# convenience variables
a = dut.i.ra
b = dut.i.rb
+ o = dut.o.o.data
+ # work out absolute (as 32 bit signed) of a and b
abs32_a = Signal(32)
abs32_b = Signal(32)
- comb += abs32_a.eq(Mux(a[31], -a[0:32], a[0:32]))
- comb += abs32_b.eq(Mux(b[31], -b[0:32], b[0:32]))
-
+ a32_s = Signal(1)
+ b32_s = Signal(1)
+ comb += a32_s.eq(a[31])
+ comb += b32_s.eq(b[31])
+ comb += abs32_a.eq(Mux(a32_s, -a[0:32], a[0:32]))
+ comb += abs32_b.eq(Mux(b32_s, -b[0:32], b[0:32]))
+
+ # work out absolute (as 64 bit signed) of a and b
abs64_a = Signal(64)
abs64_b = Signal(64)
- comb += abs64_a.eq(Mux(a[63], -a[0:64], a[0:64]))
- comb += abs64_b.eq(Mux(b[63], -b[0:64], b[0:64]))
+ a64_s = Signal(1)
+ b64_s = Signal(1)
+ comb += a64_s.eq(a[63])
+ comb += b64_s.eq(b[63])
+ comb += abs64_a.eq(Mux(a64_s, -a[0:64], a[0:64]))
+ comb += abs64_b.eq(Mux(b64_s, -b[0:64], b[0:64]))
+
+ # a same sign as b
+ ab32_seq = Signal()
+ ab64_seq = Signal()
+ comb += ab32_seq.eq(a32_s ^ b32_s)
+ comb += ab64_seq.eq(a64_s ^ b64_s)
# setup random inputs
comb += [a.eq(AnyConst(64)),
with m.Case(MicrOp.OP_MUL_H32):
comb += Assume(rec.is_32bit) # OP_MUL_H32 is a 32-bit op
- expected_product = Signal(64)
- expected_o = Signal.like(expected_product)
+ exp_prod = Signal(64)
+ expected_o = Signal.like(exp_prod)
# unsigned hi32 - mulhwu
with m.If(~rec.is_signed):
- comb += expected_product.eq(a[0:32] * b[0:32])
- comb += expected_o.eq(Repl(expected_product[32:64], 2))
- comb += Assert(dut.o.o.data[0:64] == expected_o)
+ comb += exp_prod.eq(a[0:32] * b[0:32])
+ comb += expected_o.eq(Repl(exp_prod[32:64], 2))
+ comb += Assert(o[0:64] == expected_o)
# signed hi32 - mulhw
with m.Else():
- prod = Signal.like(expected_product) # intermediate product
+ prod = Signal.like(exp_prod) # intermediate product
comb += prod.eq(abs32_a * abs32_b)
- comb += expected_product.eq(Mux(a[31] ^ b[31], -prod, prod))
- comb += expected_o.eq(Repl(expected_product[32:64], 2))
- comb += Assert(dut.o.o.data[0:64] == expected_o)
+ # TODO: comment why a[31]^b[31] is used to invert prod?
+ comb += exp_prod.eq(Mux(ab32_seq, -prod, prod))
+ comb += expected_o.eq(Repl(exp_prod[32:64], 2))
+ comb += Assert(o[0:64] == expected_o)
with m.Case(MicrOp.OP_MUL_H64):
comb += Assume(~rec.is_32bit)
- expected_product = Signal(128)
+ exp_prod = Signal(128)
# unsigned hi64 - mulhdu
with m.If(~rec.is_signed):
- comb += expected_product.eq(a[0:64] * b[0:64])
- comb += Assert(
- dut.o.o.data[0:64] == expected_product[64:128]
- )
+ comb += exp_prod.eq(a[0:64] * b[0:64])
+ comb += Assert(o[0:64] == exp_prod[64:128])
# signed hi64 - mulhd
with m.Else():
- prod = Signal.like(expected_product) # intermediate product
+ prod = Signal.like(exp_prod) # intermediate product
comb += prod.eq(abs64_a * abs64_b)
- comb += expected_product.eq(Mux(a[63] ^ b[63], -prod, prod))
- comb += Assert(
- dut.o.o.data[0:64] == expected_product[64:128]
- )
+ comb += exp_prod.eq(Mux(ab64_seq, -prod, prod))
+ comb += Assert(o[0:64] == exp_prod[64:128])
# mulli, mullw(o)(u), mulld(o)
with m.Case(MicrOp.OP_MUL_L64):
with m.If(rec.is_32bit):
expected_ov = Signal()
prod = Signal(64)
- expected_product = Signal.like(prod)
+ exp_prod = Signal.like(prod)
# unsigned lo32 - mullwu
with m.If(~rec.is_signed):
- comb += expected_product.eq(a[0:32] * b[0:32])
- comb += Assert(
- dut.o.o.data[0:64] == expected_product[0:64]
- )
+ comb += exp_prod.eq(a[0:32] * b[0:32])
+ comb += Assert(o[0:64] == exp_prod[0:64])
# signed lo32 - mullw
with m.Else():
+ # TODO: comment why a[31]^b[31] is used to invert prod?
comb += prod.eq(abs32_a[0:64] * abs32_b[0:64])
- comb += expected_product.eq(
- Mux(a[31] ^ b[31], -prod, prod)
- )
- comb += Assert(
- dut.o.o.data[0:64] == expected_product[0:64]
- )
-
- m31 = expected_product[31:64]
+ comb += exp_prod.eq(Mux(ab32_seq, -prod, prod))
+ comb += Assert( o[0:64] == exp_prod[0:64])
+
+ # TODO: how does m31.bool & ~m31.all work?
+ m31 = exp_prod[31:64]
comb += expected_ov.eq(m31.bool() & ~m31.all())
comb += Assert(dut.o.xer_ov.data == Repl(expected_ov, 2))
with m.Else(): # is 64-bit; mulld
expected_ov = Signal()
prod = Signal(128)
- expected_product = Signal.like(prod)
+ exp_prod = Signal.like(prod)
# From my reading of the v3.0B ISA spec,
# only signed instructions exist.
comb += Assume(rec.is_signed)
+ # TODO: comment why a[63]^b[63] is used to invert prod?
comb += prod.eq(abs64_a[0:64] * abs64_b[0:64])
- comb += expected_product.eq(Mux(a[63] ^ b[63], -prod, prod))
- comb += Assert(dut.o.o.data[0:64] == expected_product[0:64])
+ comb += exp_prod.eq(Mux(ab64_seq, -prod, prod))
+ comb += Assert(o[0:64] == exp_prod[0:64])
- m63 = expected_product[63:128]
+ # TODO: how does m63.bool & ~m63.all work?
+ m63 = exp_prod[63:128]
comb += expected_ov.eq(m63.bool() & ~m63.all())
comb += Assert(dut.o.xer_ov.data == Repl(expected_ov, 2))