from soc.fu.alu.test.test_pipe_caller import TestCase, ALUTestCase, test_data
from soc.fu.compunits.compunits import ALUFunctionUnit
+from soc.fu.compunits.test.test_compunit import TestRunner
from soc.experiment.compalu_multi import find_ok # hack
import random
return result
-def get_cu_rd_mask(dec2):
- mask = 0b1100 # XER CA/SO
-
- reg3_ok = yield dec2.e.read_reg3.ok
- reg1_ok = yield dec2.e.read_reg1.ok
-
- if reg3_ok or reg1_ok:
- mask |= 0b1
-
- # If there's an immediate, set the B operand to that
- reg2_ok = yield dec2.e.read_reg2.ok
- if reg2_ok:
- mask |= 0b10
-
- return mask
-
-
-def set_cu_inputs(cu, dec2, sim):
- # TODO: see https://bugs.libre-soc.org/show_bug.cgi?id=305#c43
- # detect the immediate here (with m.If(self.i.ctx.op.imm_data.imm_ok))
- # and place it into data_i.b
-
- reg3_ok = yield dec2.e.read_reg3.ok
- reg1_ok = yield dec2.e.read_reg1.ok
- assert reg3_ok != reg1_ok
- if reg3_ok:
- data1 = yield dec2.e.read_reg3.data
- data1 = sim.gpr(data1).value
- elif reg1_ok:
- data1 = yield dec2.e.read_reg1.data
- data1 = sim.gpr(data1).value
- else:
- data1 = 0
-
- if reg3_ok or reg1_ok:
- yield from set_cu_input(cu, 0, data1)
-
- # If there's an immediate, set the B operand to that
- reg2_ok = yield dec2.e.read_reg2.ok
- if reg2_ok:
- data2 = yield dec2.e.read_reg2.data
- data2 = sim.gpr(data2).value
- else:
- data2 = 0
-
- if reg2_ok:
- yield from set_cu_input(cu, 1, data2)
-
-
-def set_operand(cu, dec2, sim):
- yield from cu.oper_i.eq_from_execute1(dec2.e)
- yield cu.issue_i.eq(1)
- yield
- yield cu.issue_i.eq(0)
- yield
-
-
-def set_extra_cu_inputs(cu, dec2, sim):
- carry = 1 if sim.spr['XER'][XER_bits['CA']] else 0
- carry32 = 1 if sim.spr['XER'][XER_bits['CA32']] else 0
- yield from set_cu_input(cu, 3, carry | (carry32<<1))
- so = 1 if sim.spr['XER'][XER_bits['SO']] else 0
- yield from set_cu_input(cu, 2, so)
-
-
-def get_cu_outputs(cu, code):
- res = {}
- for i in range(cu.n_dst):
- wr_rel_o = yield cu.wr.rel[i]
- if wr_rel_o:
- result = yield from get_cu_output(cu, i, code)
- wrop = cu.get_out_name(i)
- print ("output", i, wrop, hex(result))
- res[wrop] = result
- return res
-
-
-class TestRunner(FHDLTestCase):
+class ALUTestRunner(TestRunner):
def __init__(self, test_data):
- super().__init__("run_all")
- self.test_data = test_data
-
- def run_all(self):
- m = Module()
- comb = m.d.comb
- instruction = Signal(32)
-
- pdecode = create_pdecode()
-
- m.submodules.pdecode2 = pdecode2 = PowerDecode2(pdecode)
- m.submodules.cu = cu = ALUFunctionUnit()
-
- comb += pdecode2.dec.raw_opcode_in.eq(instruction)
- sim = Simulator(m)
-
- sim.add_clock(1e-6)
-
- def process():
- yield cu.issue_i.eq(0)
- yield
-
- for test in self.test_data:
- print(test.name)
- program = test.program
- self.subTest(test.name)
- sim = ISA(pdecode2, test.regs, test.sprs, 0)
- gen = program.generate_instructions()
- instructions = list(zip(gen, program.assembly.splitlines()))
-
- index = sim.pc.CIA.value//4
- while index < len(instructions):
- ins, code = instructions[index]
-
- print("0x{:X}".format(ins & 0xffffffff))
- print(code)
-
- # ask the decoder to decode this binary data (endian'd)
- yield pdecode2.dec.bigendian.eq(0) # little / big?
- yield instruction.eq(ins) # raw binary instr.
- yield Settle()
- fn_unit = yield pdecode2.e.fn_unit
- self.assertEqual(fn_unit, Function.ALU.value)
- # reset read-operand mask
- rdmask = yield from get_cu_rd_mask(pdecode2)
- yield cu.rdmaskn.eq(~rdmask)
- # reset write-operand mask
- for idx in range(cu.n_dst):
- wrok = cu.get_out(idx)
- fname = find_ok(wrok.fields)
- yield getattr(wrok, fname).eq(0)
-
- # set operand and inputs
- yield from set_operand(cu, pdecode2, sim)
- rd_rel_o = yield cu.rd.rel
- wr_rel_o = yield cu.wr.rel
- print ("before inputs, rd_rel, wr_rel: ",
- bin(rd_rel_o), bin(wr_rel_o))
- yield from set_cu_inputs(cu, pdecode2, sim)
- yield from set_extra_cu_inputs(cu, pdecode2, sim)
- yield
- rd_rel_o = yield cu.rd.rel
- wr_rel_o = yield cu.wr.rel
- wrmask = yield cu.wrmask
- print ("after inputs, rd_rel, wr_rel, wrmask: ",
- bin(rd_rel_o), bin(wr_rel_o), bin(wrmask))
-
- # call simulated operation
- opname = code.split(' ')[0]
- yield from sim.call(opname)
- index = sim.pc.CIA.value//4
-
- # get all outputs (one by one, just "because")
- res = yield from get_cu_outputs(cu, code)
-
- out_reg_valid = yield pdecode2.e.write_reg.ok
- if out_reg_valid:
- write_reg_idx = yield pdecode2.e.write_reg.data
- expected = sim.gpr(write_reg_idx).value
- cu_out = res['o']
- print(f"expected {expected:x}, actual: {cu_out:x}")
- self.assertEqual(expected, cu_out, code)
- yield from self.check_extra_cu_outputs(res, pdecode2,
- sim, code)
-
- sim.add_sync_process(process)
- with sim.write_vcd("simulator.vcd", "simulator.gtkw",
- traces=[]):
- sim.run()
+ super().__init__(test_data, ALUFunctionUnit, self)
+
+ def get_cu_inputs(self, dec2, sim):
+ # TODO: see https://bugs.libre-soc.org/show_bug.cgi?id=305#c43
+ # detect the immediate here (with m.If(self.i.ctx.op.imm_data.imm_ok))
+ # and place it into data_i.b
+ res = {}
+
+ reg3_ok = yield dec2.e.read_reg3.ok
+ reg1_ok = yield dec2.e.read_reg1.ok
+ assert reg3_ok != reg1_ok
+ if reg3_ok:
+ data1 = yield dec2.e.read_reg3.data
+ res[0] = sim.gpr(data1).value
+ elif reg1_ok:
+ data1 = yield dec2.e.read_reg1.data
+ res[0] = sim.gpr(data1).value
+
+ # If there's an immediate, set the B operand to that
+ reg2_ok = yield dec2.e.read_reg2.ok
+ if reg2_ok:
+ data2 = yield dec2.e.read_reg2.data
+ res[1] = sim.gpr(data2).value
+
+ carry = 1 if sim.spr['XER'][XER_bits['CA']] else 0
+ carry32 = 1 if sim.spr['XER'][XER_bits['CA32']] else 0
+ res[3] = carry | (carry32<<1)
+ so = 1 if sim.spr['XER'][XER_bits['SO']] else 0
+ res[2] = so
+
+ return res
+
+ def check_cu_outputs(self, res, dec2, sim, code):
+ out_reg_valid = yield dec2.e.write_reg.ok
+ if out_reg_valid:
+ write_reg_idx = yield dec2.e.write_reg.data
+ expected = sim.gpr(write_reg_idx).value
+ cu_out = res['o']
+ print(f"expected {expected:x}, actual: {cu_out:x}")
+ self.assertEqual(expected, cu_out, code)
- def check_extra_cu_outputs(self, res, dec2, sim, code):
rc = yield dec2.e.rc.data
op = yield dec2.e.insn_type
cridx_ok = yield dec2.e.write_cr.ok
if __name__ == "__main__":
unittest.main(exit=False)
suite = unittest.TestSuite()
- suite.addTest(TestRunner(test_data))
+ suite.addTest(ALUTestRunner(test_data))
runner = unittest.TextTestRunner()
runner.run(suite)
--- /dev/null
+from nmigen import Module, Signal
+from nmigen.back.pysim import Simulator, Delay, Settle
+from nmigen.test.utils import FHDLTestCase
+from nmigen.cli import rtlil
+import unittest
+from soc.decoder.isa.caller import ISACaller, special_sprs
+from soc.decoder.power_decoder import (create_pdecode)
+from soc.decoder.power_decoder2 import (PowerDecode2)
+from soc.decoder.power_enums import (XER_bits, Function, InternalOp)
+from soc.decoder.selectable_int import SelectableInt
+from soc.simulator.program import Program
+from soc.decoder.isa.all import ISA
+
+from soc.fu.alu.test.test_pipe_caller import TestCase, ALUTestCase, test_data
+from soc.experiment.compalu_multi import find_ok # hack
+import random
+
+def set_cu_input(cu, idx, data):
+ rdop = cu.get_in_name(idx)
+ yield cu.src_i[idx].eq(data)
+ while True:
+ rd_rel_o = yield cu.rd.rel[idx]
+ print ("rd_rel %d wait HI" % idx, rd_rel_o, rdop, hex(data))
+ if rd_rel_o:
+ break
+ yield
+ yield cu.rd.go[idx].eq(1)
+ while True:
+ yield
+ rd_rel_o = yield cu.rd.rel[idx]
+ if rd_rel_o:
+ break
+ print ("rd_rel %d wait HI" % idx, rd_rel_o)
+ yield
+ yield cu.rd.go[idx].eq(0)
+
+
+def get_cu_output(cu, idx, code):
+ wrmask = yield cu.wrmask
+ wrop = cu.get_out_name(idx)
+ wrok = cu.get_out(idx)
+ fname = find_ok(wrok.fields)
+ wrok = yield getattr(wrok, fname)
+ print ("wr_rel mask", repr(code), idx, wrop, bin(wrmask), fname, wrok)
+ assert wrmask & (1<<idx), \
+ "get_cu_output '%s': mask bit %d not set\n" \
+ "write-operand '%s' Data.ok likely not set (%s)" \
+ % (code, idx, wrop, hex(wrok))
+ while True:
+ wr_relall_o = yield cu.wr.rel
+ wr_rel_o = yield cu.wr.rel[idx]
+ print ("wr_rel %d wait" % idx, hex(wr_relall_o), wr_rel_o)
+ if wr_rel_o:
+ break
+ yield
+ yield cu.wr.go[idx].eq(1)
+ yield Settle()
+ result = yield cu.dest[idx]
+ yield
+ yield cu.wr.go[idx].eq(0)
+ print ("result", repr(code), idx, wrop, wrok, hex(result))
+ return result
+
+
+def set_cu_inputs(cu, inp):
+ for idx, data in inp.items():
+ yield from set_cu_input(cu, idx, data)
+
+
+def set_operand(cu, dec2, sim):
+ yield from cu.oper_i.eq_from_execute1(dec2.e)
+ yield cu.issue_i.eq(1)
+ yield
+ yield cu.issue_i.eq(0)
+ yield
+
+
+def get_cu_outputs(cu, code):
+ res = {}
+ for i in range(cu.n_dst):
+ wr_rel_o = yield cu.wr.rel[i]
+ if wr_rel_o:
+ result = yield from get_cu_output(cu, i, code)
+ wrop = cu.get_out_name(i)
+ print ("output", i, wrop, hex(result))
+ res[wrop] = result
+ return res
+
+
+def get_cu_rd_mask(n_src, inp):
+ mask = 0 #((1<<n_src)-1)
+ for i in inp.keys():
+ mask |= 1<<i
+ return mask
+
+
+class TestRunner(FHDLTestCase):
+ def __init__(self, test_data, fukls, iodef):
+ super().__init__("run_all")
+ self.test_data = test_data
+ self.fukls = fukls
+ self.iodef = iodef
+
+ def run_all(self):
+ m = Module()
+ comb = m.d.comb
+ instruction = Signal(32)
+
+ pdecode = create_pdecode()
+
+ m.submodules.pdecode2 = pdecode2 = PowerDecode2(pdecode)
+ m.submodules.cu = cu = self.fukls()
+
+ comb += pdecode2.dec.raw_opcode_in.eq(instruction)
+ sim = Simulator(m)
+
+ sim.add_clock(1e-6)
+
+ def process():
+ yield cu.issue_i.eq(0)
+ yield
+
+ for test in self.test_data:
+ print(test.name)
+ program = test.program
+ self.subTest(test.name)
+ sim = ISA(pdecode2, test.regs, test.sprs, 0)
+ gen = program.generate_instructions()
+ instructions = list(zip(gen, program.assembly.splitlines()))
+
+ index = sim.pc.CIA.value//4
+ while index < len(instructions):
+ ins, code = instructions[index]
+
+ print("0x{:X}".format(ins & 0xffffffff))
+ print(code)
+
+ # ask the decoder to decode this binary data (endian'd)
+ yield pdecode2.dec.bigendian.eq(0) # little / big?
+ yield instruction.eq(ins) # raw binary instr.
+ yield Settle()
+ fn_unit = yield pdecode2.e.fn_unit
+ self.assertEqual(fn_unit, Function.ALU.value)
+
+ # set operand and get inputs
+ yield from set_operand(cu, pdecode2, sim)
+ inp = yield from self.iodef.get_cu_inputs(pdecode2, sim)
+
+ # reset read-operand mask
+ rdmask = get_cu_rd_mask(cu.n_src, inp)
+ yield cu.rdmaskn.eq(~rdmask)
+
+ # reset write-operand mask
+ for idx in range(cu.n_dst):
+ wrok = cu.get_out(idx)
+ fname = find_ok(wrok.fields)
+ yield getattr(wrok, fname).eq(0)
+
+ # set inputs into CU
+ rd_rel_o = yield cu.rd.rel
+ wr_rel_o = yield cu.wr.rel
+ print ("before inputs, rd_rel, wr_rel: ",
+ bin(rd_rel_o), bin(wr_rel_o))
+ yield from set_cu_inputs(cu, inp)
+ yield
+ rd_rel_o = yield cu.rd.rel
+ wr_rel_o = yield cu.wr.rel
+ wrmask = yield cu.wrmask
+ print ("after inputs, rd_rel, wr_rel, wrmask: ",
+ bin(rd_rel_o), bin(wr_rel_o), bin(wrmask))
+
+ # call simulated operation
+ opname = code.split(' ')[0]
+ yield from sim.call(opname)
+ index = sim.pc.CIA.value//4
+
+ # get all outputs (one by one, just "because")
+ res = yield from get_cu_outputs(cu, code)
+
+ yield from self.iodef.check_cu_outputs(res, pdecode2,
+ sim, code)
+
+ sim.add_sync_process(process)
+ with sim.write_vcd("simulator.vcd", "simulator.gtkw",
+ traces=[]):
+ sim.run()
+
+