--- /dev/null
+"""Icache
+
+based on Anton Blanchard microwatt icache.vhdl
+
+"""
+from enum import Enum, unique
+from nmigen import (Module, Signal, Elaboratable, Cat, Signal)
+from nmigen.cli import main
+from nmigen.cli import rtlil
+from nmutil.iocontrol import RecordObject
+from nmutil.byterev import byte_reverse
+from nmutil.mask import Mask
+
+
+from soc.experiment.mem_types import (LoadStore1ToMmuType,
+ MmuToLoadStore1Type,
+ MmuToDcacheType,
+ DcacheToMmuType,
+ MmuToIcacheType)
+
+
+# -- Set associative icache
+# --
+# -- TODO (in no specific order):
+# --
+# -- * Add debug interface to inspect cache content
+# -- * Add snoop/invalidate path
+# -- * Add multi-hit error detection
+# -- * Pipelined bus interface (wb or axi)
+# -- * Maybe add parity? There's a few bits free in each BRAM row on Xilinx
+# -- * Add optimization: service hits on partially loaded lines
+# -- * Add optimization: (maybe) interrupt reload on fluch/redirect
+# -- * Check if playing with the geometry of the cache tags allow for more
+# -- efficient use of distributed RAM and less logic/muxes. Currently we
+# -- write TAG_BITS width which may not match full ram blocks and might
+# -- cause muxes to be inferred for "partial writes".
+# -- * Check if making the read size of PLRU a ROM helps utilization
+# --
+# library ieee;
+# use ieee.std_logic_1164.all;
+# use ieee.numeric_std.all;
+#
+# library work;
+# use work.utils.all;
+# use work.common.all;
+# use work.wishbone_types.all;
+#
+# -- 64 bit direct mapped icache. All instructions are 4B aligned.
+#
+# entity icache is
+# generic (
+# SIM : boolean := false;
+# -- Line size in bytes
+# LINE_SIZE : positive := 64;
+# -- BRAM organisation: We never access more than wishbone_data_bits
+# -- at a time so to save resources we make the array only that wide,
+# -- and use consecutive indices for to make a cache "line"
+# --
+# -- ROW_SIZE is the width in bytes of the BRAM (based on WB,
+# -- so 64-bits)
+# ROW_SIZE : positive := wishbone_data_bits / 8;
+# -- Number of lines in a set
+# NUM_LINES : positive := 32;
+# -- Number of ways
+# NUM_WAYS : positive := 4;
+# -- L1 ITLB number of entries (direct mapped)
+# TLB_SIZE : positive := 64;
+# -- L1 ITLB log_2(page_size)
+# TLB_LG_PGSZ : positive := 12;
+# -- Number of real address bits that we store
+# REAL_ADDR_BITS : positive := 56;
+# -- Non-zero to enable log data collection
+# LOG_LENGTH : natural := 0
+# );
+# port (
+# clk : in std_ulogic;
+# rst : in std_ulogic;
+#
+# i_in : in Fetch1ToIcacheType;
+# i_out : out IcacheToDecode1Type;
+#
+# m_in : in MmuToIcacheType;
+#
+# stall_in : in std_ulogic;
+# stall_out : out std_ulogic;
+# flush_in : in std_ulogic;
+# inval_in : in std_ulogic;
+#
+# wishbone_out : out wishbone_master_out;
+# wishbone_in : in wishbone_slave_out;
+#
+# log_out : out std_ulogic_vector(53 downto 0)
+# );
+# end entity icache;
+#
+# architecture rtl of icache is
+# constant ROW_SIZE_BITS : natural := ROW_SIZE*8;
+# -- ROW_PER_LINE is the number of row (wishbone transactions) in a line
+# constant ROW_PER_LINE : natural := LINE_SIZE / ROW_SIZE;
+# -- BRAM_ROWS is the number of rows in BRAM needed to represent the full
+# -- icache
+# constant BRAM_ROWS : natural := NUM_LINES * ROW_PER_LINE;
+# -- INSN_PER_ROW is the number of 32bit instructions per BRAM row
+# constant INSN_PER_ROW : natural := ROW_SIZE_BITS / 32;
+# -- Bit fields counts in the address
+#
+# -- INSN_BITS is the number of bits to select an instruction in a row
+# constant INSN_BITS : natural := log2(INSN_PER_ROW);
+# -- ROW_BITS is the number of bits to select a row
+# constant ROW_BITS : natural := log2(BRAM_ROWS);
+# -- ROW_LINEBITS is the number of bits to select a row within a line
+# constant ROW_LINEBITS : natural := log2(ROW_PER_LINE);
+# -- LINE_OFF_BITS is the number of bits for the offset in a cache line
+# constant LINE_OFF_BITS : natural := log2(LINE_SIZE);
+# -- ROW_OFF_BITS is the number of bits for the offset in a row
+# constant ROW_OFF_BITS : natural := log2(ROW_SIZE);
+# -- INDEX_BITS is the number of bits to select a cache line
+# constant INDEX_BITS : natural := log2(NUM_LINES);
+# -- SET_SIZE_BITS is the log base 2 of the set size
+# constant SET_SIZE_BITS : natural := LINE_OFF_BITS + INDEX_BITS;
+# -- TAG_BITS is the number of bits of the tag part of the address
+# constant TAG_BITS : natural := REAL_ADDR_BITS - SET_SIZE_BITS;
+# -- WAY_BITS is the number of bits to select a way
+# constant WAY_BITS : natural := log2(NUM_WAYS);
+#
+# -- Example of layout for 32 lines of 64 bytes:
+# --
+# -- .. tag |index| line |
+# -- .. | row | |
+# -- .. | | | |00| zero (2)
+# -- .. | | |-| | INSN_BITS (1)
+# -- .. | |---| | ROW_LINEBITS (3)
+# -- .. | |--- - --| LINE_OFF_BITS (6)
+# -- .. | |- --| ROW_OFF_BITS (3)
+# -- .. |----- ---| | ROW_BITS (8)
+# -- .. |-----| | INDEX_BITS (5)
+# -- .. --------| | TAG_BITS (53)
+#
+# subtype row_t is integer range 0 to BRAM_ROWS-1;
+# subtype index_t is integer range 0 to NUM_LINES-1;
+# subtype way_t is integer range 0 to NUM_WAYS-1;
+# subtype row_in_line_t is unsigned(ROW_LINEBITS-1 downto 0);
+#
+# -- The cache data BRAM organized as described above for each way
+# subtype cache_row_t is std_ulogic_vector(ROW_SIZE_BITS-1 downto 0);
+#
+# -- The cache tags LUTRAM has a row per set. Vivado is a pain and will
+# -- not handle a clean (commented) definition of the cache tags as a 3d
+# -- memory. For now, work around it by putting all the tags
+# subtype cache_tag_t is std_logic_vector(TAG_BITS-1 downto 0);
+# -- type cache_tags_set_t is array(way_t) of cache_tag_t;
+# -- type cache_tags_array_t is array(index_t) of cache_tags_set_t;
+# constant TAG_RAM_WIDTH : natural := TAG_BITS * NUM_WAYS;
+# subtype cache_tags_set_t is std_logic_vector(TAG_RAM_WIDTH-1 downto 0);
+# type cache_tags_array_t is array(index_t) of cache_tags_set_t;
+#
+# -- The cache valid bits
+# subtype cache_way_valids_t is std_ulogic_vector(NUM_WAYS-1 downto 0);
+# type cache_valids_t is array(index_t) of cache_way_valids_t;
+# type row_per_line_valid_t is array(0 to ROW_PER_LINE - 1) of std_ulogic;
+#
+# -- Storage. Hopefully "cache_rows" is a BRAM, the rest is LUTs
+# signal cache_tags : cache_tags_array_t;
+# signal cache_valids : cache_valids_t;
+#
+# attribute ram_style : string;
+# attribute ram_style of cache_tags : signal is "distributed";
+#
+# -- L1 ITLB.
+# constant TLB_BITS : natural := log2(TLB_SIZE);
+# constant TLB_EA_TAG_BITS : natural := 64 - (TLB_LG_PGSZ + TLB_BITS);
+# constant TLB_PTE_BITS : natural := 64;
+#
+# subtype tlb_index_t is integer range 0 to TLB_SIZE - 1;
+# type tlb_valids_t is array(tlb_index_t) of std_ulogic;
+# subtype tlb_tag_t is std_ulogic_vector(TLB_EA_TAG_BITS - 1 downto 0);
+# type tlb_tags_t is array(tlb_index_t) of tlb_tag_t;
+# subtype tlb_pte_t is std_ulogic_vector(TLB_PTE_BITS - 1 downto 0);
+# type tlb_ptes_t is array(tlb_index_t) of tlb_pte_t;
+#
+# signal itlb_valids : tlb_valids_t;
+# signal itlb_tags : tlb_tags_t;
+# signal itlb_ptes : tlb_ptes_t;
+# attribute ram_style of itlb_tags : signal is "distributed";
+# attribute ram_style of itlb_ptes : signal is "distributed";
+#
+# -- Privilege bit from PTE EAA field
+# signal eaa_priv : std_ulogic;
+#
+# -- Cache reload state machine
+# type state_t is (IDLE, CLR_TAG, WAIT_ACK);
+#
+# type reg_internal_t is record
+# -- Cache hit state (Latches for 1 cycle BRAM access)
+# hit_way : way_t;
+# hit_nia : std_ulogic_vector(63 downto 0);
+# hit_smark : std_ulogic;
+# hit_valid : std_ulogic;
+#
+# -- Cache miss state (reload state machine)
+# state : state_t;
+# wb : wishbone_master_out;
+# store_way : way_t;
+# store_index : index_t;
+# store_row : row_t;
+# store_tag : cache_tag_t;
+# store_valid : std_ulogic;
+# end_row_ix : row_in_line_t;
+# rows_valid : row_per_line_valid_t;
+#
+# -- TLB miss state
+# fetch_failed : std_ulogic;
+# end record;
+#
+# signal r : reg_internal_t;
+#
+# -- Async signals on incoming request
+# signal req_index : index_t;
+# signal req_row : row_t;
+# signal req_hit_way : way_t;
+# signal req_tag : cache_tag_t;
+# signal req_is_hit : std_ulogic;
+# signal req_is_miss : std_ulogic;
+# signal req_laddr : std_ulogic_vector(63 downto 0);
+#
+# signal tlb_req_index : tlb_index_t;
+# signal real_addr : std_ulogic_vector(REAL_ADDR_BITS - 1 downto 0);
+# signal ra_valid : std_ulogic;
+# signal priv_fault : std_ulogic;
+# signal access_ok : std_ulogic;
+# signal use_previous : std_ulogic;
+#
+# -- Cache RAM interface
+# type cache_ram_out_t is array(way_t) of cache_row_t;
+# signal cache_out : cache_ram_out_t;
+#
+# -- PLRU output interface
+# type plru_out_t is array(index_t) of
+# std_ulogic_vector(WAY_BITS-1 downto 0);
+# signal plru_victim : plru_out_t;
+# signal replace_way : way_t;
+#
+# -- Return the cache line index (tag index) for an address
+# function get_index(addr: std_ulogic_vector(63 downto 0))
+# return index_t is
+# begin
+# return to_integer(unsigned(
+# addr(SET_SIZE_BITS - 1 downto LINE_OFF_BITS)
+# ));
+# end;
+#
+# -- Return the cache row index (data memory) for an address
+# function get_row(addr: std_ulogic_vector(63 downto 0)) return row_t is
+# begin
+# return to_integer(unsigned(
+# addr(SET_SIZE_BITS - 1 downto ROW_OFF_BITS)
+# ));
+# end;
+#
+# -- Return the index of a row within a line
+# function get_row_of_line(row: row_t) return row_in_line_t is
+# variable row_v : unsigned(ROW_BITS-1 downto 0);
+# begin
+# row_v := to_unsigned(row, ROW_BITS);
+# return row_v(ROW_LINEBITS-1 downto 0);
+# end;
+#
+# -- Returns whether this is the last row of a line
+# function is_last_row_addr(addr: wishbone_addr_type; last: row_in_line_t)
+# return boolean is
+# begin
+# return unsigned(addr(LINE_OFF_BITS-1 downto ROW_OFF_BITS)) = last;
+# end;
+#
+# -- Returns whether this is the last row of a line
+# function is_last_row(row: row_t; last: row_in_line_t) return boolean is
+# begin
+# return get_row_of_line(row) = last;
+# end;
+#
+# -- Return the address of the next row in the current cache line
+# function next_row_addr(addr: wishbone_addr_type)
+# return std_ulogic_vector is
+# variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
+# variable result : wishbone_addr_type;
+# begin
+# -- Is there no simpler way in VHDL to generate that 3 bits adder ?
+# row_idx := addr(LINE_OFF_BITS-1 downto ROW_OFF_BITS);
+# row_idx := std_ulogic_vector(unsigned(row_idx) + 1);
+# result := addr;
+# result(LINE_OFF_BITS-1 downto ROW_OFF_BITS) := row_idx;
+# return result;
+# end;
+#
+# -- Return the next row in the current cache line. We use a dedicated
+# -- function in order to limit the size of the generated adder to be
+# -- only the bits within a cache line (3 bits with default settings)
+# --
+# function next_row(row: row_t) return row_t is
+# variable row_v : std_ulogic_vector(ROW_BITS-1 downto 0);
+# variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
+# variable result : std_ulogic_vector(ROW_BITS-1 downto 0);
+# begin
+# row_v := std_ulogic_vector(to_unsigned(row, ROW_BITS));
+# row_idx := row_v(ROW_LINEBITS-1 downto 0);
+# row_v(ROW_LINEBITS-1 downto 0) :=
+# std_ulogic_vector(unsigned(row_idx) + 1);
+# return to_integer(unsigned(row_v));
+# end;
+#
+# -- Read the instruction word for the given address in the
+# -- current cache row
+# function read_insn_word(addr: std_ulogic_vector(63 downto 0);
+# data: cache_row_t) return std_ulogic_vector is
+# variable word: integer range 0 to INSN_PER_ROW-1;
+# begin
+# word := to_integer(unsigned(addr(INSN_BITS+2-1 downto 2)));
+# return data(31+word*32 downto word*32);
+# end;
+#
+# -- Get the tag value from the address
+# function get_tag(addr: std_ulogic_vector(REAL_ADDR_BITS - 1 downto 0))
+# return cache_tag_t is
+# begin
+# return addr(REAL_ADDR_BITS - 1 downto SET_SIZE_BITS);
+# end;
+#
+# -- Read a tag from a tag memory row
+# function read_tag(way: way_t; tagset: cache_tags_set_t)
+# return cache_tag_t is
+# begin
+# return tagset((way+1) * TAG_BITS - 1 downto way * TAG_BITS);
+# end;
+#
+# -- Write a tag to tag memory row
+# procedure write_tag(way: in way_t; tagset: inout cache_tags_set_t;
+# tag: cache_tag_t) is
+# begin
+# tagset((way+1) * TAG_BITS - 1 downto way * TAG_BITS) := tag;
+# end;
+#
+# -- Simple hash for direct-mapped TLB index
+# function hash_ea(addr: std_ulogic_vector(63 downto 0))
+# return tlb_index_t is
+# variable hash : std_ulogic_vector(TLB_BITS - 1 downto 0);
+# begin
+# hash := addr(TLB_LG_PGSZ + TLB_BITS - 1 downto TLB_LG_PGSZ)
+# xor addr(
+# TLB_LG_PGSZ + 2 * TLB_BITS - 1 downto
+# TLB_LG_PGSZ + TLB_BITS
+# )
+# xor addr(
+# TLB_LG_PGSZ + 3 * TLB_BITS - 1 downto
+# TLB_LG_PGSZ + 2 * TLB_BITS
+# );
+# return to_integer(unsigned(hash));
+# end;
+# begin
+#
+# assert LINE_SIZE mod ROW_SIZE = 0;
+# assert ispow2(LINE_SIZE) report "LINE_SIZE not power of 2"
+# severity FAILURE;
+# assert ispow2(NUM_LINES) report "NUM_LINES not power of 2"
+# severity FAILURE;
+# assert ispow2(ROW_PER_LINE) report "ROW_PER_LINE not power of 2"
+# severity FAILURE;
+# assert ispow2(INSN_PER_ROW) report "INSN_PER_ROW not power of 2"
+# severity FAILURE;
+# assert (ROW_BITS = INDEX_BITS + ROW_LINEBITS)
+# report "geometry bits don't add up" severity FAILURE;
+# assert (LINE_OFF_BITS = ROW_OFF_BITS + ROW_LINEBITS)
+# report "geometry bits don't add up" severity FAILURE;
+# assert (REAL_ADDR_BITS = TAG_BITS + INDEX_BITS + LINE_OFF_BITS)
+# report "geometry bits don't add up" severity FAILURE;
+# assert (REAL_ADDR_BITS = TAG_BITS + ROW_BITS + ROW_OFF_BITS)
+# report "geometry bits don't add up" severity FAILURE;
+#
+# sim_debug: if SIM generate
+# debug: process
+# begin
+# report "ROW_SIZE = " & natural'image(ROW_SIZE);
+# report "ROW_PER_LINE = " & natural'image(ROW_PER_LINE);
+# report "BRAM_ROWS = " & natural'image(BRAM_ROWS);
+# report "INSN_PER_ROW = " & natural'image(INSN_PER_ROW);
+# report "INSN_BITS = " & natural'image(INSN_BITS);
+# report "ROW_BITS = " & natural'image(ROW_BITS);
+# report "ROW_LINEBITS = " & natural'image(ROW_LINEBITS);
+# report "LINE_OFF_BITS = " & natural'image(LINE_OFF_BITS);
+# report "ROW_OFF_BITS = " & natural'image(ROW_OFF_BITS);
+# report "INDEX_BITS = " & natural'image(INDEX_BITS);
+# report "TAG_BITS = " & natural'image(TAG_BITS);
+# report "WAY_BITS = " & natural'image(WAY_BITS);
+# wait;
+# end process;
+# end generate;
+#
+# -- Generate a cache RAM for each way
+# rams: for i in 0 to NUM_WAYS-1 generate
+# signal do_read : std_ulogic;
+# signal do_write : std_ulogic;
+# signal rd_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
+# signal wr_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
+# signal dout : cache_row_t;
+# signal wr_sel : std_ulogic_vector(ROW_SIZE-1 downto 0);
+# begin
+# way: entity work.cache_ram
+# generic map (
+# ROW_BITS => ROW_BITS,
+# WIDTH => ROW_SIZE_BITS
+# )
+# port map (
+# clk => clk,
+# rd_en => do_read,
+# rd_addr => rd_addr,
+# rd_data => dout,
+# wr_sel => wr_sel,
+# wr_addr => wr_addr,
+# wr_data => wishbone_in.dat
+# );
+# process(all)
+# begin
+# do_read <= not (stall_in or use_previous);
+# do_write <= '0';
+# if wishbone_in.ack = '1' and replace_way = i then
+# do_write <= '1';
+# end if;
+# cache_out(i) <= dout;
+# rd_addr <= std_ulogic_vector(to_unsigned(req_row, ROW_BITS));
+# wr_addr <= std_ulogic_vector(to_unsigned(r.store_row, ROW_BITS));
+# for i in 0 to ROW_SIZE-1 loop
+# wr_sel(i) <= do_write;
+# end loop;
+# end process;
+# end generate;
+#
+# -- Generate PLRUs
+# maybe_plrus: if NUM_WAYS > 1 generate
+# begin
+# plrus: for i in 0 to NUM_LINES-1 generate
+# -- PLRU interface
+# signal plru_acc : std_ulogic_vector(WAY_BITS-1 downto 0);
+# signal plru_acc_en : std_ulogic;
+# signal plru_out : std_ulogic_vector(WAY_BITS-1 downto 0);
+#
+# begin
+# plru : entity work.plru
+# generic map (
+# BITS => WAY_BITS
+# )
+# port map (
+# clk => clk,
+# rst => rst,
+# acc => plru_acc,
+# acc_en => plru_acc_en,
+# lru => plru_out
+# );
+#
+# process(all)
+# begin
+# -- PLRU interface
+# if get_index(r.hit_nia) = i then
+# plru_acc_en <= r.hit_valid;
+# else
+# plru_acc_en <= '0';
+# end if;
+# plru_acc <=
+# std_ulogic_vector(to_unsigned(r.hit_way, WAY_BITS));
+# plru_victim(i) <= plru_out;
+# end process;
+# end generate;
+# end generate;
+#
+# -- TLB hit detection and real address generation
+# itlb_lookup : process(all)
+# variable pte : tlb_pte_t;
+# variable ttag : tlb_tag_t;
+# begin
+# tlb_req_index <= hash_ea(i_in.nia);
+# pte := itlb_ptes(tlb_req_index);
+# ttag := itlb_tags(tlb_req_index);
+# if i_in.virt_mode = '1' then
+# real_addr <= pte(REAL_ADDR_BITS - 1 downto TLB_LG_PGSZ) &
+# i_in.nia(TLB_LG_PGSZ - 1 downto 0);
+# if ttag = i_in.nia(63 downto TLB_LG_PGSZ + TLB_BITS) then
+# ra_valid <= itlb_valids(tlb_req_index);
+# else
+# ra_valid <= '0';
+# end if;
+# eaa_priv <= pte(3);
+# else
+# real_addr <= i_in.nia(REAL_ADDR_BITS - 1 downto 0);
+# ra_valid <= '1';
+# eaa_priv <= '1';
+# end if;
+#
+# -- no IAMR, so no KUEP support for now
+# priv_fault <= eaa_priv and not i_in.priv_mode;
+# access_ok <= ra_valid and not priv_fault;
+# end process;
+#
+# -- iTLB update
+# itlb_update: process(clk)
+# variable wr_index : tlb_index_t;
+# begin
+# if rising_edge(clk) then
+# wr_index := hash_ea(m_in.addr);
+# if rst = '1' or (m_in.tlbie = '1' and m_in.doall = '1') then
+# -- clear all valid bits
+# for i in tlb_index_t loop
+# itlb_valids(i) <= '0';
+# end loop;
+# elsif m_in.tlbie = '1' then
+# -- clear entry regardless of hit or miss
+# itlb_valids(wr_index) <= '0';
+# elsif m_in.tlbld = '1' then
+# itlb_tags(wr_index) <= m_in.addr(
+# 63 downto TLB_LG_PGSZ + TLB_BITS
+# );
+# itlb_ptes(wr_index) <= m_in.pte;
+# itlb_valids(wr_index) <= '1';
+# end if;
+# end if;
+# end process;
+#
+# -- Cache hit detection, output to fetch2 and other misc logic
+# icache_comb : process(all)
+# variable is_hit : std_ulogic;
+# variable hit_way : way_t;
+# begin
+# -- i_in.sequential means that i_in.nia this cycle is 4 more than
+# -- last cycle. If we read more than 32 bits at a time, had a
+# -- cache hit last cycle, and we don't want the first 32-bit chunk
+# -- then we can keep the data we read last cycle and just use that.
+# if unsigned(i_in.nia(INSN_BITS+2-1 downto 2)) /= 0 then
+# use_previous <= i_in.sequential and r.hit_valid;
+# else
+# use_previous <= '0';
+# end if;
+#
+# -- Extract line, row and tag from request
+# req_index <= get_index(i_in.nia);
+# req_row <= get_row(i_in.nia);
+# req_tag <= get_tag(real_addr);
+#
+# -- Calculate address of beginning of cache row, will be
+# -- used for cache miss processing if needed
+# --
+# req_laddr <= (63 downto REAL_ADDR_BITS => '0') &
+# real_addr(REAL_ADDR_BITS - 1 downto ROW_OFF_BITS) &
+# (ROW_OFF_BITS-1 downto 0 => '0');
+#
+# -- Test if pending request is a hit on any way
+# hit_way := 0;
+# is_hit := '0';
+# for i in way_t loop
+# if i_in.req = '1' and
+# (cache_valids(req_index)(i) = '1' or
+# (r.state = WAIT_ACK and
+# req_index = r.store_index and
+# i = r.store_way and
+# r.rows_valid(req_row mod ROW_PER_LINE) = '1')) then
+# if read_tag(i, cache_tags(req_index)) = req_tag then
+# hit_way := i;
+# is_hit := '1';
+# end if;
+# end if;
+# end loop;
+#
+# -- Generate the "hit" and "miss" signals for the synchronous blocks
+# if i_in.req = '1' and access_ok = '1' and flush_in = '0'
+# and rst = '0' then
+# req_is_hit <= is_hit;
+# req_is_miss <= not is_hit;
+# else
+# req_is_hit <= '0';
+# req_is_miss <= '0';
+# end if;
+# req_hit_way <= hit_way;
+#
+# -- The way to replace on a miss
+# if r.state = CLR_TAG then
+# replace_way <= to_integer(unsigned(plru_victim(r.store_index)));
+# else
+# replace_way <= r.store_way;
+# end if;
+#
+# -- Output instruction from current cache row
+# --
+# -- Note: This is a mild violation of our design principle of
+# -- having pipeline stages output from a clean latch. In this
+# -- case we output the result of a mux. The alternative would
+# -- be output an entire row which I prefer not to do just yet
+# -- as it would force fetch2 to know about some of the cache
+# -- geometry information.
+# i_out.insn <= read_insn_word(r.hit_nia, cache_out(r.hit_way));
+# i_out.valid <= r.hit_valid;
+# i_out.nia <= r.hit_nia;
+# i_out.stop_mark <= r.hit_smark;
+# i_out.fetch_failed <= r.fetch_failed;
+#
+# -- Stall fetch1 if we have a miss on cache or TLB or a protection fault
+# stall_out <= not (is_hit and access_ok);
+#
+# -- Wishbone requests output (from the cache miss reload machine)
+# wishbone_out <= r.wb;
+# end process;
+#
+# -- Cache hit synchronous machine
+# icache_hit : process(clk)
+# begin
+# if rising_edge(clk) then
+# -- keep outputs to fetch2 unchanged on a stall
+# -- except that flush or reset sets valid to 0
+# -- If use_previous, keep the same data as last
+# -- cycle and use the second half
+# if stall_in = '1' or use_previous = '1' then
+# if rst = '1' or flush_in = '1' then
+# r.hit_valid <= '0';
+# end if;
+# else
+# -- On a hit, latch the request for the next cycle,
+# -- when the BRAM data will be available on the
+# -- cache_out output of the corresponding way
+# r.hit_valid <= req_is_hit;
+# if req_is_hit = '1' then
+# r.hit_way <= req_hit_way;
+#
+# report "cache hit nia:" & to_hstring(i_in.nia) &
+# " IR:" & std_ulogic'image(i_in.virt_mode) &
+# " SM:" & std_ulogic'image(i_in.stop_mark) &
+# " idx:" & integer'image(req_index) &
+# " tag:" & to_hstring(req_tag) &
+# " way:" & integer'image(req_hit_way) &
+# " RA:" & to_hstring(real_addr);
+# end if;
+# end if;
+# if stall_in = '0' then
+# -- Send stop marks and NIA down regardless of validity
+# r.hit_smark <= i_in.stop_mark;
+# r.hit_nia <= i_in.nia;
+# end if;
+# end if;
+# end process;
+#
+# -- Cache miss/reload synchronous machine
+# icache_miss : process(clk)
+# variable tagset : cache_tags_set_t;
+# variable stbs_done : boolean;
+# begin
+# if rising_edge(clk) then
+# -- On reset, clear all valid bits to force misses
+# if rst = '1' then
+# for i in index_t loop
+# cache_valids(i) <= (others => '0');
+# end loop;
+# r.state <= IDLE;
+# r.wb.cyc <= '0';
+# r.wb.stb <= '0';
+#
+# -- We only ever do reads on wishbone
+# r.wb.dat <= (others => '0');
+# r.wb.sel <= "11111111";
+# r.wb.we <= '0';
+#
+# -- Not useful normally but helps avoiding tons of sim warnings
+# r.wb.adr <= (others => '0');
+# else
+# -- Process cache invalidations
+# if inval_in = '1' then
+# for i in index_t loop
+# cache_valids(i) <= (others => '0');
+# end loop;
+# r.store_valid <= '0';
+# end if;
+#
+# -- Main state machine
+# case r.state is
+# when IDLE =>
+# -- Reset per-row valid flags, only used in WAIT_ACK
+# for i in 0 to ROW_PER_LINE - 1 loop
+# r.rows_valid(i) <= '0';
+# end loop;
+#
+# -- We need to read a cache line
+# if req_is_miss = '1' then
+# report "cache miss nia:" & to_hstring(i_in.nia) &
+# " IR:" & std_ulogic'image(i_in.virt_mode) &
+# " SM:" & std_ulogic'image(i_in.stop_mark) &
+# " idx:" & integer'image(req_index) &
+# " way:" & integer'image(replace_way) &
+# " tag:" & to_hstring(req_tag) &
+# " RA:" & to_hstring(real_addr);
+#
+# -- Keep track of our index and way for
+# -- subsequent stores
+# r.store_index <= req_index;
+# r.store_row <= get_row(req_laddr);
+# r.store_tag <= req_tag;
+# r.store_valid <= '1';
+# r.end_row_ix <=
+# get_row_of_line(get_row(req_laddr)) - 1;
+#
+# -- Prep for first wishbone read. We calculate the
+# -- address of the start of the cache line and
+# -- start the WB cycle.
+# r.wb.adr <= req_laddr(r.wb.adr'left downto 0);
+# r.wb.cyc <= '1';
+# r.wb.stb <= '1';
+#
+# -- Track that we had one request sent
+# r.state <= CLR_TAG;
+# end if;
+#
+# when CLR_TAG | WAIT_ACK =>
+# if r.state = CLR_TAG then
+# -- Get victim way from plru
+# r.store_way <= replace_way;
+#
+# -- Force misses on that way while reloading that line
+# cache_valids(req_index)(replace_way) <= '0';
+#
+# -- Store new tag in selected way
+# for i in 0 to NUM_WAYS-1 loop
+# if i = replace_way then
+# tagset := cache_tags(r.store_index);
+# write_tag(i, tagset, r.store_tag);
+# cache_tags(r.store_index) <= tagset;
+# end if;
+# end loop;
+#
+# r.state <= WAIT_ACK;
+# end if;
+# -- Requests are all sent if stb is 0
+# stbs_done := r.wb.stb = '0';
+#
+# -- If we are still sending requests, was one accepted ?
+# if wishbone_in.stall = '0' and not stbs_done then
+# -- That was the last word ? We are done sending.
+# -- Clear stb and set stbs_done so we can handle
+# -- an eventual last ack on the same cycle.
+# if is_last_row_addr(r.wb.adr, r.end_row_ix) then
+# r.wb.stb <= '0';
+# stbs_done := true;
+# end if;
+#
+# -- Calculate the next row address
+# r.wb.adr <= next_row_addr(r.wb.adr);
+# end if;
+#
+# -- Incoming acks processing
+# if wishbone_in.ack = '1' then
+# r.rows_valid(r.store_row mod ROW_PER_LINE) <= '1';
+# -- Check for completion
+# if stbs_done and
+# is_last_row(r.store_row, r.end_row_ix) then
+# -- Complete wishbone cycle
+# r.wb.cyc <= '0';
+#
+# -- Cache line is now valid
+# cache_valids(r.store_index)(replace_way) <=
+# r.store_valid and not inval_in;
+#
+# -- We are done
+# r.state <= IDLE;
+# end if;
+#
+# -- Increment store row counter
+# r.store_row <= next_row(r.store_row);
+# end if;
+# end case;
+# end if;
+#
+# -- TLB miss and protection fault processing
+# if rst = '1' or flush_in = '1' or m_in.tlbld = '1' then
+# r.fetch_failed <= '0';
+# elsif i_in.req = '1' and access_ok = '0' and stall_in = '0' then
+# r.fetch_failed <= '1';
+# end if;
+# end if;
+# end process;
+#
+# icache_log: if LOG_LENGTH > 0 generate
+# -- Output data to logger
+# signal log_data : std_ulogic_vector(53 downto 0);
+# begin
+# data_log: process(clk)
+# variable lway: way_t;
+# variable wstate: std_ulogic;
+# begin
+# if rising_edge(clk) then
+# lway := req_hit_way;
+# wstate := '0';
+# if r.state /= IDLE then
+# wstate := '1';
+# end if;
+# log_data <= i_out.valid &
+# i_out.insn &
+# wishbone_in.ack &
+# r.wb.adr(5 downto 3) &
+# r.wb.stb & r.wb.cyc &
+# wishbone_in.stall &
+# stall_out &
+# r.fetch_failed &
+# r.hit_nia(5 downto 2) &
+# wstate &
+# std_ulogic_vector(to_unsigned(lway, 3)) &
+# req_is_hit & req_is_miss &
+# access_ok &
+# ra_valid;
+# end if;
+# end process;
+# log_out <= log_data;
+# end generate;
+# end;
+