panfrost: Implement instanced rendering
[mesa.git] / src / gallium / drivers / panfrost / include / panfrost-job.h
1 /*
2 * © Copyright 2017-2018 Alyssa Rosenzweig
3 * © Copyright 2017-2018 Connor Abbott
4 * © Copyright 2017-2018 Lyude Paul
5 * © Copyright2019 Collabora, Ltd.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * SOFTWARE.
25 *
26 */
27
28 #ifndef __PANFROST_JOB_H__
29 #define __PANFROST_JOB_H__
30
31 #include <stdint.h>
32 #include <panfrost-misc.h>
33
34 #define MALI_SHORT_PTR_BITS (sizeof(uintptr_t)*8)
35
36 #define MALI_FBD_HIERARCHY_WEIGHTS 8
37
38 #define MALI_PAYLOAD_SIZE 256
39
40 typedef u32 mali_jd_core_req;
41
42 enum mali_job_type {
43 JOB_NOT_STARTED = 0,
44 JOB_TYPE_NULL = 1,
45 JOB_TYPE_SET_VALUE = 2,
46 JOB_TYPE_CACHE_FLUSH = 3,
47 JOB_TYPE_COMPUTE = 4,
48 JOB_TYPE_VERTEX = 5,
49 JOB_TYPE_GEOMETRY = 6,
50 JOB_TYPE_TILER = 7,
51 JOB_TYPE_FUSED = 8,
52 JOB_TYPE_FRAGMENT = 9,
53 };
54
55 enum mali_draw_mode {
56 MALI_DRAW_NONE = 0x0,
57 MALI_POINTS = 0x1,
58 MALI_LINES = 0x2,
59 MALI_LINE_STRIP = 0x4,
60 MALI_LINE_LOOP = 0x6,
61 MALI_TRIANGLES = 0x8,
62 MALI_TRIANGLE_STRIP = 0xA,
63 MALI_TRIANGLE_FAN = 0xC,
64 MALI_POLYGON = 0xD,
65 MALI_QUADS = 0xE,
66 MALI_QUAD_STRIP = 0xF,
67
68 /* All other modes invalid */
69 };
70
71 /* Applies to tiler_gl_enables */
72
73
74 #define MALI_OCCLUSION_QUERY (1 << 3)
75 #define MALI_OCCLUSION_PRECISE (1 << 4)
76
77 /* Set for a glFrontFace(GL_CCW) in a Y=0=TOP coordinate system (like Gallium).
78 * In OpenGL, this would corresponds to glFrontFace(GL_CW). Mesa and the blob
79 * disagree about how to do viewport flipping, so the blob actually sets this
80 * for GL_CW but then has a negative viewport stride */
81 #define MALI_FRONT_CCW_TOP (1 << 5)
82
83 #define MALI_CULL_FACE_FRONT (1 << 6)
84 #define MALI_CULL_FACE_BACK (1 << 7)
85
86 /* TODO: Might this actually be a finer bitfield? */
87 #define MALI_DEPTH_STENCIL_ENABLE 0x6400
88
89 #define DS_ENABLE(field) \
90 (field == MALI_DEPTH_STENCIL_ENABLE) \
91 ? "MALI_DEPTH_STENCIL_ENABLE" \
92 : (field == 0) ? "0" \
93 : "0 /* XXX: Unknown, check hexdump */"
94
95 /* Used in stencil and depth tests */
96
97 enum mali_func {
98 MALI_FUNC_NEVER = 0,
99 MALI_FUNC_LESS = 1,
100 MALI_FUNC_EQUAL = 2,
101 MALI_FUNC_LEQUAL = 3,
102 MALI_FUNC_GREATER = 4,
103 MALI_FUNC_NOTEQUAL = 5,
104 MALI_FUNC_GEQUAL = 6,
105 MALI_FUNC_ALWAYS = 7
106 };
107
108 /* Same OpenGL, but mixed up. Why? Because forget me, that's why! */
109
110 enum mali_alt_func {
111 MALI_ALT_FUNC_NEVER = 0,
112 MALI_ALT_FUNC_GREATER = 1,
113 MALI_ALT_FUNC_EQUAL = 2,
114 MALI_ALT_FUNC_GEQUAL = 3,
115 MALI_ALT_FUNC_LESS = 4,
116 MALI_ALT_FUNC_NOTEQUAL = 5,
117 MALI_ALT_FUNC_LEQUAL = 6,
118 MALI_ALT_FUNC_ALWAYS = 7
119 };
120
121 /* Flags apply to unknown2_3? */
122
123 #define MALI_HAS_MSAA (1 << 0)
124 #define MALI_CAN_DISCARD (1 << 5)
125
126 /* Applies on SFBD systems, specifying that programmable blending is in use */
127 #define MALI_HAS_BLEND_SHADER (1 << 6)
128
129 /* func is mali_func */
130 #define MALI_DEPTH_FUNC(func) (func << 8)
131 #define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
132 #define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7)
133
134 #define MALI_DEPTH_TEST (1 << 11)
135
136 /* Next flags to unknown2_4 */
137 #define MALI_STENCIL_TEST (1 << 0)
138
139 /* What?! */
140 #define MALI_SAMPLE_ALPHA_TO_COVERAGE_NO_BLEND_SHADER (1 << 1)
141
142 #define MALI_NO_DITHER (1 << 9)
143 #define MALI_DEPTH_RANGE_A (1 << 12)
144 #define MALI_DEPTH_RANGE_B (1 << 13)
145 #define MALI_NO_MSAA (1 << 14)
146
147 /* Stencil test state is all encoded in a single u32, just with a lot of
148 * enums... */
149
150 enum mali_stencil_op {
151 MALI_STENCIL_KEEP = 0,
152 MALI_STENCIL_REPLACE = 1,
153 MALI_STENCIL_ZERO = 2,
154 MALI_STENCIL_INVERT = 3,
155 MALI_STENCIL_INCR_WRAP = 4,
156 MALI_STENCIL_DECR_WRAP = 5,
157 MALI_STENCIL_INCR = 6,
158 MALI_STENCIL_DECR = 7
159 };
160
161 struct mali_stencil_test {
162 unsigned ref : 8;
163 unsigned mask : 8;
164 enum mali_func func : 3;
165 enum mali_stencil_op sfail : 3;
166 enum mali_stencil_op dpfail : 3;
167 enum mali_stencil_op dppass : 3;
168 unsigned zero : 4;
169 } __attribute__((packed));
170
171 #define MALI_MASK_R (1 << 0)
172 #define MALI_MASK_G (1 << 1)
173 #define MALI_MASK_B (1 << 2)
174 #define MALI_MASK_A (1 << 3)
175
176 enum mali_nondominant_mode {
177 MALI_BLEND_NON_MIRROR = 0,
178 MALI_BLEND_NON_ZERO = 1
179 };
180
181 enum mali_dominant_blend {
182 MALI_BLEND_DOM_SOURCE = 0,
183 MALI_BLEND_DOM_DESTINATION = 1
184 };
185
186 enum mali_dominant_factor {
187 MALI_DOMINANT_UNK0 = 0,
188 MALI_DOMINANT_ZERO = 1,
189 MALI_DOMINANT_SRC_COLOR = 2,
190 MALI_DOMINANT_DST_COLOR = 3,
191 MALI_DOMINANT_UNK4 = 4,
192 MALI_DOMINANT_SRC_ALPHA = 5,
193 MALI_DOMINANT_DST_ALPHA = 6,
194 MALI_DOMINANT_CONSTANT = 7,
195 };
196
197 enum mali_blend_modifier {
198 MALI_BLEND_MOD_UNK0 = 0,
199 MALI_BLEND_MOD_NORMAL = 1,
200 MALI_BLEND_MOD_SOURCE_ONE = 2,
201 MALI_BLEND_MOD_DEST_ONE = 3,
202 };
203
204 struct mali_blend_mode {
205 enum mali_blend_modifier clip_modifier : 2;
206 unsigned unused_0 : 1;
207 unsigned negate_source : 1;
208
209 enum mali_dominant_blend dominant : 1;
210
211 enum mali_nondominant_mode nondominant_mode : 1;
212
213 unsigned unused_1 : 1;
214
215 unsigned negate_dest : 1;
216
217 enum mali_dominant_factor dominant_factor : 3;
218 unsigned complement_dominant : 1;
219 } __attribute__((packed));
220
221 struct mali_blend_equation {
222 /* Of type mali_blend_mode */
223 unsigned rgb_mode : 12;
224 unsigned alpha_mode : 12;
225
226 unsigned zero1 : 4;
227
228 /* Corresponds to MALI_MASK_* above and glColorMask arguments */
229
230 unsigned color_mask : 4;
231 } __attribute__((packed));
232
233 /* Used with channel swizzling */
234 enum mali_channel {
235 MALI_CHANNEL_RED = 0,
236 MALI_CHANNEL_GREEN = 1,
237 MALI_CHANNEL_BLUE = 2,
238 MALI_CHANNEL_ALPHA = 3,
239 MALI_CHANNEL_ZERO = 4,
240 MALI_CHANNEL_ONE = 5,
241 MALI_CHANNEL_RESERVED_0 = 6,
242 MALI_CHANNEL_RESERVED_1 = 7,
243 };
244
245 struct mali_channel_swizzle {
246 enum mali_channel r : 3;
247 enum mali_channel g : 3;
248 enum mali_channel b : 3;
249 enum mali_channel a : 3;
250 } __attribute__((packed));
251
252 /* Compressed per-pixel formats. Each of these formats expands to one to four
253 * floating-point or integer numbers, as defined by the OpenGL specification.
254 * There are various places in OpenGL where the user can specify a compressed
255 * format in memory, which all use the same 8-bit enum in the various
256 * descriptors, although different hardware units support different formats.
257 */
258
259 /* The top 3 bits specify how the bits of each component are interpreted. */
260
261 /* e.g. R11F_G11F_B10F */
262 #define MALI_FORMAT_SPECIAL (2 << 5)
263
264 /* signed normalized, e.g. RGBA8_SNORM */
265 #define MALI_FORMAT_SNORM (3 << 5)
266
267 /* e.g. RGBA8UI */
268 #define MALI_FORMAT_UINT (4 << 5)
269
270 /* e.g. RGBA8 and RGBA32F */
271 #define MALI_FORMAT_UNORM (5 << 5)
272
273 /* e.g. RGBA8I and RGBA16F */
274 #define MALI_FORMAT_SINT (6 << 5)
275
276 /* These formats seem to largely duplicate the others. They're used at least
277 * for Bifrost framebuffer output.
278 */
279 #define MALI_FORMAT_SPECIAL2 (7 << 5)
280
281 /* If the high 3 bits are 3 to 6 these two bits say how many components
282 * there are.
283 */
284 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
285
286 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
287 * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
288 * bits mean.
289 */
290
291 #define MALI_CHANNEL_4 2
292
293 #define MALI_CHANNEL_8 3
294
295 #define MALI_CHANNEL_16 4
296
297 #define MALI_CHANNEL_32 5
298
299 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
300 * MALI_FORMAT_UNORM, it means a 32-bit float.
301 */
302 #define MALI_CHANNEL_FLOAT 7
303
304 enum mali_format {
305 MALI_RGB565 = MALI_FORMAT_SPECIAL | 0x0,
306 MALI_RGB5_A1_UNORM = MALI_FORMAT_SPECIAL | 0x2,
307 MALI_RGB10_A2_UNORM = MALI_FORMAT_SPECIAL | 0x3,
308 MALI_RGB10_A2_SNORM = MALI_FORMAT_SPECIAL | 0x5,
309 MALI_RGB10_A2UI = MALI_FORMAT_SPECIAL | 0x7,
310 MALI_RGB10_A2I = MALI_FORMAT_SPECIAL | 0x9,
311
312 /* YUV formats */
313 MALI_NV12 = MALI_FORMAT_SPECIAL | 0xc,
314
315 MALI_Z32_UNORM = MALI_FORMAT_SPECIAL | 0xD,
316 MALI_R32_FIXED = MALI_FORMAT_SPECIAL | 0x11,
317 MALI_RG32_FIXED = MALI_FORMAT_SPECIAL | 0x12,
318 MALI_RGB32_FIXED = MALI_FORMAT_SPECIAL | 0x13,
319 MALI_RGBA32_FIXED = MALI_FORMAT_SPECIAL | 0x14,
320 MALI_R11F_G11F_B10F = MALI_FORMAT_SPECIAL | 0x19,
321 MALI_R9F_G9F_B9F_E5F = MALI_FORMAT_SPECIAL | 0x1b,
322 /* Only used for varyings, to indicate the transformed gl_Position */
323 MALI_VARYING_POS = MALI_FORMAT_SPECIAL | 0x1e,
324 /* Only used for varyings, to indicate that the write should be
325 * discarded.
326 */
327 MALI_VARYING_DISCARD = MALI_FORMAT_SPECIAL | 0x1f,
328
329 MALI_R8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
330 MALI_R16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
331 MALI_R32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
332 MALI_RG8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
333 MALI_RG16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
334 MALI_RG32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
335 MALI_RGB8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
336 MALI_RGB16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
337 MALI_RGB32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
338 MALI_RGBA8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
339 MALI_RGBA16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
340 MALI_RGBA32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
341
342 MALI_R8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
343 MALI_R16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
344 MALI_R32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
345 MALI_RG8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
346 MALI_RG16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
347 MALI_RG32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
348 MALI_RGB8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
349 MALI_RGB16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
350 MALI_RGB32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
351 MALI_RGBA8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
352 MALI_RGBA16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
353 MALI_RGBA32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
354
355 MALI_R8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
356 MALI_R16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
357 MALI_R32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
358 MALI_R32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
359 MALI_RG8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
360 MALI_RG16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
361 MALI_RG32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
362 MALI_RG32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
363 MALI_RGB8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
364 MALI_RGB16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
365 MALI_RGB32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
366 MALI_RGB32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
367 MALI_RGBA4_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_4,
368 MALI_RGBA8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
369 MALI_RGBA16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
370 MALI_RGBA32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
371 MALI_RGBA32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
372
373 MALI_R8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
374 MALI_R16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
375 MALI_R32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
376 MALI_R16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
377 MALI_RG8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
378 MALI_RG16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
379 MALI_RG32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
380 MALI_RG16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
381 MALI_RGB8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
382 MALI_RGB16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
383 MALI_RGB32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
384 MALI_RGB16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
385 MALI_RGBA8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
386 MALI_RGBA16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
387 MALI_RGBA32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
388 MALI_RGBA16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
389
390 MALI_RGBA4 = MALI_FORMAT_SPECIAL2 | 0x8,
391 MALI_RGBA8_2 = MALI_FORMAT_SPECIAL2 | 0xd,
392 MALI_RGB10_A2_2 = MALI_FORMAT_SPECIAL2 | 0xe,
393 };
394
395
396 /* Alpha coverage is encoded as 4-bits (from a clampf), with inversion
397 * literally performing a bitwise invert. This function produces slightly wrong
398 * results and I'm not sure why; some rounding issue I suppose... */
399
400 #define MALI_ALPHA_COVERAGE(clampf) ((uint16_t) (int) (clampf * 15.0f))
401 #define MALI_GET_ALPHA_COVERAGE(nibble) ((float) nibble / 15.0f)
402
403 /* Applies to midgard1.flags */
404
405 /* Should the hardware perform early-Z testing? Normally should be set
406 * for performance reasons. Clear if you use: discard,
407 * alpha-to-coverage... * It's also possible this disables
408 * forward-pixel kill; we're not quite sure which bit is which yet.
409 * TODO: How does this interact with blending?*/
410
411 #define MALI_EARLY_Z (1 << 6)
412
413 /* Should the hardware calculate derivatives (via helper invocations)? Set in a
414 * fragment shader that uses texturing or derivative functions */
415
416 #define MALI_HELPER_INVOCATIONS (1 << 7)
417
418 /* Flags denoting the fragment shader's use of tilebuffer readback. If the
419 * shader might read any part of the tilebuffer, set MALI_READS_TILEBUFFER. If
420 * it might read depth/stencil in particular, also set MALI_READS_ZS */
421
422 #define MALI_READS_ZS (1 << 8)
423 #define MALI_READS_TILEBUFFER (1 << 12)
424
425 /* The raw Midgard blend payload can either be an equation or a shader
426 * address, depending on the context */
427
428 union midgard_blend {
429 mali_ptr shader;
430
431 struct {
432 struct mali_blend_equation equation;
433 float constant;
434 };
435 };
436
437 /* On MRT Midgard systems (using an MFBD), each render target gets its own
438 * blend descriptor */
439
440 #define MALI_BLEND_SRGB (0x400)
441
442 struct midgard_blend_rt {
443 /* Flags base value of 0x200 to enable the render target.
444 * OR with 0x1 for blending (anything other than REPLACE).
445 * OR with 0x2 for programmable blending with 0-2 registers
446 * OR with 0x3 for programmable blending with 2+ registers
447 * OR with MALI_BLEND_SRGB for implicit sRGB
448 */
449
450 u64 flags;
451 union midgard_blend blend;
452 } __attribute__((packed));
453
454 /* On Bifrost systems (all MRT), each render target gets one of these
455 * descriptors */
456
457 struct bifrost_blend_rt {
458 /* This is likely an analogue of the flags on
459 * midgard_blend_rt */
460
461 u16 flags; // = 0x200
462
463 /* Single-channel blend constants are encoded in a sort of
464 * fixed-point. Basically, the float is mapped to a byte, becoming
465 * a high byte, and then the lower-byte is added for precision.
466 * For the original float f:
467 *
468 * f = (constant_hi / 255) + (constant_lo / 65535)
469 *
470 * constant_hi = int(f / 255)
471 * constant_lo = 65535*f - (65535/255) * constant_hi
472 */
473
474 u16 constant;
475
476 struct mali_blend_equation equation;
477 /*
478 * - 0x19 normally
479 * - 0x3 when this slot is unused (everything else is 0 except the index)
480 * - 0x11 when this is the fourth slot (and it's used)
481 + * - 0 when there is a blend shader
482 */
483 u16 unk2;
484 /* increments from 0 to 3 */
485 u16 index;
486
487 union {
488 struct {
489 /* So far, I've only seen:
490 * - R001 for 1-component formats
491 * - RG01 for 2-component formats
492 * - RGB1 for 3-component formats
493 * - RGBA for 4-component formats
494 */
495 u32 swizzle : 12;
496 enum mali_format format : 8;
497
498 /* Type of the shader output variable. Note, this can
499 * be different from the format.
500 *
501 * 0: f16 (mediump float)
502 * 1: f32 (highp float)
503 * 2: i32 (highp int)
504 * 3: u32 (highp uint)
505 * 4: i16 (mediump int)
506 * 5: u16 (mediump uint)
507 */
508 u32 shader_type : 3;
509 u32 zero : 9;
510 };
511
512 /* Only the low 32 bits of the blend shader are stored, the
513 * high 32 bits are implicitly the same as the original shader.
514 * According to the kernel driver, the program counter for
515 * shaders is actually only 24 bits, so shaders cannot cross
516 * the 2^24-byte boundary, and neither can the blend shader.
517 * The blob handles this by allocating a 2^24 byte pool for
518 * shaders, and making sure that any blend shaders are stored
519 * in the same pool as the original shader. The kernel will
520 * make sure this allocation is aligned to 2^24 bytes.
521 */
522 u32 shader;
523 };
524 } __attribute__((packed));
525
526 /* Descriptor for the shader. Following this is at least one, up to four blend
527 * descriptors for each active render target */
528
529 struct mali_shader_meta {
530 mali_ptr shader;
531 u16 texture_count;
532 u16 sampler_count;
533 u16 attribute_count;
534 u16 varying_count;
535
536 union {
537 struct {
538 u32 uniform_buffer_count : 4;
539 u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler
540 } bifrost1;
541 struct {
542 unsigned uniform_buffer_count : 4;
543 unsigned flags : 12;
544
545 /* Whole number of uniform registers used, times two;
546 * whole number of work registers used (no scale).
547 */
548 unsigned work_count : 5;
549 unsigned uniform_count : 5;
550 unsigned unknown2 : 6;
551 } midgard1;
552 };
553
554 /* On bifrost: Exactly the same as glPolygonOffset() for both.
555 * On midgard: Depth factor is exactly as passed to glPolygonOffset.
556 * Depth units is equal to the value passed to glDeptOhffset + 1.0f
557 * (use MALI_NEGATIVE)
558 */
559 float depth_units;
560 float depth_factor;
561
562 u32 unknown2_2;
563
564 u16 alpha_coverage;
565 u16 unknown2_3;
566
567 u8 stencil_mask_front;
568 u8 stencil_mask_back;
569 u16 unknown2_4;
570
571 struct mali_stencil_test stencil_front;
572 struct mali_stencil_test stencil_back;
573
574 union {
575 struct {
576 u32 unk3 : 7;
577 /* On Bifrost, some system values are preloaded in
578 * registers R55-R62 by the thread dispatcher prior to
579 * the start of shader execution. This is a bitfield
580 * with one entry for each register saying which
581 * registers need to be preloaded. Right now, the known
582 * values are:
583 *
584 * Vertex/compute:
585 * - R55 : gl_LocalInvocationID.xy
586 * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
587 * - R57 : gl_WorkGroupID.x
588 * - R58 : gl_WorkGroupID.y
589 * - R59 : gl_WorkGroupID.z
590 * - R60 : gl_GlobalInvocationID.x
591 * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
592 * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
593 *
594 * Fragment:
595 * - R55 : unknown, never seen (but the bit for this is
596 * always set?)
597 * - R56 : unknown (bit always unset)
598 * - R57 : gl_PrimitiveID
599 * - R58 : gl_FrontFacing in low bit, potentially other stuff
600 * - R59 : u16 fragment coordinates (used to compute
601 * gl_FragCoord.xy, together with sample positions)
602 * - R60 : gl_SampleMask (used in epilog, so pretty
603 * much always used, but the bit is always 0 -- is
604 * this just always pushed?)
605 * - R61 : gl_SampleMaskIn and gl_SampleID, used by
606 * varying interpolation.
607 * - R62 : unknown (bit always unset).
608 */
609 u32 preload_regs : 8;
610 /* In units of 8 bytes or 64 bits, since the
611 * uniform/const port loads 64 bits at a time.
612 */
613 u32 uniform_count : 7;
614 u32 unk4 : 10; // = 2
615 } bifrost2;
616 struct {
617 u32 unknown2_7;
618 } midgard2;
619 };
620
621 /* zero on bifrost */
622 u32 unknown2_8;
623
624 /* Blending information for the older non-MRT Midgard HW. Check for
625 * MALI_HAS_BLEND_SHADER to decide how to interpret.
626 */
627
628 union midgard_blend blend;
629 } __attribute__((packed));
630
631 /* This only concerns hardware jobs */
632
633 /* Possible values for job_descriptor_size */
634
635 #define MALI_JOB_32 0
636 #define MALI_JOB_64 1
637
638 struct mali_job_descriptor_header {
639 u32 exception_status;
640 u32 first_incomplete_task;
641 u64 fault_pointer;
642 u8 job_descriptor_size : 1;
643 enum mali_job_type job_type : 7;
644 u8 job_barrier : 1;
645 u8 unknown_flags : 7;
646 u16 job_index;
647 u16 job_dependency_index_1;
648 u16 job_dependency_index_2;
649
650 union {
651 u64 next_job_64;
652 u32 next_job_32;
653 };
654 } __attribute__((packed));
655
656 struct mali_payload_set_value {
657 u64 out;
658 u64 unknown;
659 } __attribute__((packed));
660
661 /* Special attributes have a fixed index */
662 #define MALI_SPECIAL_ATTRIBUTE_BASE 16
663 #define MALI_VERTEX_ID (MALI_SPECIAL_ATTRIBUTE_BASE + 0)
664 #define MALI_INSTANCE_ID (MALI_SPECIAL_ATTRIBUTE_BASE + 1)
665
666 /*
667 * Mali Attributes
668 *
669 * This structure lets the attribute unit compute the address of an attribute
670 * given the vertex and instance ID. Unfortunately, the way this works is
671 * rather complicated when instancing is enabled.
672 *
673 * To explain this, first we need to explain how compute and vertex threads are
674 * dispatched. This is a guess (although a pretty firm guess!) since the
675 * details are mostly hidden from the driver, except for attribute instancing.
676 * When a quad is dispatched, it receives a single, linear index. However, we
677 * need to translate that index into a (vertex id, instance id) pair, or a
678 * (local id x, local id y, local id z) triple for compute shaders (although
679 * vertex shaders and compute shaders are handled almost identically).
680 * Focusing on vertex shaders, one option would be to do:
681 *
682 * vertex_id = linear_id % num_vertices
683 * instance_id = linear_id / num_vertices
684 *
685 * but this involves a costly division and modulus by an arbitrary number.
686 * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
687 * num_instances threads instead of num_vertices * num_instances, which results
688 * in some "extra" threads with vertex_id >= num_vertices, which we have to
689 * discard. The more we pad num_vertices, the more "wasted" threads we
690 * dispatch, but the division is potentially easier.
691 *
692 * One straightforward choice is to pad num_vertices to the next power of two,
693 * which means that the division and modulus are just simple bit shifts and
694 * masking. But the actual algorithm is a bit more complicated. The thread
695 * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
696 * to dividing by a power of two. This is possibly using the technique
697 * described in patent US20170010862A1. As a result, padded_num_vertices can be
698 * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
699 * since we need less padding.
700 *
701 * padded_num_vertices is picked by the hardware. The driver just specifies the
702 * actual number of vertices. At least for Mali G71, the first few cases are
703 * given by:
704 *
705 * num_vertices | padded_num_vertices
706 * 3 | 4
707 * 4-7 | 8
708 * 8-11 | 12 (3 * 4)
709 * 12-15 | 16
710 * 16-19 | 20 (5 * 4)
711 *
712 * Note that padded_num_vertices is a multiple of four (presumably because
713 * threads are dispatched in groups of 4). Also, padded_num_vertices is always
714 * at least one more than num_vertices, which seems like a quirk of the
715 * hardware. For larger num_vertices, the hardware uses the following
716 * algorithm: using the binary representation of num_vertices, we look at the
717 * most significant set bit as well as the following 3 bits. Let n be the
718 * number of bits after those 4 bits. Then we set padded_num_vertices according
719 * to the following table:
720 *
721 * high bits | padded_num_vertices
722 * 1000 | 9 * 2^n
723 * 1001 | 5 * 2^(n+1)
724 * 101x | 3 * 2^(n+2)
725 * 110x | 7 * 2^(n+1)
726 * 111x | 2^(n+4)
727 *
728 * For example, if num_vertices = 70 is passed to glDraw(), its binary
729 * representation is 1000110, so n = 3 and the high bits are 1000, and
730 * therefore padded_num_vertices = 9 * 2^3 = 72.
731 *
732 * The attribute unit works in terms of the original linear_id. if
733 * num_instances = 1, then they are the same, and everything is simple.
734 * However, with instancing things get more complicated. There are four
735 * possible modes, two of them we can group together:
736 *
737 * 1. Use the linear_id directly. Only used when there is no instancing.
738 *
739 * 2. Use the linear_id modulo a constant. This is used for per-vertex
740 * attributes with instancing enabled by making the constant equal
741 * padded_num_vertices. Because the modulus is always padded_num_vertices, this
742 * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
743 * The shift field specifies the power of two, while the extra_flags field
744 * specifies the odd number. If shift = n and extra_flags = m, then the modulus
745 * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
746 * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
747 * shift = 3. Note that we must exactly follow the hardware algorithm used to
748 * get padded_num_vertices in order to correctly implement per-vertex
749 * attributes.
750 *
751 * 3. Divide the linear_id by a constant. In order to correctly implement
752 * instance divisors, we have to divide linear_id by padded_num_vertices times
753 * to user-specified divisor. So first we compute padded_num_vertices, again
754 * following the exact same algorithm that the hardware uses, then multiply it
755 * by the GL-level divisor to get the hardware-level divisor. This case is
756 * further divided into two more cases. If the hardware-level divisor is a
757 * power of two, then we just need to shift. The shift amount is specified by
758 * the shift field, so that the hardware-level divisor is just 2^shift.
759 *
760 * If it isn't a power of two, then we have to divide by an arbitrary integer.
761 * For that, we use the well-known technique of multiplying by an approximation
762 * of the inverse. The driver must compute the magic multiplier and shift
763 * amount, and then the hardware does the multiplication and shift. The
764 * hardware and driver also use the "round-down" optimization as described in
765 * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
766 * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
767 * high bit is implicitly set to 1 even though it is set to 0 by the driver --
768 * presumably this simplifies the hardware multiplier a little. The hardware
769 * first multiplies linear_id by the multiplier and takes the high 32 bits,
770 * then applies the round-down correction if extra_flags = 1, then finally
771 * shifts right by the shift field.
772 *
773 * There are some differences between ridiculousfish's algorithm and the Mali
774 * hardware algorithm, which means that the reference code from ridiculousfish
775 * doesn't always produce the right constants. Mali does not use the pre-shift
776 * optimization, since that would make a hardware implementation slower (it
777 * would have to always do the pre-shift, multiply, and post-shift operations).
778 * It also forces the multplier to be at least 2^31, which means that the
779 * exponent is entirely fixed, so there is no trial-and-error. Altogether,
780 * given the divisor d, the algorithm the driver must follow is:
781 *
782 * 1. Set shift = floor(log2(d)).
783 * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
784 * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
785 * magic_divisor = m - 1 and extra_flags = 1.
786 * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
787 */
788
789 enum mali_attr_mode {
790 MALI_ATTR_UNUSED = 0,
791 MALI_ATTR_LINEAR = 1,
792 MALI_ATTR_POT_DIVIDE = 2,
793 MALI_ATTR_MODULO = 3,
794 MALI_ATTR_NPOT_DIVIDE = 4,
795 };
796
797 /* This magic "pseudo-address" is used as `elements` to implement
798 * gl_PointCoord. When read from a fragment shader, it generates a point
799 * coordinate per the OpenGL ES 2.0 specification. Flipped coordinate spaces
800 * require an affine transformation in the shader. */
801
802 #define MALI_VARYING_POINT_COORD (0x60)
803
804 union mali_attr {
805 /* This is used for actual attributes. */
806 struct {
807 /* The bottom 3 bits are the mode */
808 mali_ptr elements : 64 - 8;
809 u32 shift : 5;
810 u32 extra_flags : 3;
811 u32 stride;
812 u32 size;
813 };
814 /* The entry after an NPOT_DIVIDE entry has this format. It stores
815 * extra information that wouldn't fit in a normal entry.
816 */
817 struct {
818 u32 unk; /* = 0x20 */
819 u32 magic_divisor;
820 u32 zero;
821 /* This is the original, GL-level divisor. */
822 u32 divisor;
823 };
824 } __attribute__((packed));
825
826 struct mali_attr_meta {
827 /* Vertex buffer index */
828 u8 index;
829
830 unsigned unknown1 : 2;
831 unsigned swizzle : 12;
832 enum mali_format format : 8;
833
834 /* Always observed to be zero at the moment */
835 unsigned unknown3 : 2;
836
837 /* When packing multiple attributes in a buffer, offset addresses by
838 * this value. Obscurely, this is signed. */
839 int32_t src_offset;
840 } __attribute__((packed));
841
842 enum mali_fbd_type {
843 MALI_SFBD = 0,
844 MALI_MFBD = 1,
845 };
846
847 #define FBD_TYPE (1)
848 #define FBD_MASK (~0x3f)
849
850 struct mali_uniform_buffer_meta {
851 /* This is actually the size minus 1 (MALI_POSITIVE), in units of 16
852 * bytes. This gives a maximum of 2^14 bytes, which just so happens to
853 * be the GL minimum-maximum for GL_MAX_UNIFORM_BLOCK_SIZE.
854 */
855 u64 size : 10;
856
857 /* This is missing the bottom 2 bits and top 8 bits. The top 8 bits
858 * should be 0 for userspace pointers, according to
859 * https://lwn.net/Articles/718895/. By reusing these bits, we can make
860 * each entry in the table only 64 bits.
861 */
862 mali_ptr ptr : 64 - 10;
863 };
864
865 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
866 * They also seem to be the same between Bifrost and Midgard. They're shared in
867 * fused payloads.
868 */
869
870 /* Applies to unknown_draw */
871
872 #define MALI_DRAW_INDEXED_UINT8 (0x10)
873 #define MALI_DRAW_INDEXED_UINT16 (0x20)
874 #define MALI_DRAW_INDEXED_UINT32 (0x30)
875 #define MALI_DRAW_VARYING_SIZE (0x100)
876 #define MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX (0x10000)
877
878 struct mali_vertex_tiler_prefix {
879 /* This is a dynamic bitfield containing the following things in this order:
880 *
881 * - gl_WorkGroupSize.x
882 * - gl_WorkGroupSize.y
883 * - gl_WorkGroupSize.z
884 * - gl_NumWorkGroups.x
885 * - gl_NumWorkGroups.y
886 * - gl_NumWorkGroups.z
887 *
888 * The number of bits allocated for each number is based on the *_shift
889 * fields below. For example, workgroups_y_shift gives the bit that
890 * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
891 * that gl_NumWorkGroups.z starts at (and therefore one after the bit
892 * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
893 * value is one more than the stored value, since if any of the values
894 * are zero, then there would be no invocations (and hence no job). If
895 * there were 0 bits allocated to a given field, then it must be zero,
896 * and hence the real value is one.
897 *
898 * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
899 * effectively doing glDispatchCompute(1, vertex_count, instance_count)
900 * where vertex count is the number of vertices.
901 */
902 u32 invocation_count;
903
904 u32 size_y_shift : 5;
905 u32 size_z_shift : 5;
906 u32 workgroups_x_shift : 6;
907 u32 workgroups_y_shift : 6;
908 u32 workgroups_z_shift : 6;
909 /* This is max(workgroups_x_shift, 2) in all the cases I've seen. */
910 u32 workgroups_x_shift_2 : 4;
911
912 u32 draw_mode : 4;
913 u32 unknown_draw : 22;
914
915 /* This is the the same as workgroups_x_shift_2 in compute shaders, but
916 * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
917 * something to do with how many quads get put in the same execution
918 * engine, which is a balance (you don't want to starve the engine, but
919 * you also want to distribute work evenly).
920 */
921 u32 workgroups_x_shift_3 : 6;
922
923
924 /* Negative of draw_start for TILER jobs from what I've seen */
925 int32_t negative_start;
926 u32 zero1;
927
928 /* Like many other strictly nonzero quantities, index_count is
929 * subtracted by one. For an indexed cube, this is equal to 35 = 6
930 * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
931 * for an indexed draw, index_count is the number of actual vertices
932 * rendered whereas invocation_count is the number of unique vertices
933 * rendered (the number of times the vertex shader must be invoked).
934 * For non-indexed draws, this is just equal to invocation_count. */
935
936 u32 index_count;
937
938 /* No hidden structure; literally just a pointer to an array of uint
939 * indices (width depends on flags). Thanks, guys, for not making my
940 * life insane for once! NULL for non-indexed draws. */
941
942 uintptr_t indices;
943 } __attribute__((packed));
944
945 /* Point size / line width can either be specified as a 32-bit float (for
946 * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
947 * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
948 * payload, the contents of varying_pointer will be intepreted as an array of
949 * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
950 * creating a special MALI_R16F varying writing to varying_pointer. */
951
952 union midgard_primitive_size {
953 float constant;
954 uintptr_t pointer;
955 };
956
957 struct bifrost_vertex_only {
958 u32 unk2; /* =0x2 */
959
960 u32 zero0;
961
962 u64 zero1;
963 } __attribute__((packed));
964
965 struct bifrost_tiler_heap_meta {
966 u32 zero;
967 u32 heap_size;
968 /* note: these are just guesses! */
969 mali_ptr tiler_heap_start;
970 mali_ptr tiler_heap_free;
971 mali_ptr tiler_heap_end;
972
973 /* hierarchy weights? but they're still 0 after the job has run... */
974 u32 zeros[12];
975 } __attribute__((packed));
976
977 struct bifrost_tiler_meta {
978 u64 zero0;
979 u16 hierarchy_mask;
980 u16 flags;
981 u16 width;
982 u16 height;
983 u64 zero1;
984 mali_ptr tiler_heap_meta;
985 /* TODO what is this used for? */
986 u64 zeros[20];
987 } __attribute__((packed));
988
989 struct bifrost_tiler_only {
990 /* 0x20 */
991 union midgard_primitive_size primitive_size;
992
993 mali_ptr tiler_meta;
994
995 u64 zero1, zero2, zero3, zero4, zero5, zero6;
996
997 u32 gl_enables;
998 u32 zero7;
999 u64 zero8;
1000 } __attribute__((packed));
1001
1002 struct bifrost_scratchpad {
1003 u32 zero;
1004 u32 flags; // = 0x1f
1005 /* This is a pointer to a CPU-inaccessible buffer, 16 pages, allocated
1006 * during startup. It seems to serve the same purpose as the
1007 * gpu_scratchpad in the SFBD for Midgard, although it's slightly
1008 * larger.
1009 */
1010 mali_ptr gpu_scratchpad;
1011 } __attribute__((packed));
1012
1013 struct mali_vertex_tiler_postfix {
1014 /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
1015 * output from the vertex shader for tiler jobs.
1016 */
1017
1018 uintptr_t position_varying;
1019
1020 /* An array of mali_uniform_buffer_meta's. The size is given by the
1021 * shader_meta.
1022 */
1023 uintptr_t uniform_buffers;
1024
1025 /* This is a pointer to an array of pointers to the texture
1026 * descriptors, number of pointers bounded by number of textures. The
1027 * indirection is needed to accomodate varying numbers and sizes of
1028 * texture descriptors */
1029 uintptr_t texture_trampoline;
1030
1031 /* For OpenGL, from what I've seen, this is intimately connected to
1032 * texture_meta. cwabbott says this is not the case under Vulkan, hence
1033 * why this field is seperate (Midgard is Vulkan capable). Pointer to
1034 * array of sampler descriptors (which are uniform in size) */
1035 uintptr_t sampler_descriptor;
1036
1037 uintptr_t uniforms;
1038 u8 flags : 4;
1039 uintptr_t _shader_upper : MALI_SHORT_PTR_BITS - 4; /* struct shader_meta */
1040 uintptr_t attributes; /* struct attribute_buffer[] */
1041 uintptr_t attribute_meta; /* attribute_meta[] */
1042 uintptr_t varyings; /* struct attr */
1043 uintptr_t varying_meta; /* pointer */
1044 uintptr_t viewport;
1045 uintptr_t occlusion_counter; /* A single bit as far as I can tell */
1046
1047 /* Note: on Bifrost, this isn't actually the FBD. It points to
1048 * bifrost_scratchpad instead. However, it does point to the same thing
1049 * in vertex and tiler jobs.
1050 */
1051 mali_ptr framebuffer;
1052 } __attribute__((packed));
1053
1054 struct midgard_payload_vertex_tiler {
1055 #ifndef __LP64__
1056 union midgard_primitive_size primitive_size;
1057 #endif
1058
1059 struct mali_vertex_tiler_prefix prefix;
1060
1061 #ifndef __LP64__
1062 u32 zero3;
1063 #endif
1064
1065 u16 gl_enables; // 0x5
1066
1067 /* Both zero for non-instanced draws. For instanced draws, a
1068 * decomposition of padded_num_vertices. See the comments about the
1069 * corresponding fields in mali_attr for context. */
1070
1071 unsigned instance_shift : 5;
1072 unsigned instance_odd : 3;
1073
1074 u8 zero4;
1075
1076 /* Offset for first vertex in buffer */
1077 u32 draw_start;
1078
1079 uintptr_t zero5;
1080
1081 struct mali_vertex_tiler_postfix postfix;
1082
1083 #ifdef __LP64__
1084 union midgard_primitive_size primitive_size;
1085 #endif
1086 } __attribute__((packed));
1087
1088 struct bifrost_payload_vertex {
1089 struct mali_vertex_tiler_prefix prefix;
1090 struct bifrost_vertex_only vertex;
1091 struct mali_vertex_tiler_postfix postfix;
1092 } __attribute__((packed));
1093
1094 struct bifrost_payload_tiler {
1095 struct mali_vertex_tiler_prefix prefix;
1096 struct bifrost_tiler_only tiler;
1097 struct mali_vertex_tiler_postfix postfix;
1098 } __attribute__((packed));
1099
1100 struct bifrost_payload_fused {
1101 struct mali_vertex_tiler_prefix prefix;
1102 struct bifrost_tiler_only tiler;
1103 struct mali_vertex_tiler_postfix tiler_postfix;
1104 u64 padding; /* zero */
1105 struct bifrost_vertex_only vertex;
1106 struct mali_vertex_tiler_postfix vertex_postfix;
1107 } __attribute__((packed));
1108
1109 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
1110 * texture is stored as (63, 63) in these fields. This adjusts for that.
1111 * There's an identical pattern in the framebuffer descriptor. Even vertex
1112 * count fields work this way, hence the generic name -- integral fields that
1113 * are strictly positive generally need this adjustment. */
1114
1115 #define MALI_POSITIVE(dim) (dim - 1)
1116
1117 /* Opposite of MALI_POSITIVE, found in the depth_units field */
1118
1119 #define MALI_NEGATIVE(dim) (dim + 1)
1120
1121 /* Used with wrapping. Incomplete (this is a 4-bit field...) */
1122
1123 enum mali_wrap_mode {
1124 MALI_WRAP_REPEAT = 0x8,
1125 MALI_WRAP_CLAMP_TO_EDGE = 0x9,
1126 MALI_WRAP_CLAMP_TO_BORDER = 0xB,
1127 MALI_WRAP_MIRRORED_REPEAT = 0xC
1128 };
1129
1130 /* Shared across both command stream and Midgard, and even with Bifrost */
1131
1132 enum mali_texture_type {
1133 MALI_TEX_CUBE = 0x0,
1134 MALI_TEX_1D = 0x1,
1135 MALI_TEX_2D = 0x2,
1136 MALI_TEX_3D = 0x3
1137 };
1138
1139 /* 8192x8192 */
1140 #define MAX_MIP_LEVELS (13)
1141
1142 /* Cubemap bloats everything up */
1143 #define MAX_CUBE_FACES (6)
1144
1145 /* For each pointer, there is an address and optionally also a stride */
1146 #define MAX_ELEMENTS (2)
1147
1148 /* Corresponds to the type passed to glTexImage2D and so forth */
1149
1150 /* Flags for usage2 */
1151 #define MALI_TEX_MANUAL_STRIDE (0x20)
1152
1153 struct mali_texture_format {
1154 unsigned swizzle : 12;
1155 enum mali_format format : 8;
1156
1157 unsigned srgb : 1;
1158 unsigned unknown1 : 1;
1159
1160 enum mali_texture_type type : 2;
1161
1162 unsigned usage2 : 8;
1163 } __attribute__((packed));
1164
1165 struct mali_texture_descriptor {
1166 uint16_t width;
1167 uint16_t height;
1168 uint16_t depth;
1169 uint16_t array_size;
1170
1171 struct mali_texture_format format;
1172
1173 uint16_t unknown3;
1174
1175 /* One for non-mipmapped, zero for mipmapped */
1176 uint8_t unknown3A;
1177
1178 /* Zero for non-mipmapped, (number of levels - 1) for mipmapped */
1179 uint8_t nr_mipmap_levels;
1180
1181 /* Swizzling is a single 32-bit word, broken up here for convenience.
1182 * Here, swizzling refers to the ES 3.0 texture parameters for channel
1183 * level swizzling, not the internal pixel-level swizzling which is
1184 * below OpenGL's reach */
1185
1186 unsigned swizzle : 12;
1187 unsigned swizzle_zero : 20;
1188
1189 uint32_t unknown5;
1190 uint32_t unknown6;
1191 uint32_t unknown7;
1192
1193 mali_ptr payload[MAX_MIP_LEVELS * MAX_CUBE_FACES * MAX_ELEMENTS];
1194 } __attribute__((packed));
1195
1196 /* Used as part of filter_mode */
1197
1198 #define MALI_LINEAR 0
1199 #define MALI_NEAREST 1
1200 #define MALI_MIP_LINEAR (0x18)
1201
1202 /* Used to construct low bits of filter_mode */
1203
1204 #define MALI_TEX_MAG(mode) (((mode) & 1) << 0)
1205 #define MALI_TEX_MIN(mode) (((mode) & 1) << 1)
1206
1207 #define MALI_TEX_MAG_MASK (1)
1208 #define MALI_TEX_MIN_MASK (2)
1209
1210 #define MALI_FILTER_NAME(filter) (filter ? "MALI_NEAREST" : "MALI_LINEAR")
1211
1212 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
1213 * be cleaned up a lot. */
1214
1215 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
1216
1217 static inline uint16_t
1218 FIXED_16(float x)
1219 {
1220 /* Clamp inputs, accounting for float error */
1221 float max_lod = (32.0 - (1.0 / 512.0));
1222
1223 x = ((x > max_lod) ? max_lod : ((x < 0.0) ? 0.0 : x));
1224
1225 return (int) (x * 256.0);
1226 }
1227
1228 struct mali_sampler_descriptor {
1229 uint32_t filter_mode;
1230
1231 /* Fixed point. Upper 8-bits is before the decimal point, although it
1232 * caps [0-31]. Lower 8-bits is after the decimal point: int(round(x *
1233 * 256)) */
1234
1235 uint16_t min_lod;
1236 uint16_t max_lod;
1237
1238 /* All one word in reality, but packed a bit */
1239
1240 enum mali_wrap_mode wrap_s : 4;
1241 enum mali_wrap_mode wrap_t : 4;
1242 enum mali_wrap_mode wrap_r : 4;
1243 enum mali_alt_func compare_func : 3;
1244
1245 /* No effect on 2D textures. For cubemaps, set for ES3 and clear for
1246 * ES2, controlling seamless cubemapping */
1247 unsigned seamless_cube_map : 1;
1248
1249 unsigned zero : 16;
1250
1251 uint32_t zero2;
1252 float border_color[4];
1253 } __attribute__((packed));
1254
1255 /* viewport0/viewport1 form the arguments to glViewport. viewport1 is
1256 * modified by MALI_POSITIVE; viewport0 is as-is.
1257 */
1258
1259 struct mali_viewport {
1260 /* XY clipping planes */
1261 float clip_minx;
1262 float clip_miny;
1263 float clip_maxx;
1264 float clip_maxy;
1265
1266 /* Depth clipping planes */
1267 float clip_minz;
1268 float clip_maxz;
1269
1270 u16 viewport0[2];
1271 u16 viewport1[2];
1272 } __attribute__((packed));
1273
1274 /* From presentations, 16x16 tiles externally. Use shift for fast computation
1275 * of tile numbers. */
1276
1277 #define MALI_TILE_SHIFT 4
1278 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
1279
1280 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
1281 * each component. Notice that this provides a theoretical upper bound of (1 <<
1282 * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
1283 * 65536x65536. Multiplying that together, times another four given that Mali
1284 * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
1285 * gigabytes of RAM just to store the uncompressed framebuffer itself, let
1286 * alone rendering in real-time to such a buffer.
1287 *
1288 * Nice job, guys.*/
1289
1290 /* From mali_kbase_10969_workaround.c */
1291 #define MALI_X_COORD_MASK 0x00000FFF
1292 #define MALI_Y_COORD_MASK 0x0FFF0000
1293
1294 /* Extract parts of a tile coordinate */
1295
1296 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
1297 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
1298 #define MALI_TILE_COORD_FLAGS(coord) ((coord) & ~(MALI_X_COORD_MASK | MALI_Y_COORD_MASK))
1299
1300 /* No known flags yet, but just in case...? */
1301
1302 #define MALI_TILE_NO_FLAG (0)
1303
1304 /* Helpers to generate tile coordinates based on the boundary coordinates in
1305 * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
1306 * functions would convert it to the bounding tiles (0, 0) to (7, 7).
1307 * Intentional "off-by-one"; finding the tile number is a form of fencepost
1308 * problem. */
1309
1310 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
1311 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
1312 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
1313 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
1314 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
1315
1316 struct mali_payload_fragment {
1317 u32 min_tile_coord;
1318 u32 max_tile_coord;
1319 mali_ptr framebuffer;
1320 } __attribute__((packed));
1321
1322 /* Single Framebuffer Descriptor */
1323
1324 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
1325 * configured for 4x. With MSAA_8, it is configured for 8x. */
1326
1327 #define MALI_FRAMEBUFFER_MSAA_8 (1 << 3)
1328 #define MALI_FRAMEBUFFER_MSAA_A (1 << 4)
1329 #define MALI_FRAMEBUFFER_MSAA_B (1 << 23)
1330
1331 /* Fast/slow based on whether all three buffers are cleared at once */
1332
1333 #define MALI_CLEAR_FAST (1 << 18)
1334 #define MALI_CLEAR_SLOW (1 << 28)
1335 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
1336
1337 struct mali_single_framebuffer {
1338 u32 unknown1;
1339 u32 unknown2;
1340 u64 unknown_address_0;
1341 u64 zero1;
1342 u64 zero0;
1343
1344 /* Exact format is ironically not known, since EGL is finnicky with the
1345 * blob. MSAA, colourspace, etc are configured here. */
1346
1347 u32 format;
1348
1349 u32 clear_flags;
1350 u32 zero2;
1351
1352 /* Purposeful off-by-one in these fields should be accounted for by the
1353 * MALI_DIMENSION macro */
1354
1355 u16 width;
1356 u16 height;
1357
1358 u32 zero3[8];
1359
1360 /* By default, the framebuffer is upside down from OpenGL's
1361 * perspective. Set framebuffer to the end and negate the stride to
1362 * flip in the Y direction */
1363
1364 mali_ptr framebuffer;
1365 int32_t stride;
1366
1367 u32 zero4;
1368
1369 /* Depth and stencil buffers are interleaved, it appears, as they are
1370 * set to the same address in captures. Both fields set to zero if the
1371 * buffer is not being cleared. Depending on GL_ENABLE magic, you might
1372 * get a zero enable despite the buffer being present; that still is
1373 * disabled. */
1374
1375 mali_ptr depth_buffer; // not SAME_VA
1376 u64 depth_buffer_enable;
1377
1378 mali_ptr stencil_buffer; // not SAME_VA
1379 u64 stencil_buffer_enable;
1380
1381 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1382 u32 clear_color_2; // always equal, but unclear function?
1383 u32 clear_color_3; // always equal, but unclear function?
1384 u32 clear_color_4; // always equal, but unclear function?
1385
1386 /* Set to zero if not cleared */
1387
1388 float clear_depth_1; // float32, ditto
1389 float clear_depth_2; // float32, ditto
1390 float clear_depth_3; // float32, ditto
1391 float clear_depth_4; // float32, ditto
1392
1393 u32 clear_stencil; // Exactly as it appears in OpenGL
1394
1395 u32 zero6[7];
1396
1397 /* Logically, by symmetry to the MFBD, this ought to be the size of the
1398 * polygon list. But this doesn't quite compute up. More investigation
1399 * is needed. */
1400
1401 u32 tiler_resolution_check;
1402
1403 u16 tiler_hierarchy_mask;
1404 u16 tiler_flags;
1405
1406 /* See pan_tiler.c */
1407 mali_ptr tiler_polygon_list;
1408 mali_ptr tiler_polygon_list_body;
1409
1410 /* See mali_kbase_replay.c */
1411 mali_ptr tiler_heap_free;
1412 mali_ptr tiler_heap_end;
1413
1414 /* More below this, maybe */
1415 } __attribute__((packed));
1416
1417 /* On Midgard, this "framebuffer descriptor" is used for the framebuffer field
1418 * of compute jobs. Superficially resembles a single framebuffer descriptor */
1419
1420 struct mali_compute_fbd {
1421 u32 unknown1[16];
1422 } __attribute__((packed));
1423
1424 /* Format bits for the render target flags */
1425
1426 #define MALI_MFBD_FORMAT_MSAA (1 << 1)
1427 #define MALI_MFBD_FORMAT_SRGB (1 << 2)
1428
1429 enum mali_mfbd_block_format {
1430 MALI_MFBD_BLOCK_TILED = 0x0,
1431 MALI_MFBD_BLOCK_UNKNOWN = 0x1,
1432 MALI_MFBD_BLOCK_LINEAR = 0x2,
1433 MALI_MFBD_BLOCK_AFBC = 0x3,
1434 };
1435
1436 struct mali_rt_format {
1437 unsigned unk1 : 32;
1438 unsigned unk2 : 3;
1439
1440 unsigned nr_channels : 2; /* MALI_POSITIVE */
1441
1442 unsigned unk3 : 5;
1443 enum mali_mfbd_block_format block : 2;
1444 unsigned flags : 4;
1445
1446 unsigned swizzle : 12;
1447
1448 unsigned unk4 : 4;
1449 } __attribute__((packed));
1450
1451 struct bifrost_render_target {
1452 struct mali_rt_format format;
1453
1454 u64 zero1;
1455
1456 union {
1457 struct {
1458 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
1459 * there is an extra metadata buffer that contains 16 bytes per tile.
1460 * The framebuffer needs to be the same size as before, since we don't
1461 * know ahead of time how much space it will take up. The
1462 * framebuffer_stride is set to 0, since the data isn't stored linearly
1463 * anymore.
1464 */
1465
1466 mali_ptr metadata;
1467 u32 stride; // stride in units of tiles
1468 u32 unk; // = 0x20000
1469 } afbc;
1470
1471 struct {
1472 /* Heck if I know */
1473 u64 unk;
1474 mali_ptr pointer;
1475 } chunknown;
1476 };
1477
1478 mali_ptr framebuffer;
1479
1480 u32 zero2 : 4;
1481 u32 framebuffer_stride : 28; // in units of bytes
1482 u32 zero3;
1483
1484 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1485 u32 clear_color_2; // always equal, but unclear function?
1486 u32 clear_color_3; // always equal, but unclear function?
1487 u32 clear_color_4; // always equal, but unclear function?
1488 } __attribute__((packed));
1489
1490 /* An optional part of bifrost_framebuffer. It comes between the main structure
1491 * and the array of render targets. It must be included if any of these are
1492 * enabled:
1493 *
1494 * - Transaction Elimination
1495 * - Depth/stencil
1496 * - TODO: Anything else?
1497 */
1498
1499 /* Flags field: note, these are guesses */
1500
1501 #define MALI_EXTRA_PRESENT (0x400)
1502 #define MALI_EXTRA_AFBC (0x20)
1503 #define MALI_EXTRA_AFBC_ZS (0x10)
1504 #define MALI_EXTRA_ZS (0x4)
1505
1506 struct bifrost_fb_extra {
1507 mali_ptr checksum;
1508 /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
1509 u32 checksum_stride;
1510
1511 u32 flags;
1512
1513 union {
1514 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
1515 struct {
1516 mali_ptr depth_stencil_afbc_metadata;
1517 u32 depth_stencil_afbc_stride; // in units of tiles
1518 u32 zero1;
1519
1520 mali_ptr depth_stencil;
1521
1522 u64 padding;
1523 } ds_afbc;
1524
1525 struct {
1526 /* Depth becomes depth/stencil in case of combined D/S */
1527 mali_ptr depth;
1528 u32 depth_stride_zero : 4;
1529 u32 depth_stride : 28;
1530 u32 zero1;
1531
1532 mali_ptr stencil;
1533 u32 stencil_stride_zero : 4;
1534 u32 stencil_stride : 28;
1535 u32 zero2;
1536 } ds_linear;
1537 };
1538
1539
1540 u64 zero3, zero4;
1541 } __attribute__((packed));
1542
1543 /* Flags for mfbd_flags */
1544
1545 /* Enables writing depth results back to main memory (rather than keeping them
1546 * on-chip in the tile buffer and then discarding) */
1547
1548 #define MALI_MFBD_DEPTH_WRITE (1 << 10)
1549
1550 /* The MFBD contains the extra bifrost_fb_extra section */
1551
1552 #define MALI_MFBD_EXTRA (1 << 13)
1553
1554 struct bifrost_framebuffer {
1555 u32 unk0; // = 0x10
1556
1557 u32 unknown2; // = 0x1f, same as SFBD
1558 mali_ptr scratchpad;
1559
1560 /* 0x10 */
1561 mali_ptr sample_locations;
1562 mali_ptr unknown1;
1563 /* 0x20 */
1564 u16 width1, height1;
1565 u32 zero3;
1566 u16 width2, height2;
1567 u32 unk1 : 19; // = 0x01000
1568 u32 rt_count_1 : 2; // off-by-one (use MALI_POSITIVE)
1569 u32 unk2 : 3; // = 0
1570 u32 rt_count_2 : 3; // no off-by-one
1571 u32 zero4 : 5;
1572 /* 0x30 */
1573 u32 clear_stencil : 8;
1574 u32 mfbd_flags : 24; // = 0x100
1575 float clear_depth;
1576
1577
1578 /* Tiler section begins here */
1579 u32 tiler_polygon_list_size;
1580
1581 /* Name known from the replay workaround in the kernel. What exactly is
1582 * flagged here is less known. We do that (tiler_hierarchy_mask & 0x1ff)
1583 * specifies a mask of hierarchy weights, which explains some of the
1584 * performance mysteries around setting it. We also see the bottom bit
1585 * of tiler_flags set in the kernel, but no comment why. */
1586
1587 u16 tiler_hierarchy_mask;
1588 u16 tiler_flags;
1589
1590 /* See mali_tiler.c for an explanation */
1591 mali_ptr tiler_polygon_list;
1592 mali_ptr tiler_polygon_list_body;
1593
1594 /* Names based on we see symmetry with replay jobs which name these
1595 * explicitly */
1596
1597 mali_ptr tiler_heap_start; /* tiler heap_free_address */
1598 mali_ptr tiler_heap_end;
1599
1600 u32 tiler_weights[8];
1601
1602 /* optional: struct bifrost_fb_extra extra */
1603 /* struct bifrost_render_target rts[] */
1604 } __attribute__((packed));
1605
1606 #endif /* __PANFROST_JOB_H__ */