+++ /dev/null
-# GardenSnake - a parser generator demonstration program
-#
-# This implements a modified version of a subset of Python:
-# - only 'def', 'return' and 'if' statements
-# - 'if' only has 'then' clause (no elif nor else)
-# - single-quoted strings only, content in raw format
-# - numbers are decimal.Decimal instances (not integers or floats)
-# - no print statment; use the built-in 'print' function
-# - only < > == + - / * implemented (and unary + -)
-# - assignment and tuple assignment work
-# - no generators of any sort
-# - no ... well, no quite a lot
-
-# Why? I'm thinking about a new indentation-based configuration
-# language for a project and wanted to figure out how to do it. Once
-# I got that working I needed a way to test it out. My original AST
-# was dumb so I decided to target Python's AST and compile it into
-# Python code. Plus, it's pretty cool that it only took a day or so
-# from sitting down with Ply to having working code.
-
-# This uses David Beazley's Ply from http://www.dabeaz.com/ply/
-
-# This work is hereby released into the Public Domain. To view a copy of
-# the public domain dedication, visit
-# http://creativecommons.org/licenses/publicdomain/ or send a letter to
-# Creative Commons, 543 Howard Street, 5th Floor, San Francisco,
-# California, 94105, USA.
-#
-# Portions of this work are derived from Python's Grammar definition
-# and may be covered under the Python copyright and license
-#
-# Andrew Dalke / Dalke Scientific Software, LLC
-# 30 August 2006 / Cape Town, South Africa
-
-# Changelog:
-# 30 August - added link to CC license; removed the "swapcase" encoding
-
-# Modifications for inclusion in PLY distribution
-import sys
-from pprint import pprint
-from copy import copy
-from ply import *
-
-##### Lexer ######
-#import lex
-import decimal
-
-tokens = (
- 'DEF',
- 'IF',
- 'ELSE',
- 'WHILE',
- 'NAME',
- 'NUMBER', # Python decimals
- 'STRING', # single quoted strings only; syntax of raw strings
- 'LPAR',
- 'RPAR',
- 'COLON',
- 'EQ',
- 'ASSIGN',
- 'LT',
- 'GT',
- 'PLUS',
- 'MINUS',
- 'MULT',
- 'DIV',
- 'RETURN',
- 'WS',
- 'NEWLINE',
- 'COMMA',
- 'SEMICOLON',
- 'INDENT',
- 'DEDENT',
- 'ENDMARKER',
- )
-
-#t_NUMBER = r'\d+'
-# taken from decmial.py but without the leading sign
-def t_NUMBER(t):
- r"""(\d+(\.\d*)?|\.\d+)([eE][-+]? \d+)?"""
- t.value = decimal.Decimal(t.value)
- return t
-
-def t_STRING(t):
- r"'([^\\']+|\\'|\\\\)*'" # I think this is right ...
- t.value=t.value[1:-1].decode("string-escape") # .swapcase() # for fun
- return t
-
-t_COLON = r':'
-t_EQ = r'=='
-t_ASSIGN = r'='
-t_LT = r'<'
-t_GT = r'>'
-t_PLUS = r'\+'
-t_MINUS = r'-'
-t_MULT = r'\*'
-t_DIV = r'/'
-t_COMMA = r','
-t_SEMICOLON = r';'
-
-# Ply nicely documented how to do this.
-
-RESERVED = {
- "def": "DEF",
- "if": "IF",
- "else": "ELSE",
- "while": "WHILE",
- "return": "RETURN",
- }
-
-def t_NAME(t):
- r'[a-zA-Z_][a-zA-Z0-9_]*'
- t.type = RESERVED.get(t.value, "NAME")
- return t
-
-# Putting this before t_WS let it consume lines with only comments in
-# them so the latter code never sees the WS part. Not consuming the
-# newline. Needed for "if 1: #comment"
-def t_comment(t):
- r"[ ]*\043[^\n]*" # \043 is '#'
- pass
-
-
-# Whitespace
-def t_WS(t):
- r'[ ]+'
- if t.lexer.at_line_start and t.lexer.paren_count == 0:
- return t
-
-# Don't generate newline tokens when inside of parenthesis, eg
-# a = (1,
-# 2, 3)
-def t_newline(t):
- r'\n+'
- t.lexer.lineno += len(t.value)
- t.type = "NEWLINE"
- if t.lexer.paren_count == 0:
- return t
-
-def t_LPAR(t):
- r'\('
- t.lexer.paren_count += 1
- return t
-
-def t_RPAR(t):
- r'\)'
- # check for underflow? should be the job of the parser
- t.lexer.paren_count -= 1
- return t
-
-#t_ignore = " "
-
-def t_error(t):
- raise SyntaxError("Unknown symbol %r" % (t.value[0],))
- print ("Skipping", repr(t.value[0]))
- t.lexer.skip(1)
-
-## I implemented INDENT / DEDENT generation as a post-processing filter
-
-# The original lex token stream contains WS and NEWLINE characters.
-# WS will only occur before any other tokens on a line.
-
-# I have three filters. One tags tokens by adding two attributes.
-# "must_indent" is True if the token must be indented from the
-# previous code. The other is "at_line_start" which is True for WS
-# and the first non-WS/non-NEWLINE on a line. It flags the check so
-# see if the new line has changed indication level.
-
-# Python's syntax has three INDENT states
-# 0) no colon hence no need to indent
-# 1) "if 1: go()" - simple statements have a COLON but no need for an indent
-# 2) "if 1:\n go()" - complex statements have a COLON NEWLINE and must indent
-NO_INDENT = 0
-MAY_INDENT = 1
-MUST_INDENT = 2
-
-# only care about whitespace at the start of a line
-def track_tokens_filter(lexer, tokens):
- oldignore = lexer.lexignore
- lexer.at_line_start = at_line_start = True
- indent = NO_INDENT
- saw_colon = False
- for token in tokens:
- #print ("token", token)
- token.at_line_start = at_line_start
-
- if token.type == "COLON":
- at_line_start = False
- indent = MAY_INDENT
- token.must_indent = False
-
- elif token.type == "NEWLINE":
- at_line_start = True
- if indent == MAY_INDENT:
- indent = MUST_INDENT
- token.must_indent = False
-
- elif token.type == "WS":
- assert token.at_line_start == True
- at_line_start = True
- token.must_indent = False
-
- else:
- # A real token; only indent after COLON NEWLINE
- if indent == MUST_INDENT:
- token.must_indent = True
- else:
- token.must_indent = False
- at_line_start = False
- indent = NO_INDENT
-
- # really bad hack that changes ignore lexer state.
- # when "must indent" is seen (basically "real tokens" seen)
- # then ignore whitespace.
- if token.must_indent:
- lexer.lexignore = ('ignore', ' ')
- else:
- lexer.lexignore = oldignore
-
- token.indent = indent
- yield token
- lexer.at_line_start = at_line_start
-
-def _new_token(type, lineno):
- tok = lex.LexToken()
- tok.type = type
- tok.value = None
- tok.lineno = lineno
- tok.lexpos = -1
- return tok
-
-# Synthesize a DEDENT tag
-def DEDENT(lineno):
- return _new_token("DEDENT", lineno)
-
-# Synthesize an INDENT tag
-def INDENT(lineno):
- return _new_token("INDENT", lineno)
-
-
-# Track the indentation level and emit the right INDENT / DEDENT events.
-def indentation_filter(tokens):
- # A stack of indentation levels; will never pop item 0
- levels = [0]
- token = None
- depth = 0
- prev_was_ws = False
- for token in tokens:
- if 1:
- print "Process", depth, token.indent, token,
- if token.at_line_start:
- print "at_line_start",
- if token.must_indent:
- print "must_indent",
- print
-
- # WS only occurs at the start of the line
- # There may be WS followed by NEWLINE so
- # only track the depth here. Don't indent/dedent
- # until there's something real.
- if token.type == "WS":
- assert depth == 0
- depth = len(token.value)
- prev_was_ws = True
- # WS tokens are never passed to the parser
- continue
-
- if token.type == "NEWLINE":
- depth = 0
- if prev_was_ws or token.at_line_start:
- # ignore blank lines
- continue
- # pass the other cases on through
- yield token
- continue
-
- # then it must be a real token (not WS, not NEWLINE)
- # which can affect the indentation level
-
- prev_was_ws = False
- if token.must_indent:
- # The current depth must be larger than the previous level
- if not (depth > levels[-1]):
- raise IndentationError("expected an indented block")
-
- levels.append(depth)
- yield INDENT(token.lineno)
-
- elif token.at_line_start:
- # Must be on the same level or one of the previous levels
- if depth == levels[-1]:
- # At the same level
- pass
- elif depth > levels[-1]:
- raise IndentationError("indentation increase but not in new block")
- else:
- # Back up; but only if it matches a previous level
- try:
- i = levels.index(depth)
- except ValueError:
- raise IndentationError("inconsistent indentation")
- for _ in range(i+1, len(levels)):
- yield DEDENT(token.lineno)
- levels.pop()
-
- yield token
-
- ### Finished processing ###
-
- # Must dedent any remaining levels
- if len(levels) > 1:
- assert token is not None
- for _ in range(1, len(levels)):
- yield DEDENT(token.lineno)
-
-
-# The top-level filter adds an ENDMARKER, if requested.
-# Python's grammar uses it.
-def filter(lexer, add_endmarker = True):
- token = None
- tokens = iter(lexer.token, None)
- tokens = track_tokens_filter(lexer, tokens)
- for token in indentation_filter(tokens):
- yield token
-
- if add_endmarker:
- lineno = 1
- if token is not None:
- lineno = token.lineno
- yield _new_token("ENDMARKER", lineno)
-
-# Combine Ply and my filters into a new lexer
-
-class IndentLexer(object):
- def __init__(self, debug=0, optimize=0, lextab='lextab', reflags=0):
- self.lexer = lex.lex(debug=debug, optimize=optimize, lextab=lextab, reflags=reflags)
- self.token_stream = None
- def input(self, s, add_endmarker=True):
- self.lexer.paren_count = 0
- self.lexer.input(s)
- self.token_stream = filter(self.lexer, add_endmarker)
- def token(self):
- try:
- return self.token_stream.next()
- except StopIteration:
- return None
-
-########## Parser (tokens -> AST) ######
-
-# also part of Ply
-#import yacc
-
-# I use the Python AST
-from compiler import ast
-
-# Helper function
-def Assign(left, right):
- names = []
- if isinstance(left, ast.Name):
- # Single assignment on left
- return ast.Assign([ast.AssName(left.name, 'OP_ASSIGN')], right)
- elif isinstance(left, ast.Tuple):
- # List of things - make sure they are Name nodes
- names = []
- for child in left.getChildren():
- if not isinstance(child, ast.Name):
- raise SyntaxError("that assignment not supported")
- names.append(child.name)
- ass_list = [ast.AssName(name, 'OP_ASSIGN') for name in names]
- return ast.Assign([ast.AssTuple(ass_list)], right)
- else:
- raise SyntaxError("Can't do that yet")
-
-
-# The grammar comments come from Python's Grammar/Grammar file
-
-## NB: compound_stmt in single_input is followed by extra NEWLINE!
-# file_input: (NEWLINE | stmt)* ENDMARKER
-def p_file_input_end(p):
- """file_input_end : file_input ENDMARKER"""
- print "end", p[1]
- p[0] = ast.Stmt(p[1])
-
-def p_file_input(p):
- """file_input : file_input NEWLINE
- | file_input stmt
- | NEWLINE
- | stmt"""
- if isinstance(p[len(p)-1], basestring):
- if len(p) == 3:
- p[0] = p[1]
- else:
- p[0] = [] # p == 2 --> only a blank line
- else:
- if len(p) == 3:
- p[0] = p[1] + p[2]
- else:
- p[0] = p[1]
-
-
-# funcdef: [decorators] 'def' NAME parameters ':' suite
-# ignoring decorators
-def p_funcdef(p):
- "funcdef : DEF NAME parameters COLON suite"
- p[0] = ast.Function(None, p[2], list(p[3]), (), 0, None, p[5])
-
-# parameters: '(' [varargslist] ')'
-def p_parameters(p):
- """parameters : LPAR RPAR
- | LPAR varargslist RPAR"""
- if len(p) == 3:
- p[0] = []
- else:
- p[0] = p[2]
-
-
-# varargslist: (fpdef ['=' test] ',')* ('*' NAME [',' '**' NAME] | '**' NAME) |
-# highly simplified
-def p_varargslist(p):
- """varargslist : varargslist COMMA NAME
- | NAME"""
- if len(p) == 4:
- p[0] = p[1] + p[3]
- else:
- p[0] = [p[1]]
-
-# stmt: simple_stmt | compound_stmt
-def p_stmt_simple(p):
- """stmt : simple_stmt"""
- # simple_stmt is a list
- p[0] = p[1]
-
-def p_stmt_compound(p):
- """stmt : compound_stmt"""
- p[0] = [p[1]]
-
-# simple_stmt: small_stmt (';' small_stmt)* [';'] NEWLINE
-def p_simple_stmt(p):
- """simple_stmt : small_stmts NEWLINE
- | small_stmts SEMICOLON NEWLINE"""
- p[0] = p[1]
-
-def p_small_stmts(p):
- """small_stmts : small_stmts SEMICOLON small_stmt
- | small_stmt"""
- if len(p) == 4:
- p[0] = p[1] + [p[3]]
- else:
- p[0] = [p[1]]
-
-# small_stmt: expr_stmt | print_stmt | del_stmt | pass_stmt | flow_stmt |
-# import_stmt | global_stmt | exec_stmt | assert_stmt
-def p_small_stmt(p):
- """small_stmt : flow_stmt
- | expr_stmt"""
- p[0] = p[1]
-
-# expr_stmt: testlist (augassign (yield_expr|testlist) |
-# ('=' (yield_expr|testlist))*)
-# augassign: ('+=' | '-=' | '*=' | '/=' | '%=' | '&=' | '|=' | '^=' |
-# '<<=' | '>>=' | '**=' | '//=')
-def p_expr_stmt(p):
- """expr_stmt : testlist ASSIGN testlist
- | testlist """
- if len(p) == 2:
- # a list of expressions
- #p[0] = ast.Discard(p[1])
- p[0] = p[1]
- else:
- p[0] = Assign(p[1], p[3])
-
-def p_flow_stmt(p):
- "flow_stmt : return_stmt"
- p[0] = p[1]
-
-# return_stmt: 'return' [testlist]
-def p_return_stmt(p):
- "return_stmt : RETURN testlist"
- p[0] = ast.Return(p[2])
-
-
-def p_compound_stmt(p):
- """compound_stmt : if_stmt
- | while_stmt
- | funcdef
- """
- p[0] = p[1]
-
-def p_while_stmt(p):
- """while_stmt : WHILE test COLON suite ELSE COLON suite
- | WHILE test COLON suite
- """
- if len(p) == 5:
- p[0] = ast.While(p[2], p[4], None)
- else:
- p[0] = ast.While(p[2], p[4], p[7])
-
-def p_if_stmt(p):
- """if_stmt : IF test COLON suite ELSE COLON suite
- | IF test COLON suite
- """
- if len(p) == 5:
- p[0] = ast.If([(p[2], p[4])], None)
- else:
- p[0] = ast.If([(p[2], p[4])], p[7])
-
-def p_suite(p):
- """suite : simple_stmt
- | NEWLINE INDENT stmts DEDENT"""
- if len(p) == 2:
- p[0] = ast.Stmt(p[1])
- else:
- p[0] = ast.Stmt(p[3])
-
-
-def p_stmts(p):
- """stmts : stmts stmt
- | stmt"""
- if len(p) == 3:
- p[0] = p[1] + p[2]
- else:
- p[0] = p[1]
-
-## No using Python's approach because Ply supports precedence
-
-# comparison: expr (comp_op expr)*
-# arith_expr: term (('+'|'-') term)*
-# term: factor (('*'|'/'|'%'|'//') factor)*
-# factor: ('+'|'-'|'~') factor | power
-# comp_op: '<'|'>'|'=='|'>='|'<='|'<>'|'!='|'in'|'not' 'in'|'is'|'is' 'not'
-
-def make_lt_compare(arg):
- (left, right) = arg
- return ast.Compare(left, [('<', right),])
-def make_gt_compare(arg):
- (left, right) = arg
- return ast.Compare(left, [('>', right),])
-def make_eq_compare(arg):
- (left, right) = arg
- return ast.Compare(left, [('==', right),])
-
-
-binary_ops = {
- "+": ast.Add,
- "-": ast.Sub,
- "*": ast.Mul,
- "/": ast.Div,
- "<": make_lt_compare,
- ">": make_gt_compare,
- "==": make_eq_compare,
-}
-unary_ops = {
- "+": ast.UnaryAdd,
- "-": ast.UnarySub,
- }
-precedence = (
- ("left", "EQ", "GT", "LT"),
- ("left", "PLUS", "MINUS"),
- ("left", "MULT", "DIV"),
- )
-
-def p_comparison(p):
- """comparison : comparison PLUS comparison
- | comparison MINUS comparison
- | comparison MULT comparison
- | comparison DIV comparison
- | comparison LT comparison
- | comparison EQ comparison
- | comparison GT comparison
- | PLUS comparison
- | MINUS comparison
- | power"""
- if len(p) == 4:
- p[0] = binary_ops[p[2]]((p[1], p[3]))
- elif len(p) == 3:
- p[0] = unary_ops[p[1]](p[2])
- else:
- p[0] = p[1]
-
-# power: atom trailer* ['**' factor]
-# trailers enables function calls. I only allow one level of calls
-# so this is 'trailer'
-def p_power(p):
- """power : atom
- | atom trailer"""
- if len(p) == 2:
- p[0] = p[1]
- else:
- if p[2][0] == "CALL":
- if p[1].name == 'print':
- p[0] = ast.Printnl(ast.Tuple(p[2][1]), None, None)
- else:
- p[0] = ast.CallFunc(p[1], p[2][1], None, None)
- else:
- raise AssertionError("not implemented")
-
-def p_atom_name(p):
- """atom : NAME"""
- p[0] = ast.Name(p[1])
-
-def p_atom_number(p):
- """atom : NUMBER
- | STRING"""
- p[0] = ast.Const(p[1])
-
-def p_atom_tuple(p):
- """atom : LPAR testlist RPAR"""
- p[0] = p[2]
-
-# trailer: '(' [arglist] ')' | '[' subscriptlist ']' | '.' NAME
-def p_trailer(p):
- "trailer : LPAR arglist RPAR"
- p[0] = ("CALL", p[2])
-
-# testlist: test (',' test)* [',']
-# Contains shift/reduce error
-def p_testlist(p):
- """testlist : testlist_multi COMMA
- | testlist_multi """
- if len(p) == 2:
- p[0] = p[1]
- else:
- # May need to promote singleton to tuple
- if isinstance(p[1], list):
- p[0] = p[1]
- else:
- p[0] = [p[1]]
- # Convert into a tuple?
- if isinstance(p[0], list):
- p[0] = ast.Tuple(p[0])
-
-def p_testlist_multi(p):
- """testlist_multi : testlist_multi COMMA test
- | test"""
- if len(p) == 2:
- # singleton
- p[0] = p[1]
- else:
- if isinstance(p[1], list):
- p[0] = p[1] + [p[3]]
- else:
- # singleton -> tuple
- p[0] = [p[1], p[3]]
-
-
-# test: or_test ['if' or_test 'else' test] | lambdef
-# as I don't support 'and', 'or', and 'not' this works down to 'comparison'
-def p_test(p):
- "test : comparison"
- p[0] = p[1]
-
-
-
-# arglist: (argument ',')* (argument [',']| '*' test [',' '**' test] | '**' test)
-# XXX INCOMPLETE: this doesn't allow the trailing comma
-def p_arglist(p):
- """arglist : arglist COMMA argument
- | argument"""
- if len(p) == 4:
- p[0] = p[1] + [p[3]]
- else:
- p[0] = [p[1]]
-
-# argument: test [gen_for] | test '=' test # Really [keyword '='] test
-def p_argument(p):
- "argument : test"
- p[0] = p[1]
-
-def p_error(p):
- #print "Error!", repr(p)
- raise SyntaxError(p)
-
-
-class GardenSnakeParser(object):
- def __init__(self, lexer = None):
- if lexer is None:
- lexer = IndentLexer(debug=1)
- self.lexer = lexer
- self.parser = yacc.yacc(start="file_input_end",
- debug=False, write_tables=False)
-
- def parse(self, code):
- self.lexer.input(code)
- result = self.parser.parse(lexer = self.lexer, debug=True)
- return ast.Module(None, result)
-
-
-###### Code generation ######
-
-from compiler import misc, syntax, pycodegen
-
-class GardenSnakeCompiler(object):
- def __init__(self):
- self.parser = GardenSnakeParser()
- def compile(self, code, mode="exec", filename="<string>"):
- tree = self.parser.parse(code)
- print "snake"
- pprint(tree)
- misc.set_filename(filename, tree)
- syntax.check(tree)
- gen = pycodegen.ModuleCodeGenerator(tree)
- code = gen.getCode()
- return code
-
-####### Test code #######
-
-code = r"""
-
-print('LET\'S TRY THIS \\OUT')
-
-#Comment here
-def x(a):
- print('called with', a)
- if a == 1:
- return 2
- if a*2 > 10: return 999 / 4
- # Another comment here
-
- return a+2*3
-
-ints = (1, 2,
- 3, 4,
-5)
-print('mutiline-expression', ints)
-
-if 1:
- 8
- a=9
- print(x(a))
-
-t = 4+1/3*2+6*(9-5+1)
-print('predence test; should be 34+2/3:', t, t==(34+2/3))
-
-print('numbers', 1,2,3,4,5)
-
-print(x(1))
-print(x(2))
-print(x(8),'3')
-print('this is decimal', 1/5)
-print('BIG DECIMAL', 1.234567891234567)
-
-"""
-
-_code = """
-print('hello')
-if 1:
- a=9
-"""
-
-code = r"""
-
-def x(a):
- y = 5
- z = 5
- print('called with', a)
- if a == 1:
- print('a == 1')
- if a * 5 == 5:
- print('a*5 == 5')
- return a*5
- return a*2
- else:
- print('a != 1')
- return a*6
-
- return a
-
-count = 0
-while count < 5:
- count = count + 1
- print (count)
-else:
- print ('done', count)
-
-print (x(1))
-print (x(2))
-"""
-
-lexer = IndentLexer(debug=1)
-# Give the lexer some input
-print "code"
-print code
-lexer.input(code)
-
-# Tokenize
-while True:
- tok = lexer.token()
- if not tok:
- break # No more input
- print(tok)
-
-#sys.exit(0)
-
-# Set up the GardenSnake run-time environment
-def print_(*args):
- print ("args", args)
- print ("-->", " ".join(map(str,args)))
-
-#d = copy(globals())
-d = {}
-d["print"] = print_
-#d["a"] = 10
-l = {}
-
-
-compile = GardenSnakeCompiler().compile
-
-compiled_code = compile(code, mode="single", filename="string")
-
-from compiler import parse
-tree = parse(code, "exec")
-pprint(tree)
-
-print (compiled_code)
-
-exec (compiled_code, d)
-print ("Done")
-
-#print d
-#print l
--- /dev/null
+# Based on GardenSnake - a parser generator demonstration program
+# GardenSnake was released into the Public Domain by Andrew Dalke.
+
+# Portions of this work are derived from Python's Grammar definition
+# and may be covered under the Python copyright and license
+#
+# Andrew Dalke / Dalke Scientific Software, LLC
+# 30 August 2006 / Cape Town, South Africa
+
+# Modifications for inclusion in PLY distribution
+import sys
+from pprint import pprint
+from copy import copy
+from ply import lex, yacc
+
+##### Lexer ######
+#import lex
+import decimal
+
+tokens = (
+ 'DEF',
+ 'IF',
+ 'ELSE',
+ 'FOR',
+ 'TO',
+ 'THEN',
+ 'WHILE',
+ 'NAME',
+ 'NUMBER', # Python decimals
+ 'STRING', # single quoted strings only; syntax of raw strings
+ 'LPAR',
+ 'RPAR',
+ 'LBRACK',
+ 'RBRACK',
+ 'COLON',
+ 'EQ',
+ 'ASSIGN',
+ 'LT',
+ 'GT',
+ 'PLUS',
+ 'MINUS',
+ 'MULT',
+ 'DIV',
+ 'RETURN',
+ 'WS',
+ 'NEWLINE',
+ 'COMMA',
+ 'SEMICOLON',
+ 'INDENT',
+ 'DEDENT',
+ 'ENDMARKER',
+ )
+
+#t_NUMBER = r'\d+'
+# taken from decmial.py but without the leading sign
+def t_NUMBER(t):
+ r"""(\d+(\.\d*)?|\.\d+)([eE][-+]? \d+)?"""
+ t.value = decimal.Decimal(t.value)
+ return t
+
+def t_STRING(t):
+ r"'([^\\']+|\\'|\\\\)*'" # I think this is right ...
+ t.value=t.value[1:-1].decode("string-escape") # .swapcase() # for fun
+ return t
+
+t_COLON = r':'
+t_EQ = r'=='
+t_ASSIGN = r'<-'
+t_LT = r'<'
+t_GT = r'>'
+t_PLUS = r'\+'
+t_MINUS = r'-'
+t_MULT = r'\*'
+t_DIV = r'/'
+t_COMMA = r','
+t_SEMICOLON = r';'
+
+# Ply nicely documented how to do this.
+
+RESERVED = {
+ "def": "DEF",
+ "if": "IF",
+ "else": "ELSE",
+ "for": "FOR",
+ "to": "TO",
+ "while": "WHILE",
+ "return": "RETURN",
+ }
+
+def t_NAME(t):
+ r'[a-zA-Z_][a-zA-Z0-9_]*'
+ t.type = RESERVED.get(t.value, "NAME")
+ return t
+
+# Putting this before t_WS let it consume lines with only comments in
+# them so the latter code never sees the WS part. Not consuming the
+# newline. Needed for "if 1: #comment"
+def t_comment(t):
+ r"[ ]*\043[^\n]*" # \043 is '#'
+ pass
+
+
+# Whitespace
+def t_WS(t):
+ r'[ ]+'
+ if t.lexer.at_line_start and t.lexer.paren_count == 0 and \
+ t.lexer.brack_count == 0:
+ return t
+
+# Don't generate newline tokens when inside of parenthesis, eg
+# a = (1,
+# 2, 3)
+def t_newline(t):
+ r'\n+'
+ t.lexer.lineno += len(t.value)
+ t.type = "NEWLINE"
+ if t.lexer.paren_count == 0 and t.lexer.brack_count == 0:
+ return t
+
+def t_LBRACK(t):
+ r'\['
+ t.lexer.brack_count += 1
+ return t
+
+def t_RBRACK(t):
+ r'\]'
+ # check for underflow? should be the job of the parser
+ t.lexer.brack_count -= 1
+ return t
+
+def t_LPAR(t):
+ r'\('
+ t.lexer.paren_count += 1
+ return t
+
+def t_RPAR(t):
+ r'\)'
+ # check for underflow? should be the job of the parser
+ t.lexer.paren_count -= 1
+ return t
+
+#t_ignore = " "
+
+def t_error(t):
+ raise SyntaxError("Unknown symbol %r" % (t.value[0],))
+ print ("Skipping", repr(t.value[0]))
+ t.lexer.skip(1)
+
+## I implemented INDENT / DEDENT generation as a post-processing filter
+
+# The original lex token stream contains WS and NEWLINE characters.
+# WS will only occur before any other tokens on a line.
+
+# I have three filters. One tags tokens by adding two attributes.
+# "must_indent" is True if the token must be indented from the
+# previous code. The other is "at_line_start" which is True for WS
+# and the first non-WS/non-NEWLINE on a line. It flags the check so
+# see if the new line has changed indication level.
+
+# Python's syntax has three INDENT states
+# 0) no colon hence no need to indent
+# 1) "if 1: go()" - simple statements have a COLON but no need for an indent
+# 2) "if 1:\n go()" - complex statements have a COLON NEWLINE and must indent
+NO_INDENT = 0
+MAY_INDENT = 1
+MUST_INDENT = 2
+
+# only care about whitespace at the start of a line
+def track_tokens_filter(lexer, tokens):
+ oldignore = lexer.lexignore
+ lexer.at_line_start = at_line_start = True
+ indent = NO_INDENT
+ saw_colon = False
+ for token in tokens:
+ #print ("token", token)
+ token.at_line_start = at_line_start
+
+ if token.type == "COLON":
+ at_line_start = False
+ indent = MAY_INDENT
+ token.must_indent = False
+
+ elif token.type == "NEWLINE":
+ at_line_start = True
+ if indent == MAY_INDENT:
+ indent = MUST_INDENT
+ token.must_indent = False
+
+ elif token.type == "WS":
+ assert token.at_line_start == True
+ at_line_start = True
+ token.must_indent = False
+
+ else:
+ # A real token; only indent after COLON NEWLINE
+ if indent == MUST_INDENT:
+ token.must_indent = True
+ else:
+ token.must_indent = False
+ at_line_start = False
+ indent = NO_INDENT
+
+ # really bad hack that changes ignore lexer state.
+ # when "must indent" is seen (basically "real tokens" seen)
+ # then ignore whitespace.
+ if token.must_indent:
+ lexer.lexignore = ('ignore', ' ')
+ else:
+ lexer.lexignore = oldignore
+
+ token.indent = indent
+ yield token
+ lexer.at_line_start = at_line_start
+
+def _new_token(type, lineno):
+ tok = lex.LexToken()
+ tok.type = type
+ tok.value = None
+ tok.lineno = lineno
+ tok.lexpos = -1
+ return tok
+
+# Synthesize a DEDENT tag
+def DEDENT(lineno):
+ return _new_token("DEDENT", lineno)
+
+# Synthesize an INDENT tag
+def INDENT(lineno):
+ return _new_token("INDENT", lineno)
+
+
+# Track the indentation level and emit the right INDENT / DEDENT events.
+def indentation_filter(tokens):
+ # A stack of indentation levels; will never pop item 0
+ levels = [0]
+ token = None
+ depth = 0
+ prev_was_ws = False
+ for token in tokens:
+ if 1:
+ print "Process", depth, token.indent, token,
+ if token.at_line_start:
+ print "at_line_start",
+ if token.must_indent:
+ print "must_indent",
+ print
+
+ # WS only occurs at the start of the line
+ # There may be WS followed by NEWLINE so
+ # only track the depth here. Don't indent/dedent
+ # until there's something real.
+ if token.type == "WS":
+ assert depth == 0
+ depth = len(token.value)
+ prev_was_ws = True
+ # WS tokens are never passed to the parser
+ continue
+
+ if token.type == "NEWLINE":
+ depth = 0
+ if prev_was_ws or token.at_line_start:
+ # ignore blank lines
+ continue
+ # pass the other cases on through
+ yield token
+ continue
+
+ # then it must be a real token (not WS, not NEWLINE)
+ # which can affect the indentation level
+
+ prev_was_ws = False
+ if token.must_indent:
+ # The current depth must be larger than the previous level
+ if not (depth > levels[-1]):
+ raise IndentationError("expected an indented block")
+
+ levels.append(depth)
+ yield INDENT(token.lineno)
+
+ elif token.at_line_start:
+ # Must be on the same level or one of the previous levels
+ if depth == levels[-1]:
+ # At the same level
+ pass
+ elif depth > levels[-1]:
+ raise IndentationError("indentation increase but not in new block")
+ else:
+ # Back up; but only if it matches a previous level
+ try:
+ i = levels.index(depth)
+ except ValueError:
+ raise IndentationError("inconsistent indentation")
+ for _ in range(i+1, len(levels)):
+ yield DEDENT(token.lineno)
+ levels.pop()
+
+ yield token
+
+ ### Finished processing ###
+
+ # Must dedent any remaining levels
+ if len(levels) > 1:
+ assert token is not None
+ for _ in range(1, len(levels)):
+ yield DEDENT(token.lineno)
+
+
+# The top-level filter adds an ENDMARKER, if requested.
+# Python's grammar uses it.
+def filter(lexer, add_endmarker = True):
+ token = None
+ tokens = iter(lexer.token, None)
+ tokens = track_tokens_filter(lexer, tokens)
+ for token in indentation_filter(tokens):
+ yield token
+
+ if add_endmarker:
+ lineno = 1
+ if token is not None:
+ lineno = token.lineno
+ yield _new_token("ENDMARKER", lineno)
+
+# Combine Ply and my filters into a new lexer
+
+class IndentLexer(object):
+ def __init__(self, debug=0, optimize=0, lextab='lextab', reflags=0):
+ self.lexer = lex.lex(debug=debug, optimize=optimize, lextab=lextab, reflags=reflags)
+ self.token_stream = None
+ def input(self, s, add_endmarker=True):
+ self.lexer.paren_count = 0
+ self.lexer.brack_count = 0
+ self.lexer.input(s)
+ self.token_stream = filter(self.lexer, add_endmarker)
+ def token(self):
+ try:
+ return self.token_stream.next()
+ except StopIteration:
+ return None
+
+########## Parser (tokens -> AST) ######
+
+# also part of Ply
+#import yacc
+
+# I use the Python AST
+from compiler import ast
+
+# Helper function
+def Assign(left, right):
+ names = []
+ if isinstance(left, ast.Name):
+ # Single assignment on left
+ return ast.Assign([ast.AssName(left.name, 'OP_ASSIGN')], right)
+ elif isinstance(left, ast.Tuple):
+ # List of things - make sure they are Name nodes
+ names = []
+ for child in left.getChildren():
+ if not isinstance(child, ast.Name):
+ raise SyntaxError("that assignment not supported")
+ names.append(child.name)
+ ass_list = [ast.AssName(name, 'OP_ASSIGN') for name in names]
+ return ast.Assign([ast.AssTuple(ass_list)], right)
+ else:
+ raise SyntaxError("Can't do that yet")
+
+
+# The grammar comments come from Python's Grammar/Grammar file
+
+## NB: compound_stmt in single_input is followed by extra NEWLINE!
+# file_input: (NEWLINE | stmt)* ENDMARKER
+def p_file_input_end(p):
+ """file_input_end : file_input ENDMARKER"""
+ print "end", p[1]
+ p[0] = ast.Stmt(p[1])
+
+def p_file_input(p):
+ """file_input : file_input NEWLINE
+ | file_input stmt
+ | NEWLINE
+ | stmt"""
+ if isinstance(p[len(p)-1], basestring):
+ if len(p) == 3:
+ p[0] = p[1]
+ else:
+ p[0] = [] # p == 2 --> only a blank line
+ else:
+ if len(p) == 3:
+ p[0] = p[1] + p[2]
+ else:
+ p[0] = p[1]
+
+
+# funcdef: [decorators] 'def' NAME parameters ':' suite
+# ignoring decorators
+def p_funcdef(p):
+ "funcdef : DEF NAME parameters COLON suite"
+ p[0] = ast.Function(None, p[2], list(p[3]), (), 0, None, p[5])
+
+# parameters: '(' [varargslist] ')'
+def p_parameters(p):
+ """parameters : LPAR RPAR
+ | LPAR varargslist RPAR"""
+ if len(p) == 3:
+ p[0] = []
+ else:
+ p[0] = p[2]
+
+
+# varargslist: (fpdef ['=' test] ',')* ('*' NAME [',' '**' NAME] | '**' NAME) |
+# highly simplified
+def p_varargslist(p):
+ """varargslist : varargslist COMMA NAME
+ | NAME"""
+ if len(p) == 4:
+ p[0] = p[1] + p[3]
+ else:
+ p[0] = [p[1]]
+
+# stmt: simple_stmt | compound_stmt
+def p_stmt_simple(p):
+ """stmt : simple_stmt"""
+ # simple_stmt is a list
+ p[0] = p[1]
+
+def p_stmt_compound(p):
+ """stmt : compound_stmt"""
+ p[0] = [p[1]]
+
+# simple_stmt: small_stmt (';' small_stmt)* [';'] NEWLINE
+def p_simple_stmt(p):
+ """simple_stmt : small_stmts NEWLINE
+ | small_stmts SEMICOLON NEWLINE"""
+ p[0] = p[1]
+
+def p_small_stmts(p):
+ """small_stmts : small_stmts SEMICOLON small_stmt
+ | small_stmt"""
+ if len(p) == 4:
+ p[0] = p[1] + [p[3]]
+ else:
+ p[0] = [p[1]]
+
+# small_stmt: expr_stmt | print_stmt | del_stmt | pass_stmt | flow_stmt |
+# import_stmt | global_stmt | exec_stmt | assert_stmt
+def p_small_stmt(p):
+ """small_stmt : flow_stmt
+ | expr_stmt"""
+ p[0] = p[1]
+
+# expr_stmt: testlist (augassign (yield_expr|testlist) |
+# ('=' (yield_expr|testlist))*)
+# augassign: ('+=' | '-=' | '*=' | '/=' | '%=' | '&=' | '|=' | '^=' |
+# '<<=' | '>>=' | '**=' | '//=')
+def p_expr_stmt(p):
+ """expr_stmt : testlist ASSIGN testlist
+ | testlist """
+ if len(p) == 2:
+ # a list of expressions
+ #p[0] = ast.Discard(p[1])
+ p[0] = p[1]
+ else:
+ p[0] = Assign(p[1], p[3])
+
+def p_flow_stmt(p):
+ "flow_stmt : return_stmt"
+ p[0] = p[1]
+
+# return_stmt: 'return' [testlist]
+def p_return_stmt(p):
+ "return_stmt : RETURN testlist"
+ p[0] = ast.Return(p[2])
+
+
+def p_compound_stmt(p):
+ """compound_stmt : if_stmt
+ | while_stmt
+ | funcdef
+ """
+ p[0] = p[1]
+
+def p_while_stmt(p):
+ """while_stmt : WHILE test COLON suite ELSE COLON suite
+ | WHILE test COLON suite
+ """
+ if len(p) == 5:
+ p[0] = ast.While(p[2], p[4], None)
+ else:
+ p[0] = ast.While(p[2], p[4], p[7])
+
+def p_if_stmt(p):
+ """if_stmt : IF test COLON suite ELSE COLON suite
+ | IF test COLON suite
+ """
+ if len(p) == 5:
+ p[0] = ast.If([(p[2], p[4])], None)
+ else:
+ p[0] = ast.If([(p[2], p[4])], p[7])
+
+def p_suite(p):
+ """suite : simple_stmt
+ | NEWLINE INDENT stmts DEDENT"""
+ if len(p) == 2:
+ p[0] = ast.Stmt(p[1])
+ else:
+ p[0] = ast.Stmt(p[3])
+
+
+def p_stmts(p):
+ """stmts : stmts stmt
+ | stmt"""
+ if len(p) == 3:
+ p[0] = p[1] + p[2]
+ else:
+ p[0] = p[1]
+
+## No using Python's approach because Ply supports precedence
+
+# comparison: expr (comp_op expr)*
+# arith_expr: term (('+'|'-') term)*
+# term: factor (('*'|'/'|'%'|'//') factor)*
+# factor: ('+'|'-'|'~') factor | power
+# comp_op: '<'|'>'|'=='|'>='|'<='|'<>'|'!='|'in'|'not' 'in'|'is'|'is' 'not'
+
+def make_lt_compare(arg):
+ (left, right) = arg
+ return ast.Compare(left, [('<', right),])
+def make_gt_compare(arg):
+ (left, right) = arg
+ return ast.Compare(left, [('>', right),])
+def make_eq_compare(arg):
+ (left, right) = arg
+ return ast.Compare(left, [('==', right),])
+
+
+binary_ops = {
+ "+": ast.Add,
+ "-": ast.Sub,
+ "*": ast.Mul,
+ "/": ast.Div,
+ "<": make_lt_compare,
+ ">": make_gt_compare,
+ "==": make_eq_compare,
+}
+unary_ops = {
+ "+": ast.UnaryAdd,
+ "-": ast.UnarySub,
+ }
+precedence = (
+ ("left", "EQ", "GT", "LT"),
+ ("left", "PLUS", "MINUS"),
+ ("left", "MULT", "DIV"),
+ )
+
+def p_comparison(p):
+ """comparison : comparison PLUS comparison
+ | comparison MINUS comparison
+ | comparison MULT comparison
+ | comparison DIV comparison
+ | comparison LT comparison
+ | comparison EQ comparison
+ | comparison GT comparison
+ | PLUS comparison
+ | MINUS comparison
+ | power"""
+ if len(p) == 4:
+ p[0] = binary_ops[p[2]]((p[1], p[3]))
+ elif len(p) == 3:
+ p[0] = unary_ops[p[1]](p[2])
+ else:
+ p[0] = p[1]
+
+# power: atom trailer* ['**' factor]
+# trailers enables function calls (and subscripts).
+# I only allow one level of calls
+# so this is 'trailer'
+def p_power(p):
+ """power : atom
+ | atom trailer"""
+ if len(p) == 2:
+ p[0] = p[1]
+ else:
+ if p[2][0] == "CALL":
+ if p[1].name == 'print':
+ p[0] = ast.Printnl(ast.Tuple(p[2][1]), None, None)
+ else:
+ p[0] = ast.CallFunc(p[1], p[2][1], None, None)
+ else:
+ print p[2][1]
+ #raise AssertionError("not implemented %s" % p[2][0])
+ subs = p[2][1]
+ if len(subs) == 1:
+ p[0] = ast.Subscript(p[1], 'OP_APPLY', subs[0])
+ else:
+ p[0] = ast.Slice(p[1], 'OP_APPLY', subs[0], subs[1])
+
+def p_atom_name(p):
+ """atom : NAME"""
+ p[0] = ast.Name(p[1])
+
+def p_atom_number(p):
+ """atom : NUMBER
+ | STRING"""
+ p[0] = ast.Const(p[1])
+
+def p_atom_tuple(p):
+ """atom : LPAR testlist RPAR"""
+ p[0] = p[2]
+
+# trailer: '(' [arglist] ')' | '[' subscriptlist ']' | '.' NAME
+def p_trailer(p):
+ """trailer : trailer_arglist
+ | trailer_subscript
+ """
+ p[0] = p[1]
+
+def p_trailer_arglist(p):
+ "trailer_arglist : LPAR arglist RPAR"
+ p[0] = ("CALL", p[2])
+
+def p_trailer_subscript(p):
+ "trailer_subscript : LBRACK subscript RBRACK"
+ p[0] = ("SUBS", p[2])
+
+#subscript: '.' '.' '.' | test | [test] ':' [test]
+
+def p_subscript(p):
+ """subscript : test COLON test
+ | test
+ """
+ if len(p) == 4:
+ p[0] = [p[1], p[3]]
+ else:
+ p[0] = [p[1]]
+
+
+# testlist: test (',' test)* [',']
+# Contains shift/reduce error
+def p_testlist(p):
+ """testlist : testlist_multi COMMA
+ | testlist_multi """
+ if len(p) == 2:
+ p[0] = p[1]
+ else:
+ # May need to promote singleton to tuple
+ if isinstance(p[1], list):
+ p[0] = p[1]
+ else:
+ p[0] = [p[1]]
+ # Convert into a tuple?
+ if isinstance(p[0], list):
+ p[0] = ast.Tuple(p[0])
+
+def p_testlist_multi(p):
+ """testlist_multi : testlist_multi COMMA test
+ | test"""
+ if len(p) == 2:
+ # singleton
+ p[0] = p[1]
+ else:
+ if isinstance(p[1], list):
+ p[0] = p[1] + [p[3]]
+ else:
+ # singleton -> tuple
+ p[0] = [p[1], p[3]]
+
+
+# test: or_test ['if' or_test 'else' test] | lambdef
+# as I don't support 'and', 'or', and 'not' this works down to 'comparison'
+def p_test(p):
+ "test : comparison"
+ p[0] = p[1]
+
+
+
+# arglist: (argument ',')* (argument [',']| '*' test [',' '**' test] | '**' test)
+# XXX INCOMPLETE: this doesn't allow the trailing comma
+def p_arglist(p):
+ """arglist : arglist COMMA argument
+ | argument"""
+ if len(p) == 4:
+ p[0] = p[1] + [p[3]]
+ else:
+ p[0] = [p[1]]
+
+# argument: test [gen_for] | test '=' test # Really [keyword '='] test
+def p_argument(p):
+ "argument : test"
+ p[0] = p[1]
+
+def p_error(p):
+ #print "Error!", repr(p)
+ raise SyntaxError(p)
+
+
+class GardenSnakeParser(object):
+ def __init__(self, lexer = None):
+ if lexer is None:
+ lexer = IndentLexer(debug=1)
+ self.lexer = lexer
+ self.parser = yacc.yacc(start="file_input_end",
+ debug=False, write_tables=False)
+
+ def parse(self, code):
+ self.lexer.input(code)
+ result = self.parser.parse(lexer = self.lexer, debug=False)
+ return ast.Module(None, result)
+
+
+###### Code generation ######
+
+from compiler import misc, syntax, pycodegen
+
+class GardenSnakeCompiler(object):
+ def __init__(self):
+ self.parser = GardenSnakeParser()
+ def compile(self, code, mode="exec", filename="<string>"):
+ tree = self.parser.parse(code)
+ print "snake"
+ pprint(tree)
+ misc.set_filename(filename, tree)
+ syntax.check(tree)
+ gen = pycodegen.ModuleCodeGenerator(tree)
+ code = gen.getCode()
+ return code
+
+####### Test code #######
+
+bpermd = r"""
+for i = 0 to 7
+ index <- (RS)[8*i:8*i+7]
+ if index < 64 then
+ permi <- (RB)[index]
+ else
+ permi <- 0
+RA <- [0]*56|| perm[0:7]
+"""
+
+bpermd = r"""
+index <- (RS)[8*i:8*i+7]
+#RA <- [0]*56 # || perm[0:7]
+"""
+
+code = bpermd
+
+lexer = IndentLexer(debug=1)
+# Give the lexer some input
+print "code"
+print code
+lexer.input(code)
+
+# Tokenize
+while True:
+ tok = lexer.token()
+ if not tok:
+ break # No more input
+ print(tok)
+
+#sys.exit(0)
+
+# Set up the GardenSnake run-time environment
+def print_(*args):
+ print ("args", args)
+ print ("-->", " ".join(map(str,args)))
+
+#d = copy(globals())
+d = {}
+d["print"] = print_
+#d["a"] = 10
+l = {}
+
+
+compile = GardenSnakeCompiler().compile
+
+compiled_code = compile(code, mode="single", filename="string")
+
+from compiler import parse
+tree = parse(code, "exec")
+pprint(tree)
+
+print (compiled_code)
+
+exec (compiled_code, d)
+print ("Done")
+
+#print d
+#print l