from nmigen.compat.sim import run_simulation
from nmigen.cli import verilog, rtlil
-from nmigen import Module, Signal, Elaboratable
+from nmigen import Module, Signal, Mux, Elaboratable
from nmutil.latch import SRLatch, latchregister
register is placed combinatorially onto the output, and (2) the
req_l latch is cleared, busy is dropped, and the Comp Unit is back
through its revolving door to do another task.
+
+ Notes on oper_i:
+
+ * bits[0:2] are for the ALU, add=0, sub=1, shift=2, mul=3
+ * bit[2] are the immediate (bit[2]=1 == immediate mode)
"""
class ComputationUnitNoDelay(Elaboratable):
def __init__(self, rwid, opwid, alu):
+ self.opwid = opwid
self.rwid = rwid
self.alu = alu
m.d.sync += req_l.s.eq(self.go_rd_i)
m.d.sync += req_l.r.eq(reset_w)
- # XXX
- # XXX NOTE: sync on req_rel_o and data_o due to simulation lock-up
- # XXX
+ # create a latch/register for the operand
+ oper_r = Signal(self.opwid+1, reset_less=True) # opcode reg
+ latchregister(m, self.oper_i, oper_r, self.issue_i)
+
+ # and one for the output from the ALU
+ data_r = Signal(self.rwid, reset_less=True) # Dest register
+ latchregister(m, self.alu.o, data_r, req_l.q)
+
+ # get the top 2 bits for the ALU
+ m.d.comb += self.alu.op.eq(oper_r[0:2])
+
+ # 3rd bit is whether this is an immediate or not
+ op_is_imm = Signal(reset_less=True)
+ m.d.comb += op_is_imm.eq(oper_r[2])
+
+ # select immediate if opcode says so. however also change the latch
+ # to trigger *from* the opcode latch instead.
+ src2_or_imm = Signal(self.rwid, reset_less=True)
+ src_sel = Signal(reset_less=True)
+ m.d.comb += src_sel.eq(Mux(op_is_imm, opc_l.qn, src_l.q))
+ m.d.comb += src2_or_imm.eq(Mux(op_is_imm, self.imm_i, self.src2_i))
+
+ # create a latch/register for src1/src2
+ latchregister(m, self.src1_i, self.alu.a, src_l.q)
+ latchregister(m, src2_or_imm, self.alu.b, src_sel)
+
+ # -----
# outputs
+ # -----
+
+ # all request signals gated by busy_o. prevents picker problems
busy_o = self.busy_o
m.d.comb += busy_o.eq(opc_l.q) # busy out
m.d.comb += self.rd_rel_o.eq(src_l.q & busy_o) # src1/src2 req rel
# write req release out. waits until shadow is dropped.
m.d.comb += self.req_rel_o.eq(req_l.q & busy_o & self.shadown_i)
- # create a latch/register for src1/src2
- latchregister(m, self.src1_i, self.alu.a, src_l.q)
- latchregister(m, self.src2_i, self.alu.b, src_l.q)
-
- # create a latch/register for the operand
- latchregister(m, self.oper_i, self.alu.op, self.issue_i)
-
- # and one for the output from the ALU
- data_r = Signal(self.rwid, reset_less=True) # Dest register
- latchregister(m, self.alu.o, data_r, req_l.q)
-
with m.If(self.go_wr_i):
m.d.comb += self.data_o.eq(data_r)
return m
+ def __iter__(self):
+ yield self.go_rd_i
+ yield self.go_wr_i
+ yield self.issue_i
+ yield self.shadown_i
+ yield self.go_die_i
+ yield self.oper_i
+ yield self.imm_i
+ yield self.src1_i
+ yield self.src2_i
+ yield self.busy_o
+ yield self.rd_rel_o
+ yield self.req_rel_o
+ yield self.data_o
+
+ def ports(self):
+ return list(self)
+
+
def scoreboard_sim(dut):
yield dut.dest_i.eq(1)
yield dut.issue_i.eq(1)
yield
def test_scoreboard():
- dut = Scoreboard(32, 8)
+ from alu_hier import ALU
+ alu = ALU(16)
+ dut = ComputationUnitNoDelay(16, 8, alu)
vl = rtlil.convert(dut, ports=dut.ports())
- with open("test_scoreboard.il", "w") as f:
+ with open("test_compalu.il", "w") as f:
f.write(vl)
- run_simulation(dut, scoreboard_sim(dut), vcd_name='test_scoreboard.vcd')
+ run_simulation(dut, scoreboard_sim(dut), vcd_name='test_compalu.vcd')
if __name__ == '__main__':
test_scoreboard()