rely on byte scattered in order to write 16-bit elements.
-             * The byte_scattered_write message needs that every written 16-bit
-             * type to be aligned 32-bits (stride=2).
-             */
-            emit_byte_scattered_write(bld, surf_index, offset_reg,
-                                      write_src,
-                                      1 /* dims */,
-                                      bit_size,
-                                      BRW_PREDICATE_NONE);
-         } else {
-            assert(num_components * type_size <= 16);
-            assert((num_components * type_size) % 4 == 0);
-            assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
-                   offset_reg.ud % 4 == 0);
-            unsigned num_slots = (num_components * type_size) / 4;
-
-            emit_untyped_write(bld, surf_index, offset_reg,
-                               write_src,
-                               1 /* dims */, num_slots,
-                               BRW_PREDICATE_NONE);
-         }
+      val_reg.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
 
-         /* Clear the bits in the writemask that we just wrote, then try
-          * again to see if more channels are left.
-          */
-         writemask &= (15 << (first_component + num_components));
+      assert(nir_intrinsic_write_mask(instr) ==
+             (1 << instr->num_components) - 1);
+      if (nir_intrinsic_align(instr) >= 4) {
+         assert(nir_src_bit_size(instr->src[0]) == 32);
+         assert(nir_src_num_components(instr->src[0]) <= 4);
+         emit_untyped_write(bld, surf_index, offset_reg, val_reg,
+                            1 /* dims */, instr->num_components,
+                            BRW_PREDICATE_NONE);
+      } else {
+         assert(nir_src_bit_size(instr->src[0]) <= 32);
+         assert(nir_src_num_components(instr->src[0]) == 1);
+         fs_reg write_src = bld.vgrf(BRW_REGISTER_TYPE_UD);
+         bld.MOV(write_src, val_reg);
+         emit_byte_scattered_write(bld, surf_index, offset_reg,
+                                   write_src, 1 /* dims */, bit_size,
+                                   BRW_PREDICATE_NONE);
       }
       break;
    }
index 10b03ef2fba3afea54fd2d1e01342a85b4663632..aa6788b9fe5add8e53ce6255bab6c765c8bf0c80 100644 (file)
@@ -714,6 +714,8 @@ brw_preprocess_nir(const struct brw_compiler *compiler, nir_shader *nir)
       brw_nir_no_indirect_mask(compiler, nir->info.stage);
    OPT(nir_lower_indirect_derefs, indirect_mask);
 
+   OPT(brw_nir_lower_mem_access_bit_sizes);
+
    /* Get rid of split copies */
    nir = brw_nir_optimize(nir, compiler, is_scalar, false);
 
index 2ff8c72b94f37cc8d5e9f7ad87a71e5c383d2cdc..bc81950d47e30df35fe71beb5213c5f95b48761b 100644 (file)
@@ -119,6 +119,8 @@ bool brw_nir_lower_image_load_store(nir_shader *nir,
 void brw_nir_rewrite_image_intrinsic(nir_intrinsic_instr *intrin,
                                      nir_ssa_def *index);
 
+bool brw_nir_lower_mem_access_bit_sizes(nir_shader *shader);
+
 nir_shader *brw_postprocess_nir(nir_shader *nir,
                                 const struct brw_compiler *compiler,
                                 bool is_scalar);
diff --git a/src/intel/compiler/brw_nir_lower_mem_access_bit_sizes.c b/src/intel/compiler/brw_nir_lower_mem_access_bit_sizes.c
new file mode 100644 (file)
index 0000000..a332052
--- /dev/null
@@ -0,0 +1,313 @@
+/*
+ * Copyright © 2018 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include "brw_nir.h"
+#include "compiler/nir/nir_builder.h"
+#include "util/u_math.h"
+#include "util/bitscan.h"
+
+static nir_ssa_def *
+dup_mem_intrinsic(nir_builder *b, nir_intrinsic_instr *intrin,
+                  nir_ssa_def *store_src, int offset,
+                  unsigned num_components, unsigned bit_size,
+                  unsigned align)
+{
+   const nir_intrinsic_info *info = &nir_intrinsic_infos[intrin->intrinsic];
+
+   nir_intrinsic_instr *dup =
+      nir_intrinsic_instr_create(b->shader, intrin->intrinsic);
+
+   nir_src *intrin_offset_src = nir_get_io_offset_src(intrin);
+   for (unsigned i = 0; i < info->num_srcs; i++) {
+      assert(intrin->src[i].is_ssa);
+      if (i == 0 && store_src) {
+         assert(!info->has_dest);
+         assert(&intrin->src[i] != intrin_offset_src);
+         dup->src[i] = nir_src_for_ssa(store_src);
+      } else if (&intrin->src[i] == intrin_offset_src) {
+         dup->src[i] = nir_src_for_ssa(nir_iadd_imm(b, intrin->src[i].ssa,
+                                                       offset));
+      } else {
+         dup->src[i] = nir_src_for_ssa(intrin->src[i].ssa);
+      }
+   }
+
+   dup->num_components = num_components;
+
+   for (unsigned i = 0; i < info->num_indices; i++)
+      dup->const_index[i] = intrin->const_index[i];
+
+   nir_intrinsic_set_align(dup, align, 0);
+
+   if (info->has_dest) {
+      assert(intrin->dest.is_ssa);
+      nir_ssa_dest_init(&dup->instr, &dup->dest,
+                        num_components, bit_size,
+                        intrin->dest.ssa.name);
+   } else {
+      nir_intrinsic_set_write_mask(dup, (1 << num_components) - 1);
+   }
+
+   nir_builder_instr_insert(b, &dup->instr);
+
+   return info->has_dest ? &dup->dest.ssa : NULL;
+}
+
+static bool
+lower_mem_load_bit_size(nir_builder *b, nir_intrinsic_instr *intrin)
+{
+   assert(intrin->dest.is_ssa);
+   if (intrin->dest.ssa.bit_size == 32)
+      return false;
+
+   const unsigned bit_size = intrin->dest.ssa.bit_size;
+   const unsigned num_components = intrin->dest.ssa.num_components;
+   const unsigned bytes_read = num_components * (bit_size / 8);
+   const unsigned align = nir_intrinsic_align(intrin);
+
+   nir_ssa_def *result[4] = { NULL, };
+
+   nir_src *offset_src = nir_get_io_offset_src(intrin);
+   if (bit_size < 32 && nir_src_is_const(*offset_src)) {
+      /* The offset is constant so we can use a 32-bit load and just shift it
+       * around as needed.
+       */
+      const int load_offset = nir_src_as_uint(*offset_src) % 4;
+      assert(load_offset % (bit_size / 8) == 0);
+      const unsigned load_comps32 = DIV_ROUND_UP(bytes_read + load_offset, 4);
+      /* A 16-bit vec4 is a 32-bit vec2.  We add an extra component in case
+       * we offset into a component with load_offset.
+       */
+      assert(load_comps32 <= 3);
+
+      nir_ssa_def *load = dup_mem_intrinsic(b, intrin, NULL, -load_offset,
+                                            load_comps32, 32, 4);
+      nir_ssa_def *unpacked[3];
+      for (unsigned i = 0; i < load_comps32; i++)
+         unpacked[i] = nir_unpack_bits(b, nir_channel(b, load, i), bit_size);
+
+      assert(load_offset % (bit_size / 8) == 0);
+      const unsigned divisor = 32 / bit_size;
+
+      for (unsigned i = 0; i < num_components; i++) {
+         unsigned load_i = i + load_offset / (bit_size / 8);
+         result[i] = nir_channel(b, unpacked[load_i / divisor],
+                                    load_i % divisor);
+      }
+   } else {
+      /* Otherwise, we have to break it into smaller loads */
+      unsigned res_idx = 0;
+      int load_offset = 0;
+      while (load_offset < bytes_read) {
+         const unsigned bytes_left = bytes_read - load_offset;
+         unsigned load_bit_size, load_comps;
+         if (align < 4) {
+            load_comps = 1;
+            /* Choose a byte, word, or dword */
+            load_bit_size = util_next_power_of_two(MIN2(bytes_left, 4)) * 8;
+         } else {
+            assert(load_offset % 4 == 0);
+            load_bit_size = 32;
+            load_comps = DIV_ROUND_UP(MIN2(bytes_left, 16), 4);
+         }
+
+         nir_ssa_def *load = dup_mem_intrinsic(b, intrin, NULL, load_offset,
+                                               load_comps, load_bit_size,
+                                               align);
+
+         nir_ssa_def *unpacked = nir_bitcast_vector(b, load, bit_size);
+         for (unsigned i = 0; i < unpacked->num_components; i++) {
+            if (res_idx < num_components)
+               result[res_idx++] = nir_channel(b, unpacked, i);
+         }
+
+         load_offset += load_comps * (load_bit_size / 8);
+      }
+   }
+
+   nir_ssa_def *vec_result = nir_vec(b, result, num_components);
+   nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
+                            nir_src_for_ssa(vec_result));
+   nir_instr_remove(&intrin->instr);
+
+   return true;
+}
+
+static bool
+lower_mem_store_bit_size(nir_builder *b, nir_intrinsic_instr *intrin)
+{
+   assert(intrin->src[0].is_ssa);
+   nir_ssa_def *value = intrin->src[0].ssa;
+
+   assert(intrin->num_components == value->num_components);
+   const unsigned bit_size = value->bit_size;
+   const unsigned num_components = intrin->num_components;
+   const unsigned bytes_written = num_components * (bit_size / 8);
+   const unsigned align_mul = nir_intrinsic_align_mul(intrin);
+   const unsigned align_offset = nir_intrinsic_align_offset(intrin);
+   const unsigned align = nir_intrinsic_align(intrin);
+
+   nir_component_mask_t writemask = nir_intrinsic_write_mask(intrin);
+   assert(writemask < (1 << num_components));
+
+   if ((value->bit_size <= 32 && num_components == 1) ||
+       (value->bit_size == 32 && writemask == (1 << num_components) - 1))
+      return false;
+
+   nir_src *offset_src = nir_get_io_offset_src(intrin);
+   const bool offset_is_const = nir_src_is_const(*offset_src);
+   const unsigned const_offset =
+      offset_is_const ? nir_src_as_uint(*offset_src) : 0;
+
+   assert(num_components * (bit_size / 8) <= 32);
+   uint32_t byte_mask = 0;
+   for (unsigned i = 0; i < num_components; i++) {
+      if (writemask & (1 << i))
+         byte_mask |= ((1 << (bit_size / 8)) - 1) << i * (bit_size / 8);
+   }
+
+   while (byte_mask) {
+      const int start = ffs(byte_mask) - 1;
+      assert(start % (bit_size / 8) == 0);
+
+      int end;
+      for (end = start + 1; end < bytes_written; end++) {
+         if (!(byte_mask & (1 << end)))
+            break;
+      }
+      /* The size of the current contiguous chunk in bytes */
+      const unsigned chunk_bytes = end - start;
+
+      const bool is_dword_aligned =
+         (align_mul >= 4 && (align_offset + start) % 4 == 0) ||
+         (offset_is_const && (start + const_offset) % 4 == 0);
+
+      unsigned store_comps, store_bit_size, store_align;
+      if (chunk_bytes >= 4 && is_dword_aligned) {
+         store_align = MAX2(align, 4);
+         store_bit_size = 32;
+         store_comps = MIN2(chunk_bytes, 16) / 4;
+      } else {
+         store_align = align;
+         store_comps = 1;
+         store_bit_size = MIN2(chunk_bytes, 4) * 8;
+         /* The bit size must be a power of two */
+         if (store_bit_size == 24)
+            store_bit_size = 16;
+      }
+
+      const unsigned store_bytes = store_comps * (store_bit_size / 8);
+      assert(store_bytes % (bit_size / 8) == 0);
+      const unsigned store_first_src_comp = start / (bit_size / 8);
+      const unsigned store_src_comps = store_bytes / (bit_size / 8);
+      assert(store_first_src_comp + store_src_comps <= num_components);
+
+      unsigned src_swiz[4];
+      for (unsigned i = 0; i < store_src_comps; i++)
+         src_swiz[i] = store_first_src_comp + i;
+      nir_ssa_def *store_value =
+         nir_swizzle(b, value, src_swiz, store_src_comps, false);
+      nir_ssa_def *packed = nir_bitcast_vector(b, store_value, store_bit_size);
+
+      dup_mem_intrinsic(b, intrin, packed, start,
+                        store_comps, store_bit_size, store_align);
+
+      byte_mask &= ~(((1u << store_bytes) - 1) << start);
+   }
+
+   nir_instr_remove(&intrin->instr);
+
+   return true;
+}
+
+static bool
+lower_mem_access_bit_sizes_impl(nir_function_impl *impl)
+{
+   bool progress = false;
+
+   nir_builder b;
+   nir_builder_init(&b, impl);
+
+   nir_foreach_block(block, impl) {
+      nir_foreach_instr_safe(instr, block) {
+         if (instr->type != nir_instr_type_intrinsic)
+            continue;
+
+         b.cursor = nir_after_instr(instr);
+
+         nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
+         switch (intrin->intrinsic) {
+         case nir_intrinsic_load_ssbo:
+         case nir_intrinsic_load_shared:
+            if (lower_mem_load_bit_size(&b, intrin))
+               progress = true;
+            break;
+
+         case nir_intrinsic_store_ssbo:
+         case nir_intrinsic_store_shared:
+            if (lower_mem_store_bit_size(&b, intrin))
+               progress = true;
+            break;
+
+         default:
+            break;
+         }
+      }
+   }
+
+   if (progress) {
+      nir_metadata_preserve(impl, nir_metadata_block_index |
+                                  nir_metadata_dominance);
+   }
+
+   return progress;
+}
+
+/**
+ * This pass loads arbitrary SSBO and shared memory load/store operations to
+ * intrinsics which are natively handleable by GEN hardware.  In particular,
+ * we have two general types of memory load/store messages:
+ *
+ *  - Untyped surface read/write:  These can load/store between one and four
+ *    dword components to/from a dword-aligned offset.
+ *
+ *  - Byte scattered read/write:  These can load/store a single byte, word, or
+ *    dword scalar to/from an unaligned byte offset.
+ *
+ * Neither type of message can do a write-masked store.  This pass converts
+ * all nir load/store intrinsics into a series of either 8 or 32-bit
+ * load/store intrinsics with a number of components that we can directly
+ * handle in hardware and with a trivial write-mask.
+ */
+bool
+brw_nir_lower_mem_access_bit_sizes(nir_shader *shader)
+{
+   bool progress = false;
+
+   nir_foreach_function(func, shader) {
+      if (func->impl && lower_mem_access_bit_sizes_impl(func->impl))
+         progress = true;
+   }
+
+   return progress;
+}
index 564be7e5eeecb69ac5e0fb415e7f7aad44ff6654..26ca2ddd8dc4f5908aacd429fd8e7322cdbf2586 100644 (file)
@@ -500,6 +500,11 @@ vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
    case nir_intrinsic_store_ssbo: {
       assert(devinfo->gen >= 7);
 
+      /* brw_nir_lower_mem_access_bit_sizes takes care of this */
+      assert(nir_src_bit_size(instr->src[0]) == 32);
+      assert(nir_intrinsic_write_mask(instr) ==
+             (1 << instr->num_components) - 1);
+
       src_reg surf_index = get_nir_ssbo_intrinsic_index(instr);
       src_reg offset_reg = retype(get_nir_src_imm(instr->src[2]),
                                   BRW_REGISTER_TYPE_UD);
@@ -507,9 +512,6 @@ vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
       /* Value */
       src_reg val_reg = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F, 4);
 
-      /* Writemask */
-      unsigned write_mask = instr->const_index[0];
-
       /* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
        * writes will use SIMD8 mode. In order to hide this and keep symmetry across
        * typed and untyped messages and across hardware platforms, the
@@ -551,92 +553,18 @@ vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
       const vec4_builder bld = vec4_builder(this).at_end()
                                .annotate(current_annotation, base_ir);
 
-      unsigned type_slots = nir_src_bit_size(instr->src[0]) / 32;
-      if (type_slots == 2) {
-         dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
-         shuffle_64bit_data(tmp, retype(val_reg, tmp.type), true);
-         val_reg = src_reg(retype(tmp, BRW_REGISTER_TYPE_F));
-      }
-
-      uint8_t swizzle[4] = { 0, 0, 0, 0};
-      int num_channels = 0;
-      unsigned skipped_channels = 0;
-      int num_components = instr->num_components;
-      for (int i = 0; i < num_components; i++) {
-         /* Read components Z/W of a dvec from the appropriate place. We will
-          * also have to adjust the swizzle (we do that with the '% 4' below)
-          */
-         if (i == 2 && type_slots == 2)
-            val_reg = byte_offset(val_reg, REG_SIZE);
-
-         /* Check if this channel needs to be written. If so, record the
-          * channel we need to take the data from in the swizzle array
-          */
-         int component_mask = 1 << i;
-         int write_test = write_mask & component_mask;
-         if (write_test) {
-            /* If we are writing doubles we have to write 2 channels worth of
-             * of data (64 bits) for each double component.
-             */
-            swizzle[num_channels++] = (i * type_slots) % 4;
-            if (type_slots == 2)
-               swizzle[num_channels++] = (i * type_slots + 1) % 4;
-         }
-
-         /* If we don't have to write this channel it means we have a gap in the
-          * vector, so write the channels we accumulated until now, if any. Do
-          * the same if this was the last component in the vector, if we have
-          * enough channels for a full vec4 write or if we have processed
-          * components XY of a dvec (since components ZW are not in the same
-          * SIMD register)
-          */
-         if (!write_test || i == num_components - 1 || num_channels == 4 ||
-             (i == 1 && type_slots == 2)) {
-            if (num_channels > 0) {
-               /* We have channels to write, so update the offset we need to
-                * write at to skip the channels we skipped, if any.
-                */
-               if (skipped_channels > 0) {
-                  if (offset_reg.file == IMM) {
-                     offset_reg.ud += 4 * skipped_channels;
-                  } else {
-                     emit(ADD(dst_reg(offset_reg), offset_reg,
-                              brw_imm_ud(4 * skipped_channels)));
-                  }
-               }
-
-               /* Swizzle the data register so we take the data from the channels
-                * we need to write and send the write message. This will write
-                * num_channels consecutive dwords starting at offset.
-                */
-               val_reg.swizzle =
-                  BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
-               emit_untyped_write(bld, surf_index, offset_reg, val_reg,
-                                  1 /* dims */, num_channels /* size */,
-                                  BRW_PREDICATE_NONE);
-
-               /* If we have to do a second write we will have to update the
-                * offset so that we jump over the channels we have just written
-                * now.
-                */
-               skipped_channels = num_channels;
-
-               /* Restart the count for the next write message */
-               num_channels = 0;
-            }
-
-            /* If we didn't write the channel, increase skipped count */
-            if (!write_test)
-               skipped_channels += type_slots;
-         }
-      }
-
+      emit_untyped_write(bld, surf_index, offset_reg, val_reg,
+                         1 /* dims */, instr->num_components /* size */,
+                         BRW_PREDICATE_NONE);
       break;
    }
 
    case nir_intrinsic_load_ssbo: {
       assert(devinfo->gen >= 7);
 
+      /* brw_nir_lower_mem_access_bit_sizes takes care of this */
+      assert(nir_dest_bit_size(instr->dest) == 32);
+
       src_reg surf_index = get_nir_ssbo_intrinsic_index(instr);
       src_reg offset_reg = retype(get_nir_src_imm(instr->src[1]),
                                   BRW_REGISTER_TYPE_UD);
@@ -645,36 +573,10 @@ vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
       const vec4_builder bld = vec4_builder(this).at_end()
          .annotate(current_annotation, base_ir);
 
-      src_reg read_result;
+      src_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
+                                              1 /* dims */, 4 /* size*/,
+                                              BRW_PREDICATE_NONE);
       dst_reg dest = get_nir_dest(instr->dest);
-      if (type_sz(dest.type) < 8) {
-         read_result = emit_untyped_read(bld, surf_index, offset_reg,
-                                         1 /* dims */, 4 /* size*/,
-                                         BRW_PREDICATE_NONE);
-      } else {
-         src_reg shuffled = src_reg(this, glsl_type::dvec4_type);
-
-         src_reg temp;
-         temp = emit_untyped_read(bld, surf_index, offset_reg,
-                                  1 /* dims */, 4 /* size*/,
-                                  BRW_PREDICATE_NONE);
-         emit(MOV(dst_reg(retype(shuffled, temp.type)), temp));
-
-         if (offset_reg.file == IMM)
-            offset_reg.ud += 16;
-         else
-            emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16)));
-
-         temp = emit_untyped_read(bld, surf_index, offset_reg,
-                                  1 /* dims */, 4 /* size*/,
-                                  BRW_PREDICATE_NONE);
-         emit(MOV(dst_reg(retype(byte_offset(shuffled, REG_SIZE), temp.type)),
-                  temp));
-
-         read_result = src_reg(this, glsl_type::dvec4_type);
-         shuffle_64bit_data(dst_reg(read_result), shuffled, false);
-      }
-
       read_result.type = dest.type;
       read_result.swizzle = brw_swizzle_for_size(instr->num_components);
       emit(MOV(dest, read_result));
index 3cdeb6214a88f97405069f85480580c5f5ec33cb..953e8dcc9718d675cb7b0471f807645d390adcba 100644 (file)
@@ -78,6 +78,7 @@ libintel_compiler_files = files(
   'brw_nir_attribute_workarounds.c',
   'brw_nir_lower_cs_intrinsics.c',
   'brw_nir_lower_image_load_store.c',
+  'brw_nir_lower_mem_access_bit_sizes.c',
   'brw_nir_opt_peephole_ffma.c',
   'brw_nir_tcs_workarounds.c',
   'brw_packed_float.c',