# Funded by NLnet Assure Programme 2021-02-052, https://nlnet.nl/assure part
# of Horizon 2020 EU Programme 957073.
-from dataclasses import dataclass, field
+from dataclasses import dataclass, field, fields, replace
+import logging
import math
import enum
from fractions import Fraction
from types import FunctionType
+from functools import lru_cache
try:
from functools import cached_property
from cached_property import cached_property
# fix broken IDE type detection for cached_property
-from typing import TYPE_CHECKING
+from typing import TYPE_CHECKING, Any
if TYPE_CHECKING:
from functools import cached_property
Use `GoldschmidtDivParams.get` to find a efficient set of parameters.
"""
- # tuple to be immutable, default so repr() works for debugging even when
+ # tuple to be immutable, repr=False so repr() works for debugging even when
# __post_init__ hasn't finished running yet
- table: "tuple[FixedPoint, ...]" = field(init=False, default=NotImplemented)
+ table: "tuple[FixedPoint, ...]" = field(init=False, repr=False)
"""the lookup-table"""
- ops: "tuple[GoldschmidtDivOp, ...]" = field(init=False,
- default=NotImplemented)
+ ops: "tuple[GoldschmidtDivOp, ...]" = field(init=False, repr=False)
"""the operations needed to perform the goldschmidt division algorithm."""
def _shrink_bound(self, bound, round_dir):
def __post_init__(self):
# called by the autogenerated __init__
- assert self.io_width >= 1
- assert self.extra_precision >= 0
- assert self.table_addr_bits >= 1
- assert self.table_data_bits >= 1
- assert self.iter_count >= 1
+ _assert_accuracy(self.io_width >= 1, "io_width out of range")
+ _assert_accuracy(self.extra_precision >= 0,
+ "extra_precision out of range")
+ _assert_accuracy(self.table_addr_bits >= 1,
+ "table_addr_bits out of range")
+ _assert_accuracy(self.table_data_bits >= 1,
+ "table_data_bits out of range")
+ _assert_accuracy(self.iter_count >= 1, "iter_count out of range")
table = []
for addr in range(1 << self.table_addr_bits):
table.append(FixedPoint.with_frac_wid(self.table_exact_value(addr),
yield GoldschmidtDivOp.CalcResult
+ @cache_on_self
def default_cost_fn(self):
""" calculate the estimated cost on an arbitrary scale of implementing
goldschmidt division with the specified parameters. larger cost
mul_cost = self.expanded_width ** 2
mul_cost *= self.expanded_width.bit_length()
cost += mul_cost
- cost += 1e6 * self.iter_count
+ cost += 5e7 * self.iter_count
return cost
@staticmethod
- def get(io_width):
+ @lru_cache(maxsize=1 << 16)
+ def __cached_new(base_params):
+ assert isinstance(base_params, GoldschmidtDivParamsBase)
+ # can't use dataclasses.asdict, since it's recursive and will also give
+ # child class fields too, which we don't want.
+ kwargs = {}
+ for field in fields(GoldschmidtDivParamsBase):
+ kwargs[field.name] = getattr(base_params, field.name)
+ try:
+ return GoldschmidtDivParams(**kwargs), None
+ except ParamsNotAccurateEnough as e:
+ return None, e
+
+ @staticmethod
+ def __raise(e): # type: (ParamsNotAccurateEnough) -> Any
+ raise e
+
+ @staticmethod
+ def cached_new(base_params, handle_error=__raise):
+ assert isinstance(base_params, GoldschmidtDivParamsBase)
+ params, error = GoldschmidtDivParams.__cached_new(base_params)
+ if error is None:
+ return params
+ else:
+ return handle_error(error)
+
+ @staticmethod
+ def get(io_width, cost_fn=default_cost_fn, max_table_addr_bits=12):
""" find efficient parameters for a goldschmidt division algorithm
with `params.io_width == io_width`.
+
+ arguments:
+ io_width: int
+ bit-width of the input divisor and the result.
+ the input numerator is `2 * io_width`-bits wide.
+ cost_fn: Callable[[GoldschmidtDivParams], float]
+ return the estimated cost on an arbitrary scale of implementing
+ goldschmidt division with the specified parameters. larger cost
+ values mean worse parameters.
+ max_table_addr_bits: int
+ maximum allowable value of `table_addr_bits`
"""
assert isinstance(io_width, int) and io_width >= 1
- last_params = None
+ assert callable(cost_fn)
+
last_error = None
- for extra_precision in range(io_width * 2 + 4):
- for table_addr_bits in range(1, 7 + 1):
- table_data_bits = io_width + extra_precision
- for iter_count in range(1, 2 * io_width.bit_length()):
- try:
- return GoldschmidtDivParams(
- io_width=io_width,
- extra_precision=extra_precision,
- table_addr_bits=table_addr_bits,
- table_data_bits=table_data_bits,
- iter_count=iter_count)
- except ParamsNotAccurateEnough as e:
- last_params = (f"GoldschmidtDivParams("
- f"io_width={io_width!r}, "
- f"extra_precision={extra_precision!r}, "
- f"table_addr_bits={table_addr_bits!r}, "
- f"table_data_bits={table_data_bits!r}, "
- f"iter_count={iter_count!r})")
- last_error = e
- raise ValueError(f"can't find working parameters for a goldschmidt "
- f"division algorithm: last params: {last_params}"
- ) from last_error
+ last_error_params = None
+
+ def cached_new(base_params):
+ def handle_error(e):
+ nonlocal last_error, last_error_params
+ last_error = e
+ last_error_params = base_params
+ return None
+
+ retval = GoldschmidtDivParams.cached_new(base_params, handle_error)
+ if retval is None:
+ logging.debug(f"GoldschmidtDivParams.get: err: {base_params}")
+ else:
+ logging.debug(f"GoldschmidtDivParams.get: ok: {base_params}")
+ return retval
+
+ @lru_cache(maxsize=None)
+ def get_cost(base_params):
+ params = cached_new(base_params)
+ if params is None:
+ return math.inf
+ retval = cost_fn(params)
+ logging.debug(f"GoldschmidtDivParams.get: cost={retval}: {params}")
+ return retval
+
+ # start with parameters big enough to always work.
+ initial_extra_precision = io_width * 2 + 4
+ initial_params = GoldschmidtDivParamsBase(
+ io_width=io_width,
+ extra_precision=initial_extra_precision,
+ table_addr_bits=min(max_table_addr_bits, io_width),
+ table_data_bits=io_width + initial_extra_precision,
+ iter_count=1 + io_width.bit_length())
+
+ if cached_new(initial_params) is None:
+ raise ValueError(f"initial goldschmidt division algorithm "
+ f"parameters are invalid: {initial_params}"
+ ) from last_error
+
+ # find good initial `iter_count`
+ params = initial_params
+ for iter_count in range(1, initial_params.iter_count):
+ trial_params = replace(params, iter_count=iter_count)
+ if cached_new(trial_params) is not None:
+ params = trial_params
+ break
+
+ # now find `table_addr_bits`
+ cost = get_cost(params)
+ for table_addr_bits in range(1, max_table_addr_bits):
+ trial_params = replace(params, table_addr_bits=table_addr_bits)
+ trial_cost = get_cost(trial_params)
+ if trial_cost < cost:
+ params = trial_params
+ cost = trial_cost
+ break
+
+ # check one higher `iter_count` to see if it has lower cost
+ for table_addr_bits in range(1, max_table_addr_bits + 1):
+ trial_params = replace(params,
+ table_addr_bits=table_addr_bits,
+ iter_count=params.iter_count + 1)
+ trial_cost = get_cost(trial_params)
+ if trial_cost < cost:
+ params = trial_params
+ cost = trial_cost
+ break
+
+ # now shrink `table_data_bits`
+ while True:
+ trial_params = replace(params,
+ table_data_bits=params.table_data_bits - 1)
+ trial_cost = get_cost(trial_params)
+ if trial_cost < cost:
+ params = trial_params
+ cost = trial_cost
+ else:
+ break
+
+ # and shrink `extra_precision`
+ while True:
+ trial_params = replace(params,
+ extra_precision=params.extra_precision - 1)
+ trial_cost = get_cost(trial_params)
+ if trial_cost < cost:
+ params = trial_params
+ cost = trial_cost
+ else:
+ break
+
+ return cached_new(params)
@enum.unique