--- /dev/null
+# SPDX-License-Identifier: LGPL-3-or-later
+# Copyright 2022 Jacob Lifshay programmerjake@gmail.com
+
+# Funded by NLnet Assure Programme 2021-02-052, https://nlnet.nl/assure part
+# of Horizon 2020 EU Programme 957073.
+
+from collections import defaultdict
+from dataclasses import dataclass
+import operator
+
+
+@dataclass(order=True, unsafe_hash=True, frozen=True)
+class Op:
+ """An associative operation in a prefix-sum.
+ The operation is `items[self.out] = fn(items[self.lhs], items[self.rhs])`.
+ The operation is not assumed to be commutative.
+ """
+ out: int
+ """the index of the item to output to"""
+ lhs: int
+ """the index of the item the left-hand-side input comes from"""
+ rhs: int
+ """the index of the item the right-hand-side input comes from"""
+ row: int
+ """the row in the prefix-sum diagram"""
+
+
+def prefix_sum_ops(item_count, *, work_efficient=False):
+ """ Get the associative operations needed to compute a parallel prefix-sum of
+ `item_count` items.
+
+ The operations aren't assumed to be commutative.
+
+ This has a depth of `O(log(N))` and an operation count of `O(N)` if
+ `work_efficient` is true, otherwise `O(N*log(N))`.
+
+ The algorithms used are derived from:
+ https://en.wikipedia.org/wiki/Prefix_sum#Algorithm_1:_Shorter_span,_more_parallel
+ https://en.wikipedia.org/wiki/Prefix_sum#Algorithm_2:_Work-efficient
+
+ Parameters:
+ item_count: int
+ number of input items.
+ work_efficient: bool
+ True if the algorithm used should be work-efficient -- has a larger
+ depth (about twice as large) but does only `O(N)` operations total
+ instead of `O(N*log(N))`.
+ Returns: Iterable[Op]
+ output associative operations.
+ """
+ assert isinstance(item_count, int)
+ # compute the partial sums using a set of binary trees
+ # this is the first half of the work-efficient algorithm and the whole of
+ # the non-work-efficient algorithm.
+ dist = 1
+ row = 0
+ while dist < item_count:
+ start = dist * 2 - 1 if work_efficient else dist
+ step = dist * 2 if work_efficient else 1
+ for i in reversed(range(start, item_count, step)):
+ yield Op(out=i, lhs=i - dist, rhs=i, row=row)
+ dist <<= 1
+ row += 1
+ if work_efficient:
+ # express all output items in terms of the computed partial sums.
+ dist >>= 1
+ while dist >= 1:
+ for i in reversed(range(dist * 3 - 1, item_count, dist * 2)):
+ yield Op(out=i, lhs=i - dist, rhs=i, row=row)
+ row += 1
+ dist >>= 1
+
+
+def prefix_sum(items, fn=operator.add, *, work_efficient=False):
+ """ Compute the parallel prefix-sum of `items`, using associative operator
+ `fn` instead of addition.
+
+ This has a depth of `O(log(N))` and an operation count of `O(N)` if
+ `work_efficient` is true, otherwise `O(N*log(N))`.
+
+ The algorithms used are derived from:
+ https://en.wikipedia.org/wiki/Prefix_sum#Algorithm_1:_Shorter_span,_more_parallel
+ https://en.wikipedia.org/wiki/Prefix_sum#Algorithm_2:_Work-efficient
+
+ Parameters:
+ items: Iterable[_T]
+ input items.
+ fn: Callable[[_T, _T], _T]
+ Operation to use for the prefix-sum algorithm instead of addition.
+ Assumed to be associative not necessarily commutative.
+ work_efficient: bool
+ True if the algorithm used should be work-efficient -- has a larger
+ depth (about twice as large) but does only `O(N)` operations total
+ instead of `O(N*log(N))`.
+ Returns: list[_T]
+ output items.
+ """
+ items = list(items)
+ for op in prefix_sum_ops(len(items), work_efficient=work_efficient):
+ items[op.out] = fn(items[op.lhs], items[op.rhs])
+ return items
+
+
+@dataclass
+class _Cell:
+ slant: bool
+ plus: bool
+ tee: bool
+
+
+def render_prefix_sum_diagram(item_count, *, work_efficient=False,
+ sp=" ", vbar="|", plus="⊕",
+ slant="\\", connect="●", no_connect="X",
+ padding=1,
+ ):
+ """renders a prefix-sum diagram, matches `prefix_sum_ops`.
+
+ Parameters:
+ item_count: int
+ number of input items.
+ work_efficient: bool
+ True if the algorithm used should be work-efficient -- has a larger
+ depth (about twice as large) but does only `O(N)` operations total
+ instead of `O(N*log(N))`.
+ sp: str
+ character used for blank space
+ vbar: str
+ character used for a vertical bar
+ plus: str
+ character used for the addition operation
+ slant: str
+ character used to draw a line from the top left to the bottom right
+ connect: str
+ character used to draw a connection between a vertical line and a line
+ going from the center of this character to the bottom right
+ no_connect: str
+ character used to draw two lines crossing but not connecting, the lines
+ are vertical and diagonal from top left to the bottom right
+ padding: int
+ amount of padding characters in the output cells.
+ Returns: str
+ rendered diagram
+ """
+ assert isinstance(item_count, int)
+ assert isinstance(padding, int)
+ ops_by_row = defaultdict(set)
+ for op in prefix_sum_ops(item_count, work_efficient=work_efficient):
+ assert op.out == op.rhs, f"can't draw op: {op}"
+ assert op not in ops_by_row[op.row], f"duplicate op: {op}"
+ ops_by_row[op.row].add(op)
+
+ def blank_row():
+ return [_Cell(slant=False, plus=False, tee=False) for _ in range(item_count)]
+
+ cells = [blank_row()]
+
+ for row in sorted(ops_by_row.keys()):
+ ops = ops_by_row[row]
+ max_distance = max(op.rhs - op.lhs for op in ops)
+ cells.extend(blank_row() for _ in range(max_distance))
+ for op in ops:
+ assert op.lhs < op.rhs and op.out == op.rhs, f"can't draw op: {op}"
+ y = len(cells) - 1
+ x = op.out
+ cells[y][x].plus = True
+ x -= 1
+ y -= 1
+ while op.lhs < x:
+ cells[y][x].slant = True
+ x -= 1
+ y -= 1
+ cells[y][x].tee = True
+
+ lines = []
+ for cells_row in cells:
+ row_text = [[] for y in range(2 * padding + 1)]
+ for cell in cells_row:
+ # top padding
+ for y in range(padding):
+ # top left padding
+ for x in range(padding):
+ is_slant = x == y and (cell.plus or cell.slant)
+ row_text[y].append(slant if is_slant else sp)
+ # top vertical bar
+ row_text[y].append(vbar)
+ # top right padding
+ for x in range(padding):
+ row_text[y].append(sp)
+ # center left padding
+ for x in range(padding):
+ row_text[padding].append(sp)
+ # center
+ center = vbar
+ if cell.plus:
+ center = plus
+ elif cell.tee:
+ center = connect
+ elif cell.slant:
+ center = no_connect
+ row_text[padding].append(center)
+ # center right padding
+ for x in range(padding):
+ row_text[padding].append(sp)
+ # bottom padding
+ for y in range(padding + 1, 2 * padding + 1):
+ # bottom left padding
+ for x in range(padding):
+ row_text[y].append(sp)
+ # bottom vertical bar
+ row_text[y].append(vbar)
+ # bottom right padding
+ for x in range(padding + 1, 2 * padding + 1):
+ is_slant = x == y and (cell.tee or cell.slant)
+ row_text[y].append(slant if is_slant else sp)
+ for line in row_text:
+ lines.append("".join(line))
+
+ return "\n".join(map(str.rstrip, lines))
+
+
+if __name__ == "__main__":
+ print("the non-work-efficient algorithm, matches the diagram in wikipedia:")
+ print("https://commons.wikimedia.org/wiki/File:Hillis-Steele_Prefix_Sum.svg")
+ print()
+ print(render_prefix_sum_diagram(16, work_efficient=False))
+ print()
+ print()
+ print("the work-efficient algorithm, matches the diagram in wikipedia:")
+ print("https://en.wikipedia.org/wiki/File:Prefix_sum_16.svg")
+ print()
+ print(render_prefix_sum_diagram(16, work_efficient=True))
+ print()
+ print()
--- /dev/null
+# SPDX-License-Identifier: LGPL-3-or-later
+# Copyright 2022 Jacob Lifshay programmerjake@gmail.com
+
+# Funded by NLnet Assure Programme 2021-02-052, https://nlnet.nl/assure part
+# of Horizon 2020 EU Programme 957073.
+
+from nmutil.formaltest import FHDLTestCase
+from itertools import accumulate
+import operator
+from nmutil.prefix_sum import prefix_sum
+import unittest
+
+
+def reference_prefix_sum(items, fn):
+ return list(accumulate(items, fn))
+
+
+class TestPrefixSum(FHDLTestCase):
+ def test_prefix_sum_str(self):
+ input_items = ("a", "b", "c", "d", "e", "f", "g", "h", "i")
+ expected = reference_prefix_sum(input_items, operator.add)
+ with self.subTest(expected=repr(expected)):
+ non_work_efficient = prefix_sum(input_items, work_efficient=False)
+ self.assertEqual(expected, non_work_efficient)
+ with self.subTest(expected=repr(expected)):
+ work_efficient = prefix_sum(input_items, work_efficient=True)
+ self.assertEqual(expected, work_efficient)
+
+ # TODO: add more tests
+
+
+if __name__ == "__main__":
+ unittest.main()