--- /dev/null
+# IEEE Floating Point Adder (Single Precision)
+# Copyright (C) Jonathan P Dawson 2013
+# 2013-12-12
+
+from nmigen import Module, Signal, Cat, Mux, Array, Const
+from nmigen.lib.coding import PriorityEncoder
+from nmigen.cli import main, verilog
+from math import log
+
+from fpbase import FPNumIn, FPNumOut, FPOp, Overflow, FPBase, FPNumBase
+from fpbase import MultiShiftRMerge, Trigger
+from singlepipe import (ControlBase, StageChain, UnbufferedPipeline,
+ PassThroughStage)
+from multipipe import CombMuxOutPipe
+from multipipe import PriorityCombMuxInPipe
+
+from fpbase import FPState, FPID
+from fpcommon.getop import (FPGetOpMod, FPGetOp, FPNumBase2Ops, FPADDBaseData,
+ FPGet2OpMod, FPGet2Op)
+from fpadd.specialcases import (FPAddSpecialCasesMod, FPAddSpecialCases,
+ FPAddSpecialCasesDeNorm)
+from fpcommon.denorm import (FPSCData, FPAddDeNormMod, FPAddDeNorm)
+from fpcommon.postcalc import FPAddStage1Data
+from fpcommon.postnormalise import (FPNorm1Data, FPNorm1ModSingle,
+ FPNorm1ModMulti, FPNorm1Single, FPNorm1Multi)
+from fpcommon.roundz import (FPRoundData, FPRoundMod, FPRound)
+from fpcommon.corrections import (FPCorrectionsMod, FPCorrections)
+from fpcommon.pack import (FPPackData, FPPackMod, FPPack)
+from fpcommon.normtopack import FPNormToPack
+from fpcommon.putz import (FPPutZ, FPPutZIdx)
+
+
+class FPNumIn2Ops:
+
+ def __init__(self, width, id_wid):
+ self.a = FPNumIn(None, width)
+ self.b = FPNumIn(None, width)
+ self.z = FPNumOut(width, False)
+ self.out_do_z = Signal(reset_less=True)
+ self.oz = Signal(width, reset_less=True)
+ self.mid = Signal(id_wid, reset_less=True)
+
+ def eq(self, i):
+ return [self.z.eq(i.z), self.out_do_z.eq(i.out_do_z), self.oz.eq(i.oz),
+ self.a.eq(i.a), self.b.eq(i.b), self.mid.eq(i.mid)]
+
+
+
+class FPAddAlignMultiMod(FPState):
+
+ def __init__(self, width):
+ self.in_a = FPNumBase(width)
+ self.in_b = FPNumBase(width)
+ self.out_a = FPNumIn(None, width)
+ self.out_b = FPNumIn(None, width)
+ self.exp_eq = Signal(reset_less=True)
+
+ def elaborate(self, platform):
+ # This one however (single-cycle) will do the shift
+ # in one go.
+
+ m = Module()
+
+ m.submodules.align_in_a = self.in_a
+ m.submodules.align_in_b = self.in_b
+ m.submodules.align_out_a = self.out_a
+ m.submodules.align_out_b = self.out_b
+
+ # NOTE: this does *not* do single-cycle multi-shifting,
+ # it *STAYS* in the align state until exponents match
+
+ # exponent of a greater than b: shift b down
+ m.d.comb += self.exp_eq.eq(0)
+ m.d.comb += self.out_a.eq(self.in_a)
+ m.d.comb += self.out_b.eq(self.in_b)
+ agtb = Signal(reset_less=True)
+ altb = Signal(reset_less=True)
+ m.d.comb += agtb.eq(self.in_a.e > self.in_b.e)
+ m.d.comb += altb.eq(self.in_a.e < self.in_b.e)
+ with m.If(agtb):
+ m.d.comb += self.out_b.shift_down(self.in_b)
+ # exponent of b greater than a: shift a down
+ with m.Elif(altb):
+ m.d.comb += self.out_a.shift_down(self.in_a)
+ # exponents equal: move to next stage.
+ with m.Else():
+ m.d.comb += self.exp_eq.eq(1)
+ return m
+
+
+class FPAddAlignMulti(FPState):
+
+ def __init__(self, width, id_wid):
+ FPState.__init__(self, "align")
+ self.mod = FPAddAlignMultiMod(width)
+ self.out_a = FPNumIn(None, width)
+ self.out_b = FPNumIn(None, width)
+ self.exp_eq = Signal(reset_less=True)
+
+ def setup(self, m, in_a, in_b):
+ """ links module to inputs and outputs
+ """
+ m.submodules.align = self.mod
+ m.d.comb += self.mod.in_a.eq(in_a)
+ m.d.comb += self.mod.in_b.eq(in_b)
+ m.d.comb += self.exp_eq.eq(self.mod.exp_eq)
+ m.d.sync += self.out_a.eq(self.mod.out_a)
+ m.d.sync += self.out_b.eq(self.mod.out_b)
+
+ def action(self, m):
+ with m.If(self.exp_eq):
+ m.next = "add_0"
+
+
+class FPAddAlignSingleMod:
+
+ def __init__(self, width, id_wid):
+ self.width = width
+ self.id_wid = id_wid
+ self.i = self.ispec()
+ self.o = self.ospec()
+
+ def ispec(self):
+ return FPSCData(self.width, self.id_wid)
+
+ def ospec(self):
+ return FPNumIn2Ops(self.width, self.id_wid)
+
+ def process(self, i):
+ return self.o
+
+ def setup(self, m, i):
+ """ links module to inputs and outputs
+ """
+ m.submodules.align = self
+ m.d.comb += self.i.eq(i)
+
+ def elaborate(self, platform):
+ """ Aligns A against B or B against A, depending on which has the
+ greater exponent. This is done in a *single* cycle using
+ variable-width bit-shift
+
+ the shifter used here is quite expensive in terms of gates.
+ Mux A or B in (and out) into temporaries, as only one of them
+ needs to be aligned against the other
+ """
+ m = Module()
+
+ m.submodules.align_in_a = self.i.a
+ m.submodules.align_in_b = self.i.b
+ m.submodules.align_out_a = self.o.a
+ m.submodules.align_out_b = self.o.b
+
+ # temporary (muxed) input and output to be shifted
+ t_inp = FPNumBase(self.width)
+ t_out = FPNumIn(None, self.width)
+ espec = (len(self.i.a.e), True)
+ msr = MultiShiftRMerge(self.i.a.m_width, espec)
+ m.submodules.align_t_in = t_inp
+ m.submodules.align_t_out = t_out
+ m.submodules.multishift_r = msr
+
+ ediff = Signal(espec, reset_less=True)
+ ediffr = Signal(espec, reset_less=True)
+ tdiff = Signal(espec, reset_less=True)
+ elz = Signal(reset_less=True)
+ egz = Signal(reset_less=True)
+
+ # connect multi-shifter to t_inp/out mantissa (and tdiff)
+ m.d.comb += msr.inp.eq(t_inp.m)
+ m.d.comb += msr.diff.eq(tdiff)
+ m.d.comb += t_out.m.eq(msr.m)
+ m.d.comb += t_out.e.eq(t_inp.e + tdiff)
+ m.d.comb += t_out.s.eq(t_inp.s)
+
+ m.d.comb += ediff.eq(self.i.a.e - self.i.b.e)
+ m.d.comb += ediffr.eq(self.i.b.e - self.i.a.e)
+ m.d.comb += elz.eq(self.i.a.e < self.i.b.e)
+ m.d.comb += egz.eq(self.i.a.e > self.i.b.e)
+
+ # default: A-exp == B-exp, A and B untouched (fall through)
+ m.d.comb += self.o.a.eq(self.i.a)
+ m.d.comb += self.o.b.eq(self.i.b)
+ # only one shifter (muxed)
+ #m.d.comb += t_out.shift_down_multi(tdiff, t_inp)
+ # exponent of a greater than b: shift b down
+ with m.If(~self.i.out_do_z):
+ with m.If(egz):
+ m.d.comb += [t_inp.eq(self.i.b),
+ tdiff.eq(ediff),
+ self.o.b.eq(t_out),
+ self.o.b.s.eq(self.i.b.s), # whoops forgot sign
+ ]
+ # exponent of b greater than a: shift a down
+ with m.Elif(elz):
+ m.d.comb += [t_inp.eq(self.i.a),
+ tdiff.eq(ediffr),
+ self.o.a.eq(t_out),
+ self.o.a.s.eq(self.i.a.s), # whoops forgot sign
+ ]
+
+ m.d.comb += self.o.mid.eq(self.i.mid)
+ m.d.comb += self.o.z.eq(self.i.z)
+ m.d.comb += self.o.out_do_z.eq(self.i.out_do_z)
+ m.d.comb += self.o.oz.eq(self.i.oz)
+
+ return m
+
+
+class FPAddAlignSingle(FPState):
+
+ def __init__(self, width, id_wid):
+ FPState.__init__(self, "align")
+ self.mod = FPAddAlignSingleMod(width, id_wid)
+ self.out_a = FPNumIn(None, width)
+ self.out_b = FPNumIn(None, width)
+
+ def setup(self, m, i):
+ """ links module to inputs and outputs
+ """
+ self.mod.setup(m, i)
+
+ # NOTE: could be done as comb
+ m.d.sync += self.out_a.eq(self.mod.out_a)
+ m.d.sync += self.out_b.eq(self.mod.out_b)
+
+ def action(self, m):
+ m.next = "add_0"
+
+
from fpbase import FPState, FPID
from fpcommon.getop import (FPGetOpMod, FPGetOp, FPNumBase2Ops, FPADDBaseData,
FPGet2OpMod, FPGet2Op)
-from fpadd.specialcases import (FPAddSpecialCasesMod, FPAddSpecialCases,
- FPAddSpecialCasesDeNorm)
from fpcommon.denorm import (FPSCData, FPAddDeNormMod, FPAddDeNorm)
from fpcommon.postcalc import FPAddStage1Data
from fpcommon.postnormalise import (FPNorm1Data, FPNorm1ModSingle,
from fpcommon.normtopack import FPNormToPack
from fpcommon.putz import (FPPutZ, FPPutZIdx)
-
-class FPAddAlignMultiMod(FPState):
-
- def __init__(self, width):
- self.in_a = FPNumBase(width)
- self.in_b = FPNumBase(width)
- self.out_a = FPNumIn(None, width)
- self.out_b = FPNumIn(None, width)
- self.exp_eq = Signal(reset_less=True)
-
- def elaborate(self, platform):
- # This one however (single-cycle) will do the shift
- # in one go.
-
- m = Module()
-
- m.submodules.align_in_a = self.in_a
- m.submodules.align_in_b = self.in_b
- m.submodules.align_out_a = self.out_a
- m.submodules.align_out_b = self.out_b
-
- # NOTE: this does *not* do single-cycle multi-shifting,
- # it *STAYS* in the align state until exponents match
-
- # exponent of a greater than b: shift b down
- m.d.comb += self.exp_eq.eq(0)
- m.d.comb += self.out_a.eq(self.in_a)
- m.d.comb += self.out_b.eq(self.in_b)
- agtb = Signal(reset_less=True)
- altb = Signal(reset_less=True)
- m.d.comb += agtb.eq(self.in_a.e > self.in_b.e)
- m.d.comb += altb.eq(self.in_a.e < self.in_b.e)
- with m.If(agtb):
- m.d.comb += self.out_b.shift_down(self.in_b)
- # exponent of b greater than a: shift a down
- with m.Elif(altb):
- m.d.comb += self.out_a.shift_down(self.in_a)
- # exponents equal: move to next stage.
- with m.Else():
- m.d.comb += self.exp_eq.eq(1)
- return m
-
-
-class FPAddAlignMulti(FPState):
-
- def __init__(self, width, id_wid):
- FPState.__init__(self, "align")
- self.mod = FPAddAlignMultiMod(width)
- self.out_a = FPNumIn(None, width)
- self.out_b = FPNumIn(None, width)
- self.exp_eq = Signal(reset_less=True)
-
- def setup(self, m, in_a, in_b):
- """ links module to inputs and outputs
- """
- m.submodules.align = self.mod
- m.d.comb += self.mod.in_a.eq(in_a)
- m.d.comb += self.mod.in_b.eq(in_b)
- m.d.comb += self.exp_eq.eq(self.mod.exp_eq)
- m.d.sync += self.out_a.eq(self.mod.out_a)
- m.d.sync += self.out_b.eq(self.mod.out_b)
-
- def action(self, m):
- with m.If(self.exp_eq):
- m.next = "add_0"
-
-
-class FPNumIn2Ops:
-
- def __init__(self, width, id_wid):
- self.a = FPNumIn(None, width)
- self.b = FPNumIn(None, width)
- self.z = FPNumOut(width, False)
- self.out_do_z = Signal(reset_less=True)
- self.oz = Signal(width, reset_less=True)
- self.mid = Signal(id_wid, reset_less=True)
-
- def eq(self, i):
- return [self.z.eq(i.z), self.out_do_z.eq(i.out_do_z), self.oz.eq(i.oz),
- self.a.eq(i.a), self.b.eq(i.b), self.mid.eq(i.mid)]
-
-
-class FPAddAlignSingleMod:
-
- def __init__(self, width, id_wid):
- self.width = width
- self.id_wid = id_wid
- self.i = self.ispec()
- self.o = self.ospec()
-
- def ispec(self):
- return FPSCData(self.width, self.id_wid)
-
- def ospec(self):
- return FPNumIn2Ops(self.width, self.id_wid)
-
- def process(self, i):
- return self.o
-
- def setup(self, m, i):
- """ links module to inputs and outputs
- """
- m.submodules.align = self
- m.d.comb += self.i.eq(i)
-
- def elaborate(self, platform):
- """ Aligns A against B or B against A, depending on which has the
- greater exponent. This is done in a *single* cycle using
- variable-width bit-shift
-
- the shifter used here is quite expensive in terms of gates.
- Mux A or B in (and out) into temporaries, as only one of them
- needs to be aligned against the other
- """
- m = Module()
-
- m.submodules.align_in_a = self.i.a
- m.submodules.align_in_b = self.i.b
- m.submodules.align_out_a = self.o.a
- m.submodules.align_out_b = self.o.b
-
- # temporary (muxed) input and output to be shifted
- t_inp = FPNumBase(self.width)
- t_out = FPNumIn(None, self.width)
- espec = (len(self.i.a.e), True)
- msr = MultiShiftRMerge(self.i.a.m_width, espec)
- m.submodules.align_t_in = t_inp
- m.submodules.align_t_out = t_out
- m.submodules.multishift_r = msr
-
- ediff = Signal(espec, reset_less=True)
- ediffr = Signal(espec, reset_less=True)
- tdiff = Signal(espec, reset_less=True)
- elz = Signal(reset_less=True)
- egz = Signal(reset_less=True)
-
- # connect multi-shifter to t_inp/out mantissa (and tdiff)
- m.d.comb += msr.inp.eq(t_inp.m)
- m.d.comb += msr.diff.eq(tdiff)
- m.d.comb += t_out.m.eq(msr.m)
- m.d.comb += t_out.e.eq(t_inp.e + tdiff)
- m.d.comb += t_out.s.eq(t_inp.s)
-
- m.d.comb += ediff.eq(self.i.a.e - self.i.b.e)
- m.d.comb += ediffr.eq(self.i.b.e - self.i.a.e)
- m.d.comb += elz.eq(self.i.a.e < self.i.b.e)
- m.d.comb += egz.eq(self.i.a.e > self.i.b.e)
-
- # default: A-exp == B-exp, A and B untouched (fall through)
- m.d.comb += self.o.a.eq(self.i.a)
- m.d.comb += self.o.b.eq(self.i.b)
- # only one shifter (muxed)
- #m.d.comb += t_out.shift_down_multi(tdiff, t_inp)
- # exponent of a greater than b: shift b down
- with m.If(~self.i.out_do_z):
- with m.If(egz):
- m.d.comb += [t_inp.eq(self.i.b),
- tdiff.eq(ediff),
- self.o.b.eq(t_out),
- self.o.b.s.eq(self.i.b.s), # whoops forgot sign
- ]
- # exponent of b greater than a: shift a down
- with m.Elif(elz):
- m.d.comb += [t_inp.eq(self.i.a),
- tdiff.eq(ediffr),
- self.o.a.eq(t_out),
- self.o.a.s.eq(self.i.a.s), # whoops forgot sign
- ]
-
- m.d.comb += self.o.mid.eq(self.i.mid)
- m.d.comb += self.o.z.eq(self.i.z)
- m.d.comb += self.o.out_do_z.eq(self.i.out_do_z)
- m.d.comb += self.o.oz.eq(self.i.oz)
-
- return m
-
-
-class FPAddAlignSingle(FPState):
-
- def __init__(self, width, id_wid):
- FPState.__init__(self, "align")
- self.mod = FPAddAlignSingleMod(width, id_wid)
- self.out_a = FPNumIn(None, width)
- self.out_b = FPNumIn(None, width)
-
- def setup(self, m, i):
- """ links module to inputs and outputs
- """
- self.mod.setup(m, i)
-
- # NOTE: could be done as comb
- m.d.sync += self.out_a.eq(self.mod.out_a)
- m.d.sync += self.out_b.eq(self.mod.out_b)
-
- def action(self, m):
- m.next = "add_0"
+from fpadd.specialcases import (FPAddSpecialCasesMod, FPAddSpecialCases,
+ FPAddSpecialCasesDeNorm)
+from fpadd.align import (FPAddAlignMulti, FPAddAlignMultiMod, FPNumIn2Ops,
+ FPAddAlignSingleMod, FPAddAlignSingle)
class FPAddAlignSingleAdd(FPState, UnbufferedPipeline):