--- /dev/null
+"""Simple GPIO peripheral on wishbone
+
+This is an extremely simple GPIO peripheral intended for use in XICS
+testing, however it could also be used as an actual GPIO peripheral
+"""
+
+from nmigen import Elaboratable, Module, Signal, Record, Array
+from nmigen.utils import log2_int
+from nmigen.cli import rtlil
+from soc.minerva.wishbone import make_wb_layout
+from nmutil.util import wrap
+
+cxxsim = False
+if cxxsim:
+ from nmigen.sim.cxxsim import Simulator, Settle
+else:
+ from nmigen.back.pysim import Simulator, Settle
+
+
+class SimpleGPIO(Elaboratable):
+
+ def __init__(self, n_gpio=16):
+ self.n_gpio = n_gpio
+ class Spec: pass
+ spec = Spec()
+ spec.addr_wid = 30
+ spec.mask_wid = 4
+ spec.reg_wid = 32
+ self.bus = Record(make_wb_layout(spec), name="icp_wb")
+ self.gpio_o = Signal(n_gpio)
+
+ def elaborate(self, platform):
+ m = Module()
+ comb, sync = m.d.comb, m.d.sync
+
+ bus = self.bus
+ wb_rd_data = bus.dat_r
+ wb_wr_data = bus.dat_w
+ wb_ack = bus.ack
+ gpio_o = self.gpio_o
+
+ comb += wb_ack.eq(0)
+
+ gpio_addr = Signal(log2_int(self.n_gpio))
+ gpio_a = Array(list(gpio_o))
+
+ with m.If(bus.cyc & bus.stb):
+ comb += wb_ack.eq(1) # always ack
+ comb += gpio_addr.eq(bus.adr)
+ with m.If(bus.we): # write
+ sync += gpio_a[gpio_addr].eq(wb_wr_data[0])
+ with m.Else(): # read
+ comb += wb_rd_data.eq(gpio_a[gpio_addr])
+
+ return m
+
+ def __iter__(self):
+ for field in self.bus.fields.values():
+ yield field
+ yield self.gpio_o
+
+ def ports(self):
+ return list(self)
+
+
+def wb_write(dut, addr, data, sel=True):
+
+ # write wb
+ yield dut.bus.we.eq(1)
+ yield dut.bus.cyc.eq(1)
+ yield dut.bus.stb.eq(1)
+ yield dut.bus.sel.eq(0b1111 if sel else 0b1) # 32-bit / 8-bit
+ yield dut.bus.adr.eq(addr)
+ yield dut.bus.dat_w.eq(data)
+
+ # wait for ack to go high
+ while True:
+ ack = yield dut.bus.ack
+ print ("ack", ack)
+ if ack:
+ break
+ yield # loop until ack
+ yield dut.bus.stb.eq(0) # drop stb so only 1 thing into pipeline
+
+ # leave cyc/stb valid for 1 cycle while writing
+ yield
+
+ # clear out before returning data
+ yield dut.bus.cyc.eq(0)
+ yield dut.bus.stb.eq(0)
+ yield dut.bus.we.eq(0)
+ yield dut.bus.adr.eq(0)
+ yield dut.bus.sel.eq(0)
+ yield dut.bus.dat_w.eq(0)
+
+
+def wb_read(dut, addr, sel=True):
+
+ # read wb
+ yield dut.bus.cyc.eq(1)
+ yield dut.bus.stb.eq(1)
+ yield dut.bus.we.eq(0)
+ yield dut.bus.sel.eq(0b1111 if sel else 0b1) # 32-bit / 8-bit
+ yield dut.bus.adr.eq(addr)
+
+ # wait for ack to go high
+ while True:
+ ack = yield dut.bus.ack
+ print ("ack", ack)
+ if ack:
+ break
+ yield # loop until ack
+ yield dut.bus.stb.eq(0) # drop stb so only 1 thing into pipeline
+
+ # get data on same cycle that ack raises
+ data = yield dut.bus.dat_r
+
+ # leave cyc/stb valid for 1 cycle while reading
+ yield
+
+ # clear out before returning data
+ yield dut.bus.cyc.eq(0)
+ yield dut.bus.stb.eq(0)
+ yield dut.bus.we.eq(0)
+ yield dut.bus.adr.eq(0)
+ yield dut.bus.sel.eq(0)
+ return data
+
+
+def read_gpio(gpio, addr):
+ data = yield from wb_read(gpio, addr)
+ print ("gpio%d" % addr, hex(data), bin(data))
+ return data
+
+
+def sim_gpio(gpio):
+
+ # GPIO0
+ data = yield from read_gpio(gpio, 0) # read gpio addr 0
+ assert data == 0
+
+ yield from wb_write(gpio, 0, 1) # write gpio addr 0
+
+ data = yield from read_gpio(gpio, 0) # read gpio addr 0
+ assert data == 1
+
+ # GPIO1
+ data = yield from read_gpio(gpio, 1) # read gpio addr 1
+ assert data == 0
+
+ yield from wb_write(gpio, 1, 1) # write gpio addr 1
+
+ data = yield from read_gpio(gpio, 1) # read gpio addr 1
+ assert data == 1
+
+ # GPIO0
+ data = yield from read_gpio(gpio, 0) # read gpio addr 0
+ assert data == 1
+
+ yield from wb_write(gpio, 0, 0) # write gpio addr 0
+
+ data = yield from read_gpio(gpio, 0) # read gpio addr 0
+ assert data == 0
+
+
+def test_gpio():
+
+ dut = SimpleGPIO()
+ vl = rtlil.convert(dut, ports=dut.ports())
+ with open("test_gpio.il", "w") as f:
+ f.write(vl)
+
+ m = Module()
+ m.submodules.xics_icp = dut
+
+ sim = Simulator(m)
+ sim.add_clock(1e-6)
+
+ sim.add_sync_process(wrap(sim_gpio(dut)))
+ sim_writer = sim.write_vcd('test_gpio.vcd')
+ with sim_writer:
+ sim.run()
+
+
+if __name__ == '__main__':
+ test_gpio()
+
class ShiftRotTestCase(TestAccumulatorBase):
- def case_0_proof_regression_rlwnm(self):
+ def cse_0_proof_regression_rlwnm(self):
lst = ["rlwnm 3, 1, 2, 16, 20"]
initial_regs = [0] * 32
initial_regs[1] = 0x7ffdbffb91b906b9
print(initial_regs[1], initial_regs[2])
self.add_case(Program(lst, bigendian), initial_regs)
- def case_regression_rldicr_0(self):
+ def cse_regression_rldicr_0(self):
lst = ["rldicr. 29, 19, 1, 21"]
initial_regs = [0] * 32
initial_regs[1] = 0x3f
self.add_case(Program(lst, bigendian), initial_regs,
initial_sprs=initial_sprs)
- def case_regression_rldicr_1(self):
+ def cse_regression_rldicr_1(self):
lst = ["rldicr. 29, 19, 1, 21"]
initial_regs = [0] * 32
initial_regs[1] = 0x3f
self.add_case(Program(lst, bigendian), initial_regs)
- def case_shift(self):
+ def cse_shift(self):
insns = ["slw", "sld", "srw", "srd", "sraw", "srad"]
for i in range(20):
choice = random.choice(insns)
print(initial_regs[1], initial_regs[2])
self.add_case(Program(lst, bigendian), initial_regs)
- def case_shift_arith(self):
+ def cse_shift_arith(self):
lst = ["sraw 3, 1, 2"]
initial_regs = [0] * 32
initial_regs[1] = random.randint(0, (1 << 64)-1)
print(initial_regs[1], initial_regs[2])
self.add_case(Program(lst, bigendian), initial_regs)
- def case_sld_rb_too_big(self):
+ def cse_sld_rb_too_big(self):
lst = ["sld 3, 1, 4",
]
initial_regs = [0] * 32
initial_regs[4] = 0 # no shift; output should equal input
self.add_case(Program(lst, bigendian), initial_regs)
- def case_shift_once(self):
+ def cse_shift_once(self):
lst = ["slw 3, 1, 4",
"slw 3, 1, 2"]
initial_regs = [0] * 32
initial_regs[4] = 0x00
self.add_case(Program(lst, bigendian), initial_regs)
- def case_rlwinm(self):
+ def cse_rlwinm(self):
for i in range(10):
mb = random.randint(0, 31)
me = random.randint(0, 31)
initial_regs[1] = random.randint(0, (1 << 64)-1)
self.add_case(Program(lst, bigendian), initial_regs)
- def case_rlwimi(self):
+ def cse_rlwimi(self):
lst = ["rlwimi 3, 1, 5, 20, 6"]
initial_regs = [0] * 32
initial_regs[1] = 0xdeadbeef
initial_regs[3] = 0x12345678
self.add_case(Program(lst, bigendian), initial_regs)
- def case_rlwnm(self):
+ def cse_rlwnm(self):
lst = ["rlwnm 3, 1, 2, 20, 6"]
initial_regs = [0] * 32
initial_regs[1] = random.randint(0, (1 << 64)-1)
initial_regs[2] = random.randint(0, 63)
self.add_case(Program(lst, bigendian), initial_regs)
- def case_rldicl(self):
+ def cse_rldicl(self):
lst = ["rldicl 3, 1, 5, 20"]
initial_regs = [0] * 32
initial_regs[1] = random.randint(0, (1 << 64)-1)
self.add_case(Program(lst, bigendian), initial_regs)
- def case_rldicr(self):
+ def cse_rldicr(self):
lst = ["rldicr 3, 1, 5, 20"]
initial_regs = [0] * 32
initial_regs[1] = random.randint(0, (1 << 64)-1)
self.add_case(Program(lst, bigendian), initial_regs)
- def case_regression_extswsli(self):
+ def cse_regression_extswsli(self):
lst = [f"extswsli 3, 1, 34"]
initial_regs = [0] * 32
initial_regs[1] = 0x5678
self.add_case(Program(lst, bigendian), initial_regs)
- def case_regression_extswsli_2(self):
+ def cse_regression_extswsli_2(self):
lst = [f"extswsli 3, 1, 7"]
initial_regs = [0] * 32
initial_regs[1] = 0x3ffffd7377f19fdd
self.add_case(Program(lst, bigendian), initial_regs)
- def case_regression_extswsli_3(self):
+ def cse_regression_extswsli_3(self):
lst = [f"extswsli 3, 1, 0"]
initial_regs = [0] * 32
#initial_regs[1] = 0x80000000fb4013e2
#initial_regs[1] = 0x3ffffd73f7f19fdd
self.add_case(Program(lst, bigendian), initial_regs)
- def case_extswsli(self):
+ def cse_extswsli(self):
for i in range(40):
sh = random.randint(0, 63)
lst = [f"extswsli 3, 1, {sh}"]
initial_regs[1] = random.randint(0, (1 << 64)-1)
self.add_case(Program(lst, bigendian), initial_regs)
- def case_rlc(self):
+ def cse_rlc(self):
insns = ["rldic", "rldicl", "rldicr"]
for i in range(20):
choice = random.choice(insns)
initial_regs[1] = random.randint(0, (1 << 64)-1)
self.add_case(Program(lst, bigendian), initial_regs)
- def case_ilang(self):
+ def cse_ilang(self):
pspec = ShiftRotPipeSpec(id_wid=2)
alu = ShiftRotBasePipe(pspec)
vl = rtlil.convert(alu, ports=alu.ports())