--- /dev/null
+# This is an unpipelined version of an sin/cos cordic, which will
+# later be used to verify the operation of a pipelined version
+
+# see http://bugs.libre-riscv.org/show_bug.cgi?id=208
+from nmigen import Module, Elaboratable, Signal, Memory
+from nmigen.cli import rtlil
+import math
+from enum import Enum, unique
+from ieee754.fpcommon.fpbase import FPNumBaseRecord, FPNumDecode
+
+
+@unique
+class CordicState(Enum):
+ WAITING = 0
+ INIT = 1
+ RUNNING = 2
+
+
+class CordicROM(Elaboratable):
+ def __init__(self, fracbits, iterations):
+ self.fracbits = fracbits
+ self.iterations = iterations
+
+ M = 1 << fracbits
+ self.addr = Signal(range(iterations))
+ self.data = Signal(range(-M, M-1))
+
+ angles = [int(round(M*math.atan(2**(-i))))
+ for i in range(self.iterations)]
+
+ self.mem = Memory(width=self.data.width,
+ depth=self.iterations,
+ init=angles)
+
+ def elaborate(self, platform):
+ m = Module()
+ m.submodules.rdport = rdport = self.mem.read_port()
+ m.d.comb += rdport.addr.eq(self.addr)
+ m.d.comb += self.data.eq(rdport.data)
+ return m
+
+
+class CORDIC(Elaboratable):
+ def __init__(self, width):
+
+ self.z0 = Signal(width, name="z0")
+ self.z_record = FPNumBaseRecord(self.z0.width, m_extra=True)
+ self.fracbits = 2 * self.z_record.m_width
+ self.M = M = (1 << self.fracbits)
+ self.ZMAX = int(round(self.M * math.pi/2))
+
+ # sin/cos output in 0.ffffff format
+ self.cos = Signal(range(-M, M+1), reset=0)
+ self.sin = Signal(range(-M, M+1), reset=0)
+ # angle input
+
+ # cordic start flag
+ self.start = Signal(reset_less=True)
+ # cordic done/ready for input
+ self.ready = Signal(reset=True)
+
+ self.width = self.z0.width
+ self.iterations = self.width - 1
+
+ def elaborate(self, platform):
+ m = Module()
+ comb = m.d.comb
+ sync = m.d.sync
+
+ m.submodules.z_in = z_in = FPNumDecode(None, self.z_record)
+ comb += z_in.v.eq(self.z0)
+
+ z_fixed = Signal(range(-self.ZMAX, self.ZMAX-1),
+ reset_less=True)
+
+ # Calculate initial amplitude?
+ An = 1.0
+ for i in range(self.iterations):
+ An *= math.sqrt(1 + 2**(-2*i))
+
+ X0 = int(round(self.M*1/An))
+ x = Signal(self.sin.shape())
+ y = Signal(self.sin.shape())
+ z = Signal(z_fixed.shape())
+ dx = Signal(self.sin.shape())
+ dy = Signal(self.sin.shape())
+ dz = Signal(z_fixed.shape())
+ i = Signal(range(self.iterations))
+ state = Signal(CordicState, reset=CordicState.WAITING)
+
+ m.submodules.anglerom = anglerom = \
+ CordicROM(self.fracbits, self.iterations)
+
+ comb += dx.eq(y >> i)
+ comb += dy.eq(x >> i)
+ comb += dz.eq(anglerom.data)
+ comb += self.cos.eq(x)
+ comb += self.sin.eq(y)
+ with m.If(state == CordicState.WAITING):
+ with m.If(self.start):
+ sync += state.eq(CordicState.INIT)
+ sync += z_fixed.eq(z_in.m << (self.fracbits - z_in.rmw))
+ with m.If(state == CordicState.INIT):
+ sync += x.eq(X0)
+ sync += y.eq(0)
+ sync += z.eq(z_fixed)
+ sync += i.eq(0)
+ sync += state.eq(CordicState.RUNNING)
+ sync += anglerom.addr.eq(1)
+ with m.If(state == CordicState.RUNNING):
+ with m.If(z >= 0):
+ sync += x.eq(x - dx)
+ sync += y.eq(y + dy)
+ sync += z.eq(z - dz)
+ with m.Else():
+ sync += x.eq(x + dx)
+ sync += y.eq(y - dy)
+ sync += z.eq(z + dz)
+ with m.If(i == self.iterations - 1):
+ sync += state.eq(CordicState.WAITING)
+ sync += self.ready.eq(1)
+ sync += anglerom.addr.eq(0)
+ with m.Else():
+ sync += i.eq(i+1)
+ sync += anglerom.addr.eq(i+2)
+ return m
+
+ def ports(self):
+ lst = [self.cos, self.sin,
+ self.ready, self.start]
+ lst.extend(self.z0)
+ return lst
+
+
+if __name__ == '__main__':
+ dut = CORDIC(8)
+ vl = rtlil.convert(dut, ports=dut.ports())
+ with open("cordic.il", "w") as f:
+ f.write(vl)
--- /dev/null
+from nmigen import Module, Signal
+from nmigen.back.pysim import Simulator, Delay
+from nmigen.test.utils import FHDLTestCase
+
+from ieee754.cordic.fpsin_cos import CORDIC
+from ieee754.fpcommon.fpbase import FPNumBaseRecord
+from python_sin_cos import run_cordic
+from sfpy import Float16, Float32
+import unittest
+import math
+import random
+
+
+class SinCosTestCase(FHDLTestCase):
+ def run_test(self, zin=0, fracbits=8, expected_sin=0, expected_cos=0):
+
+ m = Module()
+
+ m.submodules.dut = dut = CORDIC(32)
+ z = Signal(dut.z0.width)
+ start = Signal()
+
+ sin = Signal(dut.sin.shape())
+ cos = Signal(dut.cos.shape())
+ ready = Signal()
+
+ m.d.comb += [
+ dut.z0.eq(z),
+ dut.start.eq(start),
+ sin.eq(dut.sin),
+ cos.eq(dut.cos),
+ ready.eq(dut.ready)]
+
+ sim = Simulator(m)
+ sim.add_clock(1e-6)
+
+ def process():
+ yield z.eq(zin.get_bits())
+ yield start.eq(1)
+
+ yield
+ yield start.eq(0)
+ yield
+ for i in range(fracbits * 3):
+ rdy = yield ready
+ yield
+
+ sim.add_sync_process(process)
+ with sim.write_vcd("fpsin_cos.vcd", "fpsin_cos.gtkw", traces=[
+ cos, sin, ready, start]):
+ sim.run()
+
+ def run_test_assert(self, z, fracbits=8):
+ self.run_test(zin=z, fracbits=fracbits)
+
+ def test_1(self):
+ x = Float32(1.0)
+ self.run_test_assert(x)
+
+ # def test_neg(self):
+ # self.run_test_assert(-6)
+
+ # def test_rand(self):
+ # fracbits = 16
+ # M = (1 << fracbits)
+ # ZMAX = int(round(M * math.pi/2))
+ # for i in range(500):
+ # z = random.randrange(-ZMAX, ZMAX-1)
+ # self.run_test_assert(z, fracbits=fracbits)
+
+
+if __name__ == "__main__":
+ unittest.main()