/* Always observed to be zero at the moment */
unsigned unknown3 : 2;
- /* When packing multiple attributes in a buffer, offset addresses by this value */
- uint32_t src_offset;
+ /* When packing multiple attributes in a buffer, offset addresses by
+ * this value. Obscurely, this is signed. */
+ int32_t src_offset;
} __attribute__((packed));
enum mali_fbd_type {
u32 zero3;
#endif
- u32 gl_enables; // 0x5
+ u16 gl_enables; // 0x5
+
+ /* Both zero for non-instanced draws. For instanced draws, a
+ * decomposition of padded_num_vertices. See the comments about the
+ * corresponding fields in mali_attr for context. */
+
+ unsigned instance_shift : 5;
+ unsigned instance_odd : 3;
+
+ u8 zero4;
/* Offset for first vertex in buffer */
u32 draw_start;
'pan_pretty_print.c',
'pan_fragment.c',
'pan_invocation.c',
+ 'pan_instancing.c',
'pan_scoreboard.c',
'pan_sfbd.c',
'pan_mfbd.c',
bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
/* Get the base type of the intrinsic */
- nir_alu_type t = nir_intrinsic_type(instr);
+ /* TODO: Infer type? Does it matter? */
+ nir_alu_type t =
+ is_ubo ? nir_type_uint : nir_intrinsic_type(instr);
t = nir_alu_type_get_base_type(t);
if (!is_ubo) {
static void
panfrost_emit_varying_descriptor(
struct panfrost_context *ctx,
- unsigned invocation_count)
+ unsigned vertex_count)
{
/* Load the shaders */
unsigned idx = 0;
panfrost_emit_varyings(ctx, &varyings[idx++], num_gen_varyings * 16,
- invocation_count);
+ vertex_count);
/* fp32 vec4 gl_Position */
ctx->payload_tiler.postfix.position_varying =
panfrost_emit_varyings(ctx, &varyings[idx++],
- sizeof(float) * 4, invocation_count);
+ sizeof(float) * 4, vertex_count);
if (vs->writes_point_size || fs->reads_point_coord) {
/* fp16 vec1 gl_PointSize */
ctx->payload_tiler.primitive_size.pointer =
panfrost_emit_varyings(ctx, &varyings[idx++],
- 2, invocation_count);
+ 2, vertex_count);
}
if (fs->reads_point_coord) {
ctx->payload_tiler.postfix.varyings = varyings_p;
}
-static mali_ptr
+mali_ptr
panfrost_vertex_buffer_address(struct panfrost_context *ctx, unsigned i)
{
struct pipe_vertex_buffer *buf = &ctx->vertex_buffers[i];
return rsrc->bo->gpu + buf->buffer_offset;
}
-/* Emits attributes and varying descriptors, which should be called every draw,
- * excepting some obscure circumstances */
-
-static void
-panfrost_emit_vertex_data(struct panfrost_context *ctx, struct panfrost_job *job)
-{
- /* Staged mali_attr, and index into them. i =/= k, depending on the
- * vertex buffer mask */
- union mali_attr attrs[PIPE_MAX_ATTRIBS];
- unsigned k = 0;
-
- unsigned invocation_count = MALI_NEGATIVE(ctx->payload_tiler.prefix.invocation_count);
-
- for (int i = 0; i < ARRAY_SIZE(ctx->vertex_buffers); ++i) {
- if (!(ctx->vb_mask & (1 << i))) continue;
-
- struct pipe_vertex_buffer *buf = &ctx->vertex_buffers[i];
- struct panfrost_resource *rsrc = (struct panfrost_resource *) (buf->buffer.resource);
-
- if (!rsrc) continue;
-
- /* Align to 64 bytes by masking off the lower bits. This
- * will be adjusted back when we fixup the src_offset in
- * mali_attr_meta */
-
- mali_ptr addr = panfrost_vertex_buffer_address(ctx, i) & ~63;
-
- /* Offset vertex count by draw_start to make sure we upload enough */
- attrs[k].stride = buf->stride;
- attrs[k].size = rsrc->base.width0;
-
- panfrost_job_add_bo(job, rsrc->bo);
- attrs[k].elements = addr | MALI_ATTR_LINEAR;
-
- ++k;
- }
-
- ctx->payload_vertex.postfix.attributes = panfrost_upload_transient(ctx, attrs, k * sizeof(union mali_attr));
-
- panfrost_emit_varying_descriptor(ctx, invocation_count);
-}
-
static bool
panfrost_writes_point_size(struct panfrost_context *ctx)
{
* QED.
*/
+ unsigned start = ctx->payload_vertex.draw_start;
+
for (unsigned i = 0; i < so->num_elements; ++i) {
unsigned vbi = so->pipe[i].vertex_buffer_index;
+ struct pipe_vertex_buffer *buf = &ctx->vertex_buffers[vbi];
mali_ptr addr = panfrost_vertex_buffer_address(ctx, vbi);
/* Adjust by the masked off bits of the offset */
target[i].src_offset += (addr & 63);
+
+ /* Also, somewhat obscurely per-instance data needs to be
+ * offset in response to a delayed start in an indexed draw */
+
+ if (so->pipe[i].instance_divisor && ctx->instance_count > 1 && start) {
+ target[i].src_offset -= buf->stride * start;
+ }
+
+
}
ctx->payload_vertex.postfix.attribute_meta = transfer.gpu;
struct panfrost_job *job = panfrost_get_job_for_fbo(ctx);
if (with_vertex_data) {
- panfrost_emit_vertex_data(ctx, job);
+ panfrost_emit_vertex_data(job);
+
+ /* Varyings emitted for -all- geometry */
+ unsigned total_count = ctx->padded_count * ctx->instance_count;
+ panfrost_emit_varying_descriptor(ctx, total_count);
}
bool msaa = ctx->rasterizer->base.multisample;
struct panfrost_resource *rsrc = (struct panfrost_resource *) (info->index.resource);
off_t offset = info->start * info->index_size;
+ struct panfrost_job *batch = panfrost_get_job_for_fbo(ctx);
if (!info->has_user_indices) {
/* Only resources can be directly mapped */
+ panfrost_job_add_bo(batch, rsrc->bo);
return rsrc->bo->gpu + offset;
} else {
/* Otherwise, we need to upload to transient memory */
ctx->payload_tiler.prefix.draw_mode = g2m_draw_mode(mode);
ctx->vertex_count = info->count;
+ ctx->instance_count = info->instance_count;
/* For non-indexed draws, they're the same */
unsigned vertex_count = ctx->vertex_count;
/* For higher amounts of vertices (greater than what fits in a 16-bit
* short), the other value is needed, otherwise there will be bizarre
- * rendering artefacts. It's not clear what these values mean yet. */
+ * rendering artefacts. It's not clear what these values mean yet. This
+ * change is also needed for instancing and sometimes points (perhaps
+ * related to dynamically setting gl_PointSize) */
+
+ bool is_points = mode == PIPE_PRIM_POINTS;
+ bool many_verts = ctx->vertex_count > 0xFFFF;
+ bool instanced = ctx->instance_count > 1;
- draw_flags |= (mode == PIPE_PRIM_POINTS || ctx->vertex_count > 65535) ? 0x3000 : 0x18000;
+ draw_flags |= (is_points || many_verts || instanced) ? 0x3000 : 0x18000;
+
+ /* This doesn't make much sense */
+ if (mode == PIPE_PRIM_LINE_STRIP) {
+ draw_flags |= 0x800;
+ }
if (info->index_size) {
/* Calculate the min/max index used so we can figure out how
panfrost_pack_work_groups_fused(
&ctx->payload_vertex.prefix,
&ctx->payload_tiler.prefix,
- 1, vertex_count, 1,
+ 1, vertex_count, info->instance_count,
1, 1, 1);
ctx->payload_tiler.prefix.unknown_draw = draw_flags;
+ /* Encode the padded vertex count */
+
+ if (info->instance_count > 1) {
+ /* Triangles have non-even vertex counts so they change how
+ * padding works internally */
+
+ bool is_triangle =
+ mode == PIPE_PRIM_TRIANGLES ||
+ mode == PIPE_PRIM_TRIANGLE_STRIP ||
+ mode == PIPE_PRIM_TRIANGLE_FAN;
+
+ struct pan_shift_odd so =
+ panfrost_padded_vertex_count(vertex_count, !is_triangle);
+
+ ctx->payload_vertex.instance_shift = so.shift;
+ ctx->payload_tiler.instance_shift = so.shift;
+
+ ctx->payload_vertex.instance_odd = so.odd;
+ ctx->payload_tiler.instance_odd = so.odd;
+
+ ctx->padded_count = pan_expand_shift_odd(so);
+ } else {
+ ctx->padded_count = ctx->vertex_count;
+
+ /* Reset instancing state */
+ ctx->payload_vertex.instance_shift = 0;
+ ctx->payload_vertex.instance_odd = 0;
+ ctx->payload_tiler.instance_shift = 0;
+ ctx->payload_tiler.instance_odd = 0;
+ }
+
/* Fire off the draw itself */
panfrost_queue_draw(ctx);
}
panfrost_allocate_chunk(pan_context(pctx), 0, HEAP_DESCRIPTOR);
for (int i = 0; i < num_elements; ++i) {
- so->hw[i].index = elements[i].vertex_buffer_index;
+ so->hw[i].index = i;
enum pipe_format fmt = elements[i].src_format;
const struct util_format_description *desc = util_format_description(fmt);
int dirty;
unsigned vertex_count;
+ unsigned instance_count;
+
+ /* If instancing is enabled, vertex count padded for instance; if
+ * it is disabled, just equal to plain vertex count */
+ unsigned padded_count;
union mali_attr attributes[PIPE_MAX_ATTRIBS];
unsigned size_y,
unsigned size_z);
+/* Instancing */
+
+mali_ptr
+panfrost_vertex_buffer_address(struct panfrost_context *ctx, unsigned i);
+
+void
+panfrost_emit_vertex_data(struct panfrost_job *batch);
+
+struct pan_shift_odd {
+ unsigned shift;
+ unsigned odd;
+};
+
+struct pan_shift_odd
+panfrost_padded_vertex_count(
+ unsigned vertex_count,
+ bool primitive_pot);
+
+
+unsigned
+pan_expand_shift_odd(struct pan_shift_odd o);
#endif
--- /dev/null
+/*
+ * Copyright (C) 2018-2019 Alyssa Rosenzweig
+ * Copyright (C) 2019 Collabora, Ltd.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ *
+ */
+
+#include "pan_context.h"
+
+/* See mali_job for notes on how this works. But basically, for small vertex
+ * counts, we have a lookup table, and for large vertex counts, we look at the
+ * high bits as a heuristic. This has to match exactly how the hardware
+ * calculates this (which is why the algorithm is so weird) or else instancing
+ * will break. */
+
+/* Given an odd number (of the form 2k + 1), compute k */
+#define ODD(odd) ((odd - 1) >> 1)
+
+/* Given the shift/odd pair, recover the original padded integer */
+
+unsigned
+pan_expand_shift_odd(struct pan_shift_odd o)
+{
+ unsigned odd = 2*o.odd + 1;
+ unsigned shift = 1 << o.shift;
+ return odd * shift;
+}
+
+static inline struct pan_shift_odd
+pan_factored(unsigned pot, unsigned odd)
+{
+ struct pan_shift_odd out;
+
+ assert(util_is_power_of_two_or_zero(pot));
+ assert(odd & 1);
+
+ /* Odd is of the form (2k + 1) = (k << 1) + 1 = (k << 1) | 1.
+ *
+ * So (odd >> 1) = ((k << 1) | 1) >> 1 = ((k << 1) >> 1) | (1 >> 1)
+ * = k | 0 = k */
+
+ out.odd = (odd >> 1);
+
+ /* POT is the form (1 << shift) */
+ out.shift = __builtin_ctz(pot);
+
+ return out;
+}
+
+
+/* For small vertices. Second argument is whether the primitive takes a
+ * power-of-two argument, which determines how rounding works. True for POINTS
+ * and LINES, false for TRIANGLES. Presumably true for QUADS but you'd be crazy
+ * to try instanced quads on ES class hardware <3 */
+
+static struct {
+ unsigned pot;
+ unsigned odd;
+} small_lut[] = {
+ { 0, 1 },
+ { 1, 1 },
+ { 2, 1 },
+ { 1, 3 },
+ { 4, 1 },
+ { 1, 5 },
+ { 2, 3 },
+ { 1, 7 },
+ { 8, 1 },
+ { 1, 9 },
+ { 2, 5 },
+ { 4, 3 }, /* 11 */
+ { 4, 3 },
+ { 2, 7 }, /* 13 */
+ { 2, 7 },
+ { 16, 1 }, /* 15 */
+ { 16, 1 },
+ { 2, 9 },
+ { 4, 5 }, /* 20 */
+ { 4, 5 }
+};
+
+static struct pan_shift_odd
+panfrost_small_padded_vertex_count(unsigned idx)
+{
+ return pan_factored(
+ small_lut[idx].pot,
+ small_lut[idx].odd);
+}
+
+static struct pan_shift_odd
+panfrost_large_padded_vertex_count(uint32_t vertex_count)
+{
+ struct pan_shift_odd out = { 0 };
+
+ /* First, we have to find the highest set one */
+ unsigned highest = 32 - __builtin_clz(vertex_count);
+
+ /* Using that, we mask out the highest 4-bits */
+ unsigned n = highest - 4;
+ unsigned nibble = (vertex_count >> n) & 0xF;
+
+ /* Great, we have the nibble. Now we can just try possibilities. Note
+ * that we don't care about the bottom most bit in most cases, and we
+ * know the top bit must be 1 */
+
+ unsigned middle_two = (nibble >> 1) & 0x3;
+
+ switch (middle_two) {
+ case 0b00:
+ if (nibble & 1)
+ return pan_factored(1 << n, 9);
+ else
+ return pan_factored(1 << (n + 1), 5);
+ case 0b01:
+ return pan_factored(1 << (n + 2), 3);
+ case 0b10:
+ return pan_factored(1 << (n + 1), 7);
+ case 0b11:
+ return pan_factored(1 << (n + 4), 1);
+ default:
+ unreachable("Invalid two bits");
+ }
+
+ return out;
+}
+
+struct pan_shift_odd
+panfrost_padded_vertex_count(
+ unsigned vertex_count,
+ bool pot)
+{
+ assert(vertex_count > 0);
+
+ if (vertex_count < 20) {
+ /* Add an off-by-one if it won't align naturally (quirk of the hardware) */
+ //if (!pot)
+ // vertex_count++;
+
+ return panfrost_small_padded_vertex_count(vertex_count);
+ } else
+ return panfrost_large_padded_vertex_count(vertex_count);
+}
+
+/* The much, much more irritating case -- instancing is enabled. See
+ * panfrost_job.h for notes on how this works */
+
+static unsigned
+panfrost_vertex_instanced(
+ struct panfrost_job *batch,
+ struct panfrost_resource *rsrc,
+ unsigned divisor,
+ union mali_attr *attrs,
+ mali_ptr addr,
+ unsigned vertex_count,
+ unsigned instance_count)
+{
+ /* First, grab the padded vertex count */
+
+ struct pan_shift_odd o = {
+ .shift = batch->ctx->payload_tiler.instance_shift,
+ .odd = batch->ctx->payload_tiler.instance_odd,
+ };
+
+ unsigned padded_count = batch->ctx->padded_count;
+
+ /* Depending if there is an instance divisor or not, packing varies.
+ * When there is a divisor, the hardware-level divisor is actually the
+ * product of the instance divisor and the padded count */
+
+ unsigned hw_divisor = padded_count * divisor;
+
+ if (divisor == 0) {
+ /* Per-vertex attributes use the MODULO mode. First, compute
+ * the modulus */
+
+ attrs->elements |= MALI_ATTR_MODULO;
+ attrs->shift = o.shift;
+ attrs->extra_flags = o.odd;
+
+ return 1;
+ } else if (util_is_power_of_two_or_zero(hw_divisor)) {
+ /* If there is a divisor but the hardware divisor works out to
+ * a power of two (not terribly exceptional), we can use an
+ * easy path (just shifting) */
+
+ attrs->elements |= MALI_ATTR_POT_DIVIDE;
+ attrs->shift = __builtin_ctz(hw_divisor);
+
+ return 1;
+ } else {
+ /* We have a NPOT divisor. Here's the fun one (multipling by
+ * the inverse and shifting) */
+
+ /* floor(log2(d)) */
+ unsigned shift = util_logbase2(hw_divisor);
+
+ /* m = ceil(2^(32 + shift) / d) */
+ uint64_t shift_hi = 32 + shift;
+ uint64_t t = 1ll << shift_hi;
+ double t_f = t;
+ double hw_divisor_d = hw_divisor;
+ double m_f = ceil(t_f / hw_divisor_d);
+ unsigned m = m_f;
+
+ /* Default case */
+ unsigned magic_divisor = m, extra_flags = 0;
+
+ /* e = 2^(shift + 32) % d */
+ uint64_t e = t % hw_divisor;
+
+ /* Apply round-down algorithm? e <= 2^shift?. XXX: The blob
+ * seems to use a different condition */
+ if (e <= (1 << shift)) {
+ magic_divisor = m - 1;
+ extra_flags = 1;
+ }
+
+ /* Top flag implicitly set */
+ assert(magic_divisor & (1 << 31));
+ magic_divisor &= ~(1 << 31);
+
+ /* Upload to two different slots */
+
+ attrs[0].elements |= MALI_ATTR_NPOT_DIVIDE;
+ attrs[0].shift = shift;
+ attrs[0].extra_flags = extra_flags;
+
+ attrs[1].unk = 0x20;
+ attrs[1].magic_divisor = magic_divisor;
+ attrs[1].zero = 0;
+ attrs[1].divisor = divisor;
+
+ return 2;
+ }
+}
+
+void
+panfrost_emit_vertex_data(struct panfrost_job *batch)
+{
+ struct panfrost_context *ctx = batch->ctx;
+ struct panfrost_vertex_state *so = ctx->vertex;
+
+ /* Staged mali_attr, and index into them. i =/= k, depending on the
+ * vertex buffer mask and instancing. Twice as much room is allocated,
+ * for a worst case of NPOT_DIVIDEs which take up extra slot */
+ union mali_attr attrs[PIPE_MAX_ATTRIBS * 2];
+ unsigned k = 0;
+
+ unsigned vertex_count = ctx->vertex_count;
+ unsigned instanced_count = ctx->instance_count;
+
+ for (unsigned i = 0; i < so->num_elements; ++i) {
+ /* We map a mali_attr to be 1:1 with the mali_attr_meta, which
+ * means duplicating some vertex buffers (who cares? aside from
+ * maybe some caching implications but I somehow doubt that
+ * matters) */
+
+ struct pipe_vertex_element *elem = &so->pipe[i];
+ unsigned vbi = elem->vertex_buffer_index;
+
+ /* The exception to 1:1 mapping is that we can have multiple
+ * entries (NPOT divisors), so we fixup anyways */
+
+ so->hw[i].index = k;
+
+ if (!(ctx->vb_mask & (1 << vbi))) continue;
+
+ struct pipe_vertex_buffer *buf = &ctx->vertex_buffers[vbi];
+ struct panfrost_resource *rsrc = (struct panfrost_resource *) (buf->buffer.resource);
+
+ if (!rsrc) continue;
+
+ /* Align to 64 bytes by masking off the lower bits. This
+ * will be adjusted back when we fixup the src_offset in
+ * mali_attr_meta */
+
+ mali_ptr raw_addr = panfrost_vertex_buffer_address(ctx, vbi);
+ mali_ptr addr = raw_addr & ~63;
+ unsigned chopped_addr = raw_addr - addr;
+
+ /* Add a dependency of the batch on the vertex buffer */
+ panfrost_job_add_bo(batch, rsrc->bo);
+
+ /* Set common fields */
+ attrs[k].elements = addr;
+ attrs[k].stride = buf->stride;
+ attrs[k].size = rsrc->base.width0;
+
+ /* We need to add the extra size we masked off (for
+ * correctness) so the data doesn't get clamped away */
+ attrs[k].size += chopped_addr;
+
+ /* Instancing uses a dramatically different code path than
+ * linear, so dispatch for the actual emission now that the
+ * common code is finished */
+
+ unsigned divisor = elem->instance_divisor;
+
+ if (divisor && instanced_count == 1) {
+ /* Silly corner case where there's a divisor(=1) but
+ * there's no legitimate instancing. So we want *every*
+ * attribute to be the same. So set stride to zero so
+ * we don't go anywhere. */
+
+ attrs[k].size = attrs[k].stride + chopped_addr;
+ attrs[k].stride = 0;
+ attrs[k++].elements |= MALI_ATTR_LINEAR;
+ } else if (instanced_count <= 1) {
+ /* Normal, non-instanced attributes */
+ attrs[k++].elements |= MALI_ATTR_LINEAR;
+ } else {
+ k += panfrost_vertex_instanced(
+ batch, rsrc, divisor, &attrs[k], addr, vertex_count, instanced_count);
+ }
+ }
+
+ /* Upload whatever we emitted and go */
+
+ ctx->payload_vertex.postfix.attributes =
+ panfrost_upload_transient(ctx, attrs, k * sizeof(union mali_attr));
+}
+
+
tiler->size_y_shift = vertex->size_y_shift;
tiler->size_z_shift = vertex->size_z_shift;
tiler->workgroups_x_shift = vertex->workgroups_x_shift;
+ tiler->workgroups_x_shift_2 = vertex->workgroups_x_shift_2;
tiler->workgroups_y_shift = vertex->workgroups_y_shift;
tiler->workgroups_z_shift = vertex->workgroups_z_shift;
case PIPE_CAP_VERTEX_ELEMENT_INSTANCE_DIVISOR:
return 1;
+ /* TODO: Where does this req come from in practice? */
+ case PIPE_CAP_VERTEX_BUFFER_STRIDE_4BYTE_ALIGNED_ONLY:
+ return 1;
+
case PIPE_CAP_MAX_TEXTURE_2D_SIZE:
return 4096;
case PIPE_CAP_MAX_TEXTURE_3D_LEVELS:
return MALI_NEGATIVE(fb->rt_count_1);
}
+/* Just add a comment decoding the shift/odd fields forming the padded vertices
+ * count */
+
+static void
+pandecode_padded_vertices(unsigned shift, unsigned k)
+{
+ unsigned odd = 2*k + 1;
+ unsigned pot = 1 << shift;
+ pandecode_msg("padded_num_vertices = %d\n", odd * pot);
+}
+
+/* Given a magic divisor, recover what we were trying to divide by.
+ *
+ * Let m represent the magic divisor. By definition, m is an element on Z, whre
+ * 0 <= m < 2^N, for N bits in m.
+ *
+ * Let q represent the number we would like to divide by.
+ *
+ * By definition of a magic divisor for N-bit unsigned integers (a number you
+ * multiply by to magically get division), m is a number such that:
+ *
+ * (m * x) & (2^N - 1) = floor(x/q).
+ * for all x on Z where 0 <= x < 2^N
+ *
+ * Ignore the case where any of the above values equals zero; it is irrelevant
+ * for our purposes (instanced arrays).
+ *
+ * Choose x = q. Then:
+ *
+ * (m * x) & (2^N - 1) = floor(x/q).
+ * (m * q) & (2^N - 1) = floor(q/q).
+ *
+ * floor(q/q) = floor(1) = 1, therefore:
+ *
+ * (m * q) & (2^N - 1) = 1
+ *
+ * Recall the identity that the bitwise AND of one less than a power-of-two
+ * equals the modulo with that power of two, i.e. for all x:
+ *
+ * x & (2^N - 1) = x % N
+ *
+ * Therefore:
+ *
+ * mq % (2^N) = 1
+ *
+ * By definition, a modular multiplicative inverse of a number m is the number
+ * q such that with respect to a modulos M:
+ *
+ * mq % M = 1
+ *
+ * Therefore, q is the modular multiplicative inverse of m with modulus 2^N.
+ *
+ */
+
+static void
+pandecode_magic_divisor(uint32_t magic, unsigned shift, unsigned orig_divisor, unsigned extra)
+{
+ /* Compute the modular inverse of `magic` with respect to 2^(32 -
+ * shift) the most lame way possible... just repeatedly add.
+ * Asymptoptically slow but nobody cares in practice, unless you have
+ * massive numbers of vertices or high divisors. */
+
+ unsigned inverse = 0;
+
+ /* Magic implicitly has the highest bit set */
+ magic |= (1 << 31);
+
+ /* Depending on rounding direction */
+ if (extra)
+ magic++;
+
+ for (;;) {
+ uint32_t product = magic * inverse;
+
+ if (shift) {
+ product >>= shift;
+ }
+
+ if (product == 1)
+ break;
+
+ ++inverse;
+ }
+
+ pandecode_msg("dividing by %d (maybe off by two)\n", inverse);
+
+ /* Recall we're supposed to divide by (gl_level_divisor *
+ * padded_num_vertices) */
+
+ unsigned padded_num_vertices = inverse / orig_divisor;
+
+ pandecode_msg("padded_num_vertices = %d\n", padded_num_vertices);
+}
+
static void
pandecode_replay_attributes(const struct pandecode_mapped_memory *mem,
mali_ptr addr, int job_no, char *suffix,
/* Decode further where possible */
if (mode == MALI_ATTR_MODULO) {
- unsigned odd = (2 * attr[i].extra_flags) + 1;
- unsigned pot = (1 << attr[i].shift);
- pandecode_msg("padded_num_vertices = %d\n", odd * pot);
+ pandecode_padded_vertices(
+ attr[i].shift,
+ attr[i].extra_flags);
}
pandecode_indent--;
if (attr[i].zero != 0)
pandecode_prop("zero = 0x%x /* XXX zero tripped */", attr[i].zero);
pandecode_prop("divisor = %d", attr[i].divisor);
+ pandecode_magic_divisor(attr[i].magic_divisor, attr[i - 1].shift, attr[i].divisor, attr[i - 1].extra_flags);
pandecode_indent--;
pandecode_log("}, \n");
}
pandecode_prop("unknown1 = 0x%" PRIx64, (u64) attr_meta->unknown1);
pandecode_prop("unknown3 = 0x%" PRIx64, (u64) attr_meta->unknown3);
- pandecode_prop("src_offset = 0x%" PRIx64, (u64) attr_meta->src_offset);
+ pandecode_prop("src_offset = %d", attr_meta->src_offset);
pandecode_indent--;
pandecode_log("},\n");
pandecode_replay_gl_enables(v->gl_enables, h->job_type);
+ if (v->instance_shift || v->instance_odd) {
+ pandecode_prop("instance_shift = 0x%d /* %d */",
+ v->instance_shift, 1 << v->instance_shift);
+ pandecode_prop("instance_odd = 0x%X /* %d */",
+ v->instance_odd, (2 * v->instance_odd) + 1);
+
+ pandecode_padded_vertices(v->instance_shift, v->instance_odd);
+ }
+
if (v->draw_start)
pandecode_prop("draw_start = %d", v->draw_start);