-# SPDX-License-Identifier: LGPLv3+
-# Copyright (C) 2020, 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
-# Copyright (C) 2020 Michael Nolan
-# Funded by NLnet http://nlnet.nl
-"""core of the python-based POWER9 simulator
-
-this is part of a cycle-accurate POWER9 simulator. its primary purpose is
-not speed, it is for both learning and educational purposes, as well as
-a method of verifying the HDL.
-
-related bugs:
-
-* https://bugs.libre-soc.org/show_bug.cgi?id=424
-"""
-
-from nmigen.back.pysim import Settle
-from functools import wraps
-from copy import copy
-from openpower.decoder.orderedset import OrderedSet
-from openpower.decoder.selectable_int import (FieldSelectableInt, SelectableInt,
- selectconcat)
-from openpower.decoder.power_enums import (spr_dict, spr_byname, XER_bits,
- insns, MicrOp, In1Sel, In2Sel, In3Sel,
- OutSel, CROutSel,
- SVP64RMMode, SVP64PredMode,
- SVP64PredInt, SVP64PredCR)
-
-from openpower.decoder.power_enums import SVPtype
-
-from openpower.decoder.helpers import exts, gtu, ltu, undefined
-from soc.consts import PIb, MSRb # big-endian (PowerISA versions)
-from soc.consts import SVP64CROffs
-from openpower.decoder.power_svp64 import SVP64RM, decode_extra
-
-from openpower.decoder.isa.radixmmu import RADIX
-from openpower.decoder.isa.mem import Mem, swap_order
-
-from collections import namedtuple
-import math
-import sys
-
-instruction_info = namedtuple('instruction_info',
- 'func read_regs uninit_regs write_regs ' +
- 'special_regs op_fields form asmregs')
-
-special_sprs = {
- 'LR': 8,
- 'CTR': 9,
- 'TAR': 815,
- 'XER': 1,
- 'VRSAVE': 256}
-
-
-REG_SORT_ORDER = {
- # TODO (lkcl): adjust other registers that should be in a particular order
- # probably CA, CA32, and CR
- "RT": 0,
- "RA": 0,
- "RB": 0,
- "RS": 0,
- "CR": 0,
- "LR": 0,
- "CTR": 0,
- "TAR": 0,
- "CA": 0,
- "CA32": 0,
- "MSR": 0,
- "SVSTATE": 0,
-
- "overflow": 1,
-}
-
-
-def create_args(reglist, extra=None):
- retval = list(OrderedSet(reglist))
- retval.sort(key=lambda reg: REG_SORT_ORDER[reg])
- if extra is not None:
- return [extra] + retval
- return retval
-
-
-
-class GPR(dict):
- def __init__(self, decoder, isacaller, svstate, regfile):
- dict.__init__(self)
- self.sd = decoder
- self.isacaller = isacaller
- self.svstate = svstate
- for i in range(32):
- self[i] = SelectableInt(regfile[i], 64)
-
- def __call__(self, ridx):
- return self[ridx]
-
- def set_form(self, form):
- self.form = form
-
- def getz(self, rnum):
- # rnum = rnum.value # only SelectableInt allowed
- print("GPR getzero?", rnum)
- if rnum == 0:
- return SelectableInt(0, 64)
- return self[rnum]
-
- def _get_regnum(self, attr):
- getform = self.sd.sigforms[self.form]
- rnum = getattr(getform, attr)
- return rnum
-
- def ___getitem__(self, attr):
- """ XXX currently not used
- """
- rnum = self._get_regnum(attr)
- offs = self.svstate.srcstep
- print("GPR getitem", attr, rnum, "srcoffs", offs)
- return self.regfile[rnum]
-
- def dump(self):
- for i in range(0, len(self), 8):
- s = []
- for j in range(8):
- s.append("%08x" % self[i+j].value)
- s = ' '.join(s)
- print("reg", "%2d" % i, s)
-
-
-class SPR(dict):
- def __init__(self, dec2, initial_sprs={}):
- self.sd = dec2
- dict.__init__(self)
- for key, v in initial_sprs.items():
- if isinstance(key, SelectableInt):
- key = key.value
- key = special_sprs.get(key, key)
- if isinstance(key, int):
- info = spr_dict[key]
- else:
- info = spr_byname[key]
- if not isinstance(v, SelectableInt):
- v = SelectableInt(v, info.length)
- self[key] = v
-
- def __getitem__(self, key):
- print("get spr", key)
- print("dict", self.items())
- # if key in special_sprs get the special spr, otherwise return key
- if isinstance(key, SelectableInt):
- key = key.value
- if isinstance(key, int):
- key = spr_dict[key].SPR
- key = special_sprs.get(key, key)
- if key == 'HSRR0': # HACK!
- key = 'SRR0'
- if key == 'HSRR1': # HACK!
- key = 'SRR1'
- if key in self:
- res = dict.__getitem__(self, key)
- else:
- if isinstance(key, int):
- info = spr_dict[key]
- else:
- info = spr_byname[key]
- dict.__setitem__(self, key, SelectableInt(0, info.length))
- res = dict.__getitem__(self, key)
- print("spr returning", key, res)
- return res
-
- def __setitem__(self, key, value):
- if isinstance(key, SelectableInt):
- key = key.value
- if isinstance(key, int):
- key = spr_dict[key].SPR
- print("spr key", key)
- key = special_sprs.get(key, key)
- if key == 'HSRR0': # HACK!
- self.__setitem__('SRR0', value)
- if key == 'HSRR1': # HACK!
- self.__setitem__('SRR1', value)
- print("setting spr", key, value)
- dict.__setitem__(self, key, value)
-
- def __call__(self, ridx):
- return self[ridx]
-
-
-class PC:
- def __init__(self, pc_init=0):
- self.CIA = SelectableInt(pc_init, 64)
- self.NIA = self.CIA + SelectableInt(4, 64) # only true for v3.0B!
-
- def update_nia(self, is_svp64):
- increment = 8 if is_svp64 else 4
- self.NIA = self.CIA + SelectableInt(increment, 64)
-
- def update(self, namespace, is_svp64):
- """updates the program counter (PC) by 4 if v3.0B mode or 8 if SVP64
- """
- self.CIA = namespace['NIA'].narrow(64)
- self.update_nia(is_svp64)
- namespace['CIA'] = self.CIA
- namespace['NIA'] = self.NIA
-
-
-# Simple-V: see https://libre-soc.org/openpower/sv
-class SVP64State:
- def __init__(self, init=0):
- self.spr = SelectableInt(init, 32)
- # fields of SVSTATE, see https://libre-soc.org/openpower/sv/sprs/
- self.maxvl = FieldSelectableInt(self.spr, tuple(range(0,7)))
- self.vl = FieldSelectableInt(self.spr, tuple(range(7,14)))
- self.srcstep = FieldSelectableInt(self.spr, tuple(range(14,21)))
- self.dststep = FieldSelectableInt(self.spr, tuple(range(21,28)))
- self.subvl = FieldSelectableInt(self.spr, tuple(range(28,30)))
- self.svstep = FieldSelectableInt(self.spr, tuple(range(30,32)))
-
-
-# SVP64 ReMap field
-class SVP64RMFields:
- def __init__(self, init=0):
- self.spr = SelectableInt(init, 24)
- # SVP64 RM fields: see https://libre-soc.org/openpower/sv/svp64/
- self.mmode = FieldSelectableInt(self.spr, [0])
- self.mask = FieldSelectableInt(self.spr, tuple(range(1,4)))
- self.elwidth = FieldSelectableInt(self.spr, tuple(range(4,6)))
- self.ewsrc = FieldSelectableInt(self.spr, tuple(range(6,8)))
- self.subvl = FieldSelectableInt(self.spr, tuple(range(8,10)))
- self.extra = FieldSelectableInt(self.spr, tuple(range(10,19)))
- self.mode = FieldSelectableInt(self.spr, tuple(range(19,24)))
- # these cover the same extra field, split into parts as EXTRA2
- self.extra2 = list(range(4))
- self.extra2[0] = FieldSelectableInt(self.spr, tuple(range(10,12)))
- self.extra2[1] = FieldSelectableInt(self.spr, tuple(range(12,14)))
- self.extra2[2] = FieldSelectableInt(self.spr, tuple(range(14,16)))
- self.extra2[3] = FieldSelectableInt(self.spr, tuple(range(16,18)))
- self.smask = FieldSelectableInt(self.spr, tuple(range(16,19)))
- # and here as well, but EXTRA3
- self.extra3 = list(range(3))
- self.extra3[0] = FieldSelectableInt(self.spr, tuple(range(10,13)))
- self.extra3[1] = FieldSelectableInt(self.spr, tuple(range(13,16)))
- self.extra3[2] = FieldSelectableInt(self.spr, tuple(range(16,19)))
-
-
-SVP64RM_MMODE_SIZE = len(SVP64RMFields().mmode.br)
-SVP64RM_MASK_SIZE = len(SVP64RMFields().mask.br)
-SVP64RM_ELWIDTH_SIZE = len(SVP64RMFields().elwidth.br)
-SVP64RM_EWSRC_SIZE = len(SVP64RMFields().ewsrc.br)
-SVP64RM_SUBVL_SIZE = len(SVP64RMFields().subvl.br)
-SVP64RM_EXTRA2_SPEC_SIZE = len(SVP64RMFields().extra2[0].br)
-SVP64RM_EXTRA3_SPEC_SIZE = len(SVP64RMFields().extra3[0].br)
-SVP64RM_SMASK_SIZE = len(SVP64RMFields().smask.br)
-SVP64RM_MODE_SIZE = len(SVP64RMFields().mode.br)
-
-
-# SVP64 Prefix fields: see https://libre-soc.org/openpower/sv/svp64/
-class SVP64PrefixFields:
- def __init__(self):
- self.insn = SelectableInt(0, 32)
- # 6 bit major opcode EXT001, 2 bits "identifying" (7, 9), 24 SV ReMap
- self.major = FieldSelectableInt(self.insn, tuple(range(0,6)))
- self.pid = FieldSelectableInt(self.insn, (7, 9)) # must be 0b11
- rmfields = [6, 8] + list(range(10,32)) # SVP64 24-bit RM (ReMap)
- self.rm = FieldSelectableInt(self.insn, rmfields)
-
-
-SV64P_MAJOR_SIZE = len(SVP64PrefixFields().major.br)
-SV64P_PID_SIZE = len(SVP64PrefixFields().pid.br)
-SV64P_RM_SIZE = len(SVP64PrefixFields().rm.br)
-
-# decode SVP64 predicate integer to reg number and invert
-def get_predint(gpr, mask):
- r10 = gpr(10)
- r30 = gpr(30)
- print ("get_predint", mask, SVP64PredInt.ALWAYS.value)
- if mask == SVP64PredInt.ALWAYS.value:
- return 0xffff_ffff_ffff_ffff
- if mask == SVP64PredInt.R3_UNARY.value:
- return 1 << (gpr(3).value & 0b111111)
- if mask == SVP64PredInt.R3.value:
- return gpr(3).value
- if mask == SVP64PredInt.R3_N.value:
- return ~gpr(3).value
- if mask == SVP64PredInt.R10.value:
- return gpr(10).value
- if mask == SVP64PredInt.R10_N.value:
- return ~gpr(10).value
- if mask == SVP64PredInt.R30.value:
- return gpr(30).value
- if mask == SVP64PredInt.R30_N.value:
- return ~gpr(30).value
-
-# decode SVP64 predicate CR to reg number and invert status
-def _get_predcr(mask):
- if mask == SVP64PredCR.LT.value:
- return 0, 1
- if mask == SVP64PredCR.GE.value:
- return 0, 0
- if mask == SVP64PredCR.GT.value:
- return 1, 1
- if mask == SVP64PredCR.LE.value:
- return 1, 0
- if mask == SVP64PredCR.EQ.value:
- return 2, 1
- if mask == SVP64PredCR.NE.value:
- return 2, 0
- if mask == SVP64PredCR.SO.value:
- return 3, 1
- if mask == SVP64PredCR.NS.value:
- return 3, 0
-
-# read individual CR fields (0..VL-1), extract the required bit
-# and construct the mask
-def get_predcr(crl, mask, vl):
- idx, noninv = _get_predcr(mask)
- mask = 0
- for i in range(vl):
- cr = crl[i+SVP64CROffs.CRPred]
- if cr[idx].value == noninv:
- mask |= (1<<i)
- return mask
-
-
-def get_pdecode_idx_in(dec2, name):
- op = dec2.dec.op
- in1_sel = yield op.in1_sel
- in2_sel = yield op.in2_sel
- in3_sel = yield op.in3_sel
- # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
- in1 = yield dec2.e.read_reg1.data
- in2 = yield dec2.e.read_reg2.data
- in3 = yield dec2.e.read_reg3.data
- in1_isvec = yield dec2.in1_isvec
- in2_isvec = yield dec2.in2_isvec
- in3_isvec = yield dec2.in3_isvec
- print ("get_pdecode_idx_in in1", name, in1_sel, In1Sel.RA.value,
- in1, in1_isvec)
- print ("get_pdecode_idx_in in2", name, in2_sel, In2Sel.RB.value,
- in2, in2_isvec)
- print ("get_pdecode_idx_in in3", name, in3_sel, In3Sel.RS.value,
- in3, in3_isvec)
- # identify which regnames map to in1/2/3
- if name == 'RA':
- if (in1_sel == In1Sel.RA.value or
- (in1_sel == In1Sel.RA_OR_ZERO.value and in1 != 0)):
- return in1, in1_isvec
- if in1_sel == In1Sel.RA_OR_ZERO.value:
- return in1, in1_isvec
- elif name == 'RB':
- if in2_sel == In2Sel.RB.value:
- return in2, in2_isvec
- if in3_sel == In3Sel.RB.value:
- return in3, in3_isvec
- # XXX TODO, RC doesn't exist yet!
- elif name == 'RC':
- assert False, "RC does not exist yet"
- elif name == 'RS':
- if in1_sel == In1Sel.RS.value:
- return in1, in1_isvec
- if in2_sel == In2Sel.RS.value:
- return in2, in2_isvec
- if in3_sel == In3Sel.RS.value:
- return in3, in3_isvec
- return None, False
-
-
-def get_pdecode_cr_out(dec2, name):
- op = dec2.dec.op
- out_sel = yield op.cr_out
- out_bitfield = yield dec2.dec_cr_out.cr_bitfield.data
- sv_cr_out = yield op.sv_cr_out
- spec = yield dec2.crout_svdec.spec
- sv_override = yield dec2.dec_cr_out.sv_override
- # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
- out = yield dec2.e.write_cr.data
- o_isvec = yield dec2.o_isvec
- print ("get_pdecode_cr_out", out_sel, CROutSel.CR0.value, out, o_isvec)
- print (" sv_cr_out", sv_cr_out)
- print (" cr_bf", out_bitfield)
- print (" spec", spec)
- print (" override", sv_override)
- # identify which regnames map to out / o2
- if name == 'CR0':
- if out_sel == CROutSel.CR0.value:
- return out, o_isvec
- print ("get_pdecode_idx_out not found", name)
- return None, False
-
-
-def get_pdecode_idx_out(dec2, name):
- op = dec2.dec.op
- out_sel = yield op.out_sel
- # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
- out = yield dec2.e.write_reg.data
- o_isvec = yield dec2.o_isvec
- # identify which regnames map to out / o2
- if name == 'RA':
- print ("get_pdecode_idx_out", out_sel, OutSel.RA.value, out, o_isvec)
- if out_sel == OutSel.RA.value:
- return out, o_isvec
- elif name == 'RT':
- print ("get_pdecode_idx_out", out_sel, OutSel.RT.value,
- OutSel.RT_OR_ZERO.value, out, o_isvec)
- if out_sel == OutSel.RT.value:
- return out, o_isvec
- print ("get_pdecode_idx_out not found", name)
- return None, False
-
-
-# XXX TODO
-def get_pdecode_idx_out2(dec2, name):
- op = dec2.dec.op
- print ("TODO: get_pdecode_idx_out2", name)
- return None, False
-
-
-class ISACaller:
- # decoder2 - an instance of power_decoder2
- # regfile - a list of initial values for the registers
- # initial_{etc} - initial values for SPRs, Condition Register, Mem, MSR
- # respect_pc - tracks the program counter. requires initial_insns
- def __init__(self, decoder2, regfile, initial_sprs=None, initial_cr=0,
- initial_mem=None, initial_msr=0,
- initial_svstate=0,
- initial_insns=None, respect_pc=False,
- disassembly=None,
- initial_pc=0,
- bigendian=False,
- mmu=False,
- icachemmu=False):
-
- self.bigendian = bigendian
- self.halted = False
- self.is_svp64_mode = False
- self.respect_pc = respect_pc
- if initial_sprs is None:
- initial_sprs = {}
- if initial_mem is None:
- initial_mem = {}
- if initial_insns is None:
- initial_insns = {}
- assert self.respect_pc == False, "instructions required to honor pc"
-
- print("ISACaller insns", respect_pc, initial_insns, disassembly)
- print("ISACaller initial_msr", initial_msr)
-
- # "fake program counter" mode (for unit testing)
- self.fake_pc = 0
- disasm_start = 0
- if not respect_pc:
- if isinstance(initial_mem, tuple):
- self.fake_pc = initial_mem[0]
- disasm_start = self.fake_pc
- else:
- disasm_start = initial_pc
-
- # disassembly: we need this for now (not given from the decoder)
- self.disassembly = {}
- if disassembly:
- for i, code in enumerate(disassembly):
- self.disassembly[i*4 + disasm_start] = code
-
- # set up registers, instruction memory, data memory, PC, SPRs, MSR
- self.svp64rm = SVP64RM()
- if initial_svstate is None:
- initial_svstate = 0
- if isinstance(initial_svstate, int):
- initial_svstate = SVP64State(initial_svstate)
- self.svstate = initial_svstate
- self.gpr = GPR(decoder2, self, self.svstate, regfile)
- self.spr = SPR(decoder2, initial_sprs) # initialise SPRs before MMU
- self.mem = Mem(row_bytes=8, initial_mem=initial_mem)
- self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
- # MMU mode, redirect underlying Mem through RADIX
- self.msr = SelectableInt(initial_msr, 64) # underlying reg
- if mmu:
- self.mem = RADIX(self.mem, self)
- if icachemmu:
- self.imem = RADIX(self.imem, self)
- self.pc = PC()
-
- # TODO, needed here:
- # FPR (same as GPR except for FP nums)
- # 4.2.2 p124 FPSCR (definitely "separate" - not in SPR)
- # note that mffs, mcrfs, mtfsf "manage" this FPSCR
- # 2.3.1 CR (and sub-fields CR0..CR6 - CR0 SO comes from XER.SO)
- # note that mfocrf, mfcr, mtcr, mtocrf, mcrxrx "manage" CRs
- # -- Done
- # 2.3.2 LR (actually SPR #8) -- Done
- # 2.3.3 CTR (actually SPR #9) -- Done
- # 2.3.4 TAR (actually SPR #815)
- # 3.2.2 p45 XER (actually SPR #1) -- Done
- # 3.2.3 p46 p232 VRSAVE (actually SPR #256)
-
- # create CR then allow portions of it to be "selectable" (below)
- #rev_cr = int('{:016b}'.format(initial_cr)[::-1], 2)
- self.cr = SelectableInt(initial_cr, 64) # underlying reg
- #self.cr = FieldSelectableInt(self._cr, list(range(32, 64)))
-
- # "undefined", just set to variable-bit-width int (use exts "max")
- #self.undefined = SelectableInt(0, 256) # TODO, not hard-code 256!
-
- self.namespace = {}
- self.namespace.update(self.spr)
- self.namespace.update({'GPR': self.gpr,
- 'MEM': self.mem,
- 'SPR': self.spr,
- 'memassign': self.memassign,
- 'NIA': self.pc.NIA,
- 'CIA': self.pc.CIA,
- 'SVSTATE': self.svstate.spr,
- 'CR': self.cr,
- 'MSR': self.msr,
- 'undefined': undefined,
- 'mode_is_64bit': True,
- 'SO': XER_bits['SO']
- })
-
- # update pc to requested start point
- self.set_pc(initial_pc)
-
- # field-selectable versions of Condition Register TODO check bitranges?
- self.crl = []
- for i in range(8):
- bits = tuple(range(i*4+32, (i+1)*4+32)) # errr... maybe?
- _cr = FieldSelectableInt(self.cr, bits)
- self.crl.append(_cr)
- self.namespace["CR%d" % i] = _cr
-
- self.decoder = decoder2.dec
- self.dec2 = decoder2
-
- def TRAP(self, trap_addr=0x700, trap_bit=PIb.TRAP):
- print("TRAP:", hex(trap_addr), hex(self.namespace['MSR'].value))
- # store CIA(+4?) in SRR0, set NIA to 0x700
- # store MSR in SRR1, set MSR to um errr something, have to check spec
- self.spr['SRR0'].value = self.pc.CIA.value
- self.spr['SRR1'].value = self.namespace['MSR'].value
- self.trap_nia = SelectableInt(trap_addr, 64)
- self.spr['SRR1'][trap_bit] = 1 # change *copy* of MSR in SRR1
-
- # set exception bits. TODO: this should, based on the address
- # in figure 66 p1065 V3.0B and the table figure 65 p1063 set these
- # bits appropriately. however it turns out that *for now* in all
- # cases (all trap_addrs) the exact same thing is needed.
- self.msr[MSRb.IR] = 0
- self.msr[MSRb.DR] = 0
- self.msr[MSRb.FE0] = 0
- self.msr[MSRb.FE1] = 0
- self.msr[MSRb.EE] = 0
- self.msr[MSRb.RI] = 0
- self.msr[MSRb.SF] = 1
- self.msr[MSRb.TM] = 0
- self.msr[MSRb.VEC] = 0
- self.msr[MSRb.VSX] = 0
- self.msr[MSRb.PR] = 0
- self.msr[MSRb.FP] = 0
- self.msr[MSRb.PMM] = 0
- self.msr[MSRb.TEs] = 0
- self.msr[MSRb.TEe] = 0
- self.msr[MSRb.UND] = 0
- self.msr[MSRb.LE] = 1
-
- def memassign(self, ea, sz, val):
- self.mem.memassign(ea, sz, val)
-
- def prep_namespace(self, formname, op_fields):
- # TODO: get field names from form in decoder*1* (not decoder2)
- # decoder2 is hand-created, and decoder1.sigform is auto-generated
- # from spec
- # then "yield" fields only from op_fields rather than hard-coded
- # list, here.
- fields = self.decoder.sigforms[formname]
- for name in op_fields:
- if name == 'spr':
- sig = getattr(fields, name.upper())
- else:
- sig = getattr(fields, name)
- val = yield sig
- # these are all opcode fields involved in index-selection of CR,
- # and need to do "standard" arithmetic. CR[BA+32] for example
- # would, if using SelectableInt, only be 5-bit.
- if name in ['BF', 'BFA', 'BC', 'BA', 'BB', 'BT', 'BI']:
- self.namespace[name] = val
- else:
- self.namespace[name] = SelectableInt(val, sig.width)
-
- self.namespace['XER'] = self.spr['XER']
- self.namespace['CA'] = self.spr['XER'][XER_bits['CA']].value
- self.namespace['CA32'] = self.spr['XER'][XER_bits['CA32']].value
-
- def handle_carry_(self, inputs, outputs, already_done):
- inv_a = yield self.dec2.e.do.invert_in
- if inv_a:
- inputs[0] = ~inputs[0]
-
- imm_ok = yield self.dec2.e.do.imm_data.ok
- if imm_ok:
- imm = yield self.dec2.e.do.imm_data.data
- inputs.append(SelectableInt(imm, 64))
- assert len(outputs) >= 1
- print("outputs", repr(outputs))
- if isinstance(outputs, list) or isinstance(outputs, tuple):
- output = outputs[0]
- else:
- output = outputs
- gts = []
- for x in inputs:
- print("gt input", x, output)
- gt = (gtu(x, output))
- gts.append(gt)
- print(gts)
- cy = 1 if any(gts) else 0
- print("CA", cy, gts)
- if not (1 & already_done):
- self.spr['XER'][XER_bits['CA']] = cy
-
- print("inputs", already_done, inputs)
- # 32 bit carry
- # ARGH... different for OP_ADD... *sigh*...
- op = yield self.dec2.e.do.insn_type
- if op == MicrOp.OP_ADD.value:
- res32 = (output.value & (1 << 32)) != 0
- a32 = (inputs[0].value & (1 << 32)) != 0
- if len(inputs) >= 2:
- b32 = (inputs[1].value & (1 << 32)) != 0
- else:
- b32 = False
- cy32 = res32 ^ a32 ^ b32
- print("CA32 ADD", cy32)
- else:
- gts = []
- for x in inputs:
- print("input", x, output)
- print(" x[32:64]", x, x[32:64])
- print(" o[32:64]", output, output[32:64])
- gt = (gtu(x[32:64], output[32:64])) == SelectableInt(1, 1)
- gts.append(gt)
- cy32 = 1 if any(gts) else 0
- print("CA32", cy32, gts)
- if not (2 & already_done):
- self.spr['XER'][XER_bits['CA32']] = cy32
-
- def handle_overflow(self, inputs, outputs, div_overflow):
- if hasattr(self.dec2.e.do, "invert_in"):
- inv_a = yield self.dec2.e.do.invert_in
- if inv_a:
- inputs[0] = ~inputs[0]
-
- imm_ok = yield self.dec2.e.do.imm_data.ok
- if imm_ok:
- imm = yield self.dec2.e.do.imm_data.data
- inputs.append(SelectableInt(imm, 64))
- assert len(outputs) >= 1
- print("handle_overflow", inputs, outputs, div_overflow)
- if len(inputs) < 2 and div_overflow is None:
- return
-
- # div overflow is different: it's returned by the pseudo-code
- # because it's more complex than can be done by analysing the output
- if div_overflow is not None:
- ov, ov32 = div_overflow, div_overflow
- # arithmetic overflow can be done by analysing the input and output
- elif len(inputs) >= 2:
- output = outputs[0]
-
- # OV (64-bit)
- input_sgn = [exts(x.value, x.bits) < 0 for x in inputs]
- output_sgn = exts(output.value, output.bits) < 0
- ov = 1 if input_sgn[0] == input_sgn[1] and \
- output_sgn != input_sgn[0] else 0
-
- # OV (32-bit)
- input32_sgn = [exts(x.value, 32) < 0 for x in inputs]
- output32_sgn = exts(output.value, 32) < 0
- ov32 = 1 if input32_sgn[0] == input32_sgn[1] and \
- output32_sgn != input32_sgn[0] else 0
-
- self.spr['XER'][XER_bits['OV']] = ov
- self.spr['XER'][XER_bits['OV32']] = ov32
- so = self.spr['XER'][XER_bits['SO']]
- so = so | ov
- self.spr['XER'][XER_bits['SO']] = so
-
- def handle_comparison(self, outputs, cr_idx=0):
- out = outputs[0]
- assert isinstance(out, SelectableInt), \
- "out zero not a SelectableInt %s" % repr(outputs)
- print("handle_comparison", out.bits, hex(out.value))
- # TODO - XXX *processor* in 32-bit mode
- # https://bugs.libre-soc.org/show_bug.cgi?id=424
- # if is_32bit:
- # o32 = exts(out.value, 32)
- # print ("handle_comparison exts 32 bit", hex(o32))
- out = exts(out.value, out.bits)
- print("handle_comparison exts", hex(out))
- zero = SelectableInt(out == 0, 1)
- positive = SelectableInt(out > 0, 1)
- negative = SelectableInt(out < 0, 1)
- SO = self.spr['XER'][XER_bits['SO']]
- print("handle_comparison SO", SO)
- cr_field = selectconcat(negative, positive, zero, SO)
- self.crl[cr_idx].eq(cr_field)
-
- def set_pc(self, pc_val):
- self.namespace['NIA'] = SelectableInt(pc_val, 64)
- self.pc.update(self.namespace, self.is_svp64_mode)
-
- def setup_one(self):
- """set up one instruction
- """
- if self.respect_pc:
- pc = self.pc.CIA.value
- else:
- pc = self.fake_pc
- self._pc = pc
- ins = self.imem.ld(pc, 4, False, True, instr_fetch=True)
- if ins is None:
- raise KeyError("no instruction at 0x%x" % pc)
- print("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
- print("CIA NIA", self.respect_pc, self.pc.CIA.value, self.pc.NIA.value)
-
- yield self.dec2.sv_rm.eq(0)
- yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff)
- yield self.dec2.dec.bigendian.eq(self.bigendian)
- yield self.dec2.state.msr.eq(self.msr.value)
- yield self.dec2.state.pc.eq(pc)
- if self.svstate is not None:
- yield self.dec2.state.svstate.eq(self.svstate.spr.value)
-
- # SVP64. first, check if the opcode is EXT001, and SVP64 id bits set
- yield Settle()
- opcode = yield self.dec2.dec.opcode_in
- pfx = SVP64PrefixFields() # TODO should probably use SVP64PrefixDecoder
- pfx.insn.value = opcode
- major = pfx.major.asint(msb0=True) # MSB0 inversion
- print ("prefix test: opcode:", major, bin(major),
- pfx.insn[7] == 0b1, pfx.insn[9] == 0b1)
- self.is_svp64_mode = ((major == 0b000001) and
- pfx.insn[7].value == 0b1 and
- pfx.insn[9].value == 0b1)
- self.pc.update_nia(self.is_svp64_mode)
- self.namespace['NIA'] = self.pc.NIA
- self.namespace['SVSTATE'] = self.svstate.spr
- if not self.is_svp64_mode:
- return
-
- # in SVP64 mode. decode/print out svp64 prefix, get v3.0B instruction
- print ("svp64.rm", bin(pfx.rm.asint(msb0=True)))
- print (" svstate.vl", self.svstate.vl.asint(msb0=True))
- print (" svstate.mvl", self.svstate.maxvl.asint(msb0=True))
- sv_rm = pfx.rm.asint(msb0=True)
- ins = self.imem.ld(pc+4, 4, False, True, instr_fetch=True)
- print(" svsetup: 0x%x 0x%x %s" % (pc+4, ins & 0xffffffff, bin(ins)))
- yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff) # v3.0B suffix
- yield self.dec2.sv_rm.eq(sv_rm) # svp64 prefix
- yield Settle()
-
- def execute_one(self):
- """execute one instruction
- """
- # get the disassembly code for this instruction
- if self.is_svp64_mode:
- code = self.disassembly[self._pc+4]
- print(" svp64 sim-execute", hex(self._pc), code)
- else:
- code = self.disassembly[self._pc]
- print("sim-execute", hex(self._pc), code)
- opname = code.split(' ')[0]
- yield from self.call(opname)
-
- # don't use this except in special circumstances
- if not self.respect_pc:
- self.fake_pc += 4
-
- print("execute one, CIA NIA", self.pc.CIA.value, self.pc.NIA.value)
-
- def get_assembly_name(self):
- # TODO, asmregs is from the spec, e.g. add RT,RA,RB
- # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
- dec_insn = yield self.dec2.e.do.insn
- asmcode = yield self.dec2.dec.op.asmcode
- print("get assembly name asmcode", asmcode, hex(dec_insn))
- asmop = insns.get(asmcode, None)
- int_op = yield self.dec2.dec.op.internal_op
-
- # sigh reconstruct the assembly instruction name
- if hasattr(self.dec2.e.do, "oe"):
- ov_en = yield self.dec2.e.do.oe.oe
- ov_ok = yield self.dec2.e.do.oe.ok
- else:
- ov_en = False
- ov_ok = False
- if hasattr(self.dec2.e.do, "rc"):
- rc_en = yield self.dec2.e.do.rc.rc
- rc_ok = yield self.dec2.e.do.rc.ok
- else:
- rc_en = False
- rc_ok = False
- # grrrr have to special-case MUL op (see DecodeOE)
- print("ov %d en %d rc %d en %d op %d" %
- (ov_ok, ov_en, rc_ok, rc_en, int_op))
- if int_op in [MicrOp.OP_MUL_H64.value, MicrOp.OP_MUL_H32.value]:
- print("mul op")
- if rc_en & rc_ok:
- asmop += "."
- else:
- if not asmop.endswith("."): # don't add "." to "andis."
- if rc_en & rc_ok:
- asmop += "."
- if hasattr(self.dec2.e.do, "lk"):
- lk = yield self.dec2.e.do.lk
- if lk:
- asmop += "l"
- print("int_op", int_op)
- if int_op in [MicrOp.OP_B.value, MicrOp.OP_BC.value]:
- AA = yield self.dec2.dec.fields.FormI.AA[0:-1]
- print("AA", AA)
- if AA:
- asmop += "a"
- spr_msb = yield from self.get_spr_msb()
- if int_op == MicrOp.OP_MFCR.value:
- if spr_msb:
- asmop = 'mfocrf'
- else:
- asmop = 'mfcr'
- # XXX TODO: for whatever weird reason this doesn't work
- # https://bugs.libre-soc.org/show_bug.cgi?id=390
- if int_op == MicrOp.OP_MTCRF.value:
- if spr_msb:
- asmop = 'mtocrf'
- else:
- asmop = 'mtcrf'
- return asmop
-
- def get_spr_msb(self):
- dec_insn = yield self.dec2.e.do.insn
- return dec_insn & (1 << 20) != 0 # sigh - XFF.spr[-1]?
-
- def call(self, name):
- """call(opcode) - the primary execution point for instructions
- """
- name = name.strip() # remove spaces if not already done so
- if self.halted:
- print("halted - not executing", name)
- return
-
- # TODO, asmregs is from the spec, e.g. add RT,RA,RB
- # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
- asmop = yield from self.get_assembly_name()
- print("call", name, asmop)
-
- # check privileged
- int_op = yield self.dec2.dec.op.internal_op
- spr_msb = yield from self.get_spr_msb()
-
- instr_is_privileged = False
- if int_op in [MicrOp.OP_ATTN.value,
- MicrOp.OP_MFMSR.value,
- MicrOp.OP_MTMSR.value,
- MicrOp.OP_MTMSRD.value,
- # TODO: OP_TLBIE
- MicrOp.OP_RFID.value]:
- instr_is_privileged = True
- if int_op in [MicrOp.OP_MFSPR.value,
- MicrOp.OP_MTSPR.value] and spr_msb:
- instr_is_privileged = True
-
- print("is priv", instr_is_privileged, hex(self.msr.value),
- self.msr[MSRb.PR])
- # check MSR priv bit and whether op is privileged: if so, throw trap
- if instr_is_privileged and self.msr[MSRb.PR] == 1:
- self.TRAP(0x700, PIb.PRIV)
- self.namespace['NIA'] = self.trap_nia
- self.pc.update(self.namespace, self.is_svp64_mode)
- return
-
- # check halted condition
- if name == 'attn':
- self.halted = True
- return
-
- # check illegal instruction
- illegal = False
- if name not in ['mtcrf', 'mtocrf']:
- illegal = name != asmop
-
- # sigh deal with setvl not being supported by binutils (.long)
- if asmop.startswith('setvl'):
- illegal = False
- name = 'setvl'
-
- if illegal:
- print("illegal", name, asmop)
- self.TRAP(0x700, PIb.ILLEG)
- self.namespace['NIA'] = self.trap_nia
- self.pc.update(self.namespace, self.is_svp64_mode)
- print("name %s != %s - calling ILLEGAL trap, PC: %x" %
- (name, asmop, self.pc.CIA.value))
- return
-
- info = self.instrs[name]
- yield from self.prep_namespace(info.form, info.op_fields)
-
- # preserve order of register names
- input_names = create_args(list(info.read_regs) +
- list(info.uninit_regs))
- print(input_names)
-
- # get SVP64 entry for the current instruction
- sv_rm = self.svp64rm.instrs.get(name)
- if sv_rm is not None:
- dest_cr, src_cr, src_byname, dest_byname = decode_extra(sv_rm)
- else:
- dest_cr, src_cr, src_byname, dest_byname = False, False, {}, {}
- print ("sv rm", sv_rm, dest_cr, src_cr, src_byname, dest_byname)
-
- # get SVSTATE VL (oh and print out some debug stuff)
- if self.is_svp64_mode:
- vl = self.svstate.vl.asint(msb0=True)
- srcstep = self.svstate.srcstep.asint(msb0=True)
- dststep = self.svstate.dststep.asint(msb0=True)
- sv_a_nz = yield self.dec2.sv_a_nz
- in1 = yield self.dec2.e.read_reg1.data
- print ("SVP64: VL, srcstep, dststep, sv_a_nz, in1",
- vl, srcstep, dststep, sv_a_nz, in1)
-
- # get predicate mask
- srcmask = dstmask = 0xffff_ffff_ffff_ffff
- if self.is_svp64_mode:
- pmode = yield self.dec2.rm_dec.predmode
- sv_ptype = yield self.dec2.dec.op.SV_Ptype
- srcpred = yield self.dec2.rm_dec.srcpred
- dstpred = yield self.dec2.rm_dec.dstpred
- pred_src_zero = yield self.dec2.rm_dec.pred_sz
- pred_dst_zero = yield self.dec2.rm_dec.pred_dz
- if pmode == SVP64PredMode.INT.value:
- srcmask = dstmask = get_predint(self.gpr, dstpred)
- if sv_ptype == SVPtype.P2.value:
- srcmask = get_predint(self.gpr, srcpred)
- elif pmode == SVP64PredMode.CR.value:
- srcmask = dstmask = get_predcr(self.crl, dstpred, vl)
- if sv_ptype == SVPtype.P2.value:
- srcmask = get_predcr(self.crl, srcpred, vl)
- print (" pmode", pmode)
- print (" ptype", sv_ptype)
- print (" srcpred", bin(srcpred))
- print (" dstpred", bin(dstpred))
- print (" srcmask", bin(srcmask))
- print (" dstmask", bin(dstmask))
- print (" pred_sz", bin(pred_src_zero))
- print (" pred_dz", bin(pred_dst_zero))
-
- # okaaay, so here we simply advance srcstep (TODO dststep)
- # until the predicate mask has a "1" bit... or we run out of VL
- # let srcstep==VL be the indicator to move to next instruction
- if not pred_src_zero:
- while (((1<<srcstep) & srcmask) == 0) and (srcstep != vl):
- print (" skip", bin(1<<srcstep))
- srcstep += 1
- # same for dststep
- if not pred_dst_zero:
- while (((1<<dststep) & dstmask) == 0) and (dststep != vl):
- print (" skip", bin(1<<dststep))
- dststep += 1
-
- # now work out if the relevant mask bits require zeroing
- if pred_dst_zero:
- pred_dst_zero = ((1<<dststep) & dstmask) == 0
- if pred_src_zero:
- pred_src_zero = ((1<<srcstep) & srcmask) == 0
-
- # update SVSTATE with new srcstep
- self.svstate.srcstep[0:7] = srcstep
- self.svstate.dststep[0:7] = dststep
- self.namespace['SVSTATE'] = self.svstate.spr
- yield self.dec2.state.svstate.eq(self.svstate.spr.value)
- yield Settle() # let decoder update
- srcstep = self.svstate.srcstep.asint(msb0=True)
- dststep = self.svstate.dststep.asint(msb0=True)
- print (" srcstep", srcstep)
- print (" dststep", dststep)
-
- # check if end reached (we let srcstep overrun, above)
- # nothing needs doing (TODO zeroing): just do next instruction
- if srcstep == vl or dststep == vl:
- self.svp64_reset_loop()
- self.update_pc_next()
- return
-
- # VL=0 in SVP64 mode means "do nothing: skip instruction"
- if self.is_svp64_mode and vl == 0:
- self.pc.update(self.namespace, self.is_svp64_mode)
- print("SVP64: VL=0, end of call", self.namespace['CIA'],
- self.namespace['NIA'])
- return
-
- # main input registers (RT, RA ...)
- inputs = []
- for name in input_names:
- # using PowerDecoder2, first, find the decoder index.
- # (mapping name RA RB RC RS to in1, in2, in3)
- regnum, is_vec = yield from get_pdecode_idx_in(self.dec2, name)
- if regnum is None:
- # doing this is not part of svp64, it's because output
- # registers, to be modified, need to be in the namespace.
- regnum, is_vec = yield from get_pdecode_idx_out(self.dec2, name)
-
- # in case getting the register number is needed, _RA, _RB
- regname = "_" + name
- self.namespace[regname] = regnum
- if not self.is_svp64_mode or not pred_src_zero:
- print('reading reg %s %s' % (name, str(regnum)), is_vec)
- reg_val = self.gpr(regnum)
- else:
- print('zero input reg %s %s' % (name, str(regnum)), is_vec)
- reg_val = 0
- inputs.append(reg_val)
-
- # "special" registers
- for special in info.special_regs:
- if special in special_sprs:
- inputs.append(self.spr[special])
- else:
- inputs.append(self.namespace[special])
-
- # clear trap (trap) NIA
- self.trap_nia = None
-
- # execute actual instruction here
- print("inputs", inputs)
- results = info.func(self, *inputs)
- print("results", results)
-
- # "inject" decorator takes namespace from function locals: we need to
- # overwrite NIA being overwritten (sigh)
- if self.trap_nia is not None:
- self.namespace['NIA'] = self.trap_nia
-
- print("after func", self.namespace['CIA'], self.namespace['NIA'])
-
- # detect if CA/CA32 already in outputs (sra*, basically)
- already_done = 0
- if info.write_regs:
- output_names = create_args(info.write_regs)
- for name in output_names:
- if name == 'CA':
- already_done |= 1
- if name == 'CA32':
- already_done |= 2
-
- print("carry already done?", bin(already_done))
- if hasattr(self.dec2.e.do, "output_carry"):
- carry_en = yield self.dec2.e.do.output_carry
- else:
- carry_en = False
- if carry_en:
- yield from self.handle_carry_(inputs, results, already_done)
-
- if not self.is_svp64_mode: # yeah just no. not in parallel processing
- # detect if overflow was in return result
- overflow = None
- if info.write_regs:
- for name, output in zip(output_names, results):
- if name == 'overflow':
- overflow = output
-
- if hasattr(self.dec2.e.do, "oe"):
- ov_en = yield self.dec2.e.do.oe.oe
- ov_ok = yield self.dec2.e.do.oe.ok
- else:
- ov_en = False
- ov_ok = False
- print("internal overflow", overflow, ov_en, ov_ok)
- if ov_en & ov_ok:
- yield from self.handle_overflow(inputs, results, overflow)
-
- # only do SVP64 dest predicated Rc=1 if dest-pred is not enabled
- rc_en = False
- if not self.is_svp64_mode or not pred_dst_zero:
- if hasattr(self.dec2.e.do, "rc"):
- rc_en = yield self.dec2.e.do.rc.rc
- if rc_en:
- regnum, is_vec = yield from get_pdecode_cr_out(self.dec2, "CR0")
- self.handle_comparison(results, regnum)
-
- # any modified return results?
- if info.write_regs:
- for name, output in zip(output_names, results):
- if name == 'overflow': # ignore, done already (above)
- continue
- if isinstance(output, int):
- output = SelectableInt(output, 256)
- if name in ['CA', 'CA32']:
- if carry_en:
- print("writing %s to XER" % name, output)
- self.spr['XER'][XER_bits[name]] = output.value
- else:
- print("NOT writing %s to XER" % name, output)
- elif name in info.special_regs:
- print('writing special %s' % name, output, special_sprs)
- if name in special_sprs:
- self.spr[name] = output
- else:
- self.namespace[name].eq(output)
- if name == 'MSR':
- print('msr written', hex(self.msr.value))
- else:
- regnum, is_vec = yield from get_pdecode_idx_out(self.dec2,
- name)
- if regnum is None:
- # temporary hack for not having 2nd output
- regnum = yield getattr(self.decoder, name)
- is_vec = False
- if self.is_svp64_mode and pred_dst_zero:
- print('zeroing reg %d %s' % (regnum, str(output)),
- is_vec)
- output = SelectableInt(0, 256)
- else:
- print('writing reg %d %s' % (regnum, str(output)),
- is_vec)
- if output.bits > 64:
- output = SelectableInt(output.value, 64)
- self.gpr[regnum] = output
-
- # check if it is the SVSTATE.src/dest step that needs incrementing
- # this is our Sub-Program-Counter loop from 0 to VL-1
- if self.is_svp64_mode:
- # XXX twin predication TODO
- vl = self.svstate.vl.asint(msb0=True)
- mvl = self.svstate.maxvl.asint(msb0=True)
- srcstep = self.svstate.srcstep.asint(msb0=True)
- dststep = self.svstate.dststep.asint(msb0=True)
- sv_ptype = yield self.dec2.dec.op.SV_Ptype
- no_out_vec = not (yield self.dec2.no_out_vec)
- no_in_vec = not (yield self.dec2.no_in_vec)
- print (" svstate.vl", vl)
- print (" svstate.mvl", mvl)
- print (" svstate.srcstep", srcstep)
- print (" svstate.dststep", dststep)
- print (" no_out_vec", no_out_vec)
- print (" no_in_vec", no_in_vec)
- print (" sv_ptype", sv_ptype, sv_ptype == SVPtype.P2.value)
- # check if srcstep needs incrementing by one, stop PC advancing
- # svp64 loop can end early if the dest is scalar for single-pred
- # but for 2-pred both src/dest have to be checked.
- # XXX this might not be true! it may just be LD/ST
- if sv_ptype == SVPtype.P2.value:
- svp64_is_vector = (no_out_vec or no_in_vec)
- else:
- svp64_is_vector = no_out_vec
- if svp64_is_vector and srcstep != vl-1 and dststep != vl-1:
- self.svstate.srcstep += SelectableInt(1, 7)
- self.svstate.dststep += SelectableInt(1, 7)
- self.pc.NIA.value = self.pc.CIA.value
- self.namespace['NIA'] = self.pc.NIA
- self.namespace['SVSTATE'] = self.svstate.spr
- print("end of sub-pc call", self.namespace['CIA'],
- self.namespace['NIA'])
- return # DO NOT allow PC to update whilst Sub-PC loop running
- # reset loop to zero
- self.svp64_reset_loop()
-
- self.update_pc_next()
-
- def update_pc_next(self):
- # UPDATE program counter
- self.pc.update(self.namespace, self.is_svp64_mode)
- self.svstate.spr = self.namespace['SVSTATE']
- print("end of call", self.namespace['CIA'],
- self.namespace['NIA'],
- self.namespace['SVSTATE'])
-
- def svp64_reset_loop(self):
- self.svstate.srcstep[0:7] = 0
- self.svstate.dststep[0:7] = 0
- print (" svstate.srcstep loop end (PC to update)")
- self.pc.update_nia(self.is_svp64_mode)
- self.namespace['NIA'] = self.pc.NIA
- self.namespace['SVSTATE'] = self.svstate.spr
-
-def inject():
- """Decorator factory.
-
- this decorator will "inject" variables into the function's namespace,
- from the *dictionary* in self.namespace. it therefore becomes possible
- to make it look like a whole stack of variables which would otherwise
- need "self." inserted in front of them (*and* for those variables to be
- added to the instance) "appear" in the function.
-
- "self.namespace['SI']" for example becomes accessible as just "SI" but
- *only* inside the function, when decorated.
- """
- def variable_injector(func):
- @wraps(func)
- def decorator(*args, **kwargs):
- try:
- func_globals = func.__globals__ # Python 2.6+
- except AttributeError:
- func_globals = func.func_globals # Earlier versions.
-
- context = args[0].namespace # variables to be injected
- saved_values = func_globals.copy() # Shallow copy of dict.
- func_globals.update(context)
- result = func(*args, **kwargs)
- print("globals after", func_globals['CIA'], func_globals['NIA'])
- print("args[0]", args[0].namespace['CIA'],
- args[0].namespace['NIA'],
- args[0].namespace['SVSTATE'])
- args[0].namespace = func_globals
- #exec (func.__code__, func_globals)
-
- # finally:
- # func_globals = saved_values # Undo changes.
-
- return result
-
- return decorator
-
- return variable_injector
-
+# moved to openpower-isa
+# https://git.libre-soc.org/?p=openpower-isa.git;a=summary
+# wildcard imports here ONLY to support migration
+from openpower.decoder.isa.caller import *