#define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
#define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
#define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
+/*
+ * 2 plane YCbCr
+ * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
+ * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
+ */
+#define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
/*
* 2 plane YCbCr MSB aligned
*/
#define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
+/* 3 plane non-subsampled (444) YCbCr
+ * 16 bits per component, but only 10 bits are used and 6 bits are padded
+ * index 0: Y plane, [15:0] Y:x [10:6] little endian
+ * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
+ * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
+ */
+#define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')
+
+/* 3 plane non-subsampled (444) YCrCb
+ * 16 bits per component, but only 10 bits are used and 6 bits are padded
+ * index 0: Y plane, [15:0] Y:x [10:6] little endian
+ * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
+ * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
+ */
+#define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1')
+
/*
* 3 plane YCbCr
* index 0: Y plane, [7:0] Y
#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
#define DRM_FORMAT_MOD_VENDOR_ARM 0x08
#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
+#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
/* add more to the end as needed */
* When adding a new token please document the layout with a code comment,
* similar to the fourcc codes above. drm_fourcc.h is considered the
* authoritative source for all of these.
+ *
+ * Generic modifier names:
+ *
+ * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
+ * for layouts which are common across multiple vendors. To preserve
+ * compatibility, in cases where a vendor-specific definition already exists and
+ * a generic name for it is desired, the common name is a purely symbolic alias
+ * and must use the same numerical value as the original definition.
+ *
+ * Note that generic names should only be used for modifiers which describe
+ * generic layouts (such as pixel re-ordering), which may have
+ * independently-developed support across multiple vendors.
+ *
+ * In future cases where a generic layout is identified before merging with a
+ * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
+ * 'NONE' could be considered. This should only be for obvious, exceptional
+ * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
+ * apply to a single vendor.
+ *
+ * Generic names should not be used for cases where multiple hardware vendors
+ * have implementations of the same standardised compression scheme (such as
+ * AFBC). In those cases, all implementations should use the same format
+ * modifier(s), reflecting the vendor of the standard.
*/
+#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
+
/*
* Invalid Modifier
*
* a platform-dependent stride. On top of that the memory can apply
* platform-depending swizzling of some higher address bits into bit6.
*
- * This format is highly platforms specific and not useful for cross-driver
- * sharing. It exists since on a given platform it does uniquely identify the
- * layout in a simple way for i915-specific userspace.
+ * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
+ * On earlier platforms the is highly platforms specific and not useful for
+ * cross-driver sharing. It exists since on a given platform it does uniquely
+ * identify the layout in a simple way for i915-specific userspace, which
+ * facilitated conversion of userspace to modifiers. Additionally the exact
+ * format on some really old platforms is not known.
*/
#define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
* memory can apply platform-depending swizzling of some higher address bits
* into bit6.
*
- * This format is highly platforms specific and not useful for cross-driver
- * sharing. It exists since on a given platform it does uniquely identify the
- * layout in a simple way for i915-specific userspace.
+ * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
+ * On earlier platforms the is highly platforms specific and not useful for
+ * cross-driver sharing. It exists since on a given platform it does uniquely
+ * identify the layout in a simple way for i915-specific userspace, which
+ * facilitated conversion of userspace to modifiers. Additionally the exact
+ * format on some really old platforms is not known.
*/
#define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
/*
- * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later
+ * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
+ * and Tegra GPUs starting with Tegra K1.
+ *
+ * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies
+ * based on the architecture generation. GOBs themselves are then arranged in
+ * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
+ * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
+ * a block depth or height of "4").
+ *
+ * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
+ * in full detail.
+ *
+ * Macro
+ * Bits Param Description
+ * ---- ----- -----------------------------------------------------------------
+ *
+ * 3:0 h log2(height) of each block, in GOBs. Placed here for
+ * compatibility with the existing
+ * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
+ *
+ * 4:4 - Must be 1, to indicate block-linear layout. Necessary for
+ * compatibility with the existing
+ * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
+ *
+ * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block
+ * size). Must be zero.
+ *
+ * Note there is no log2(width) parameter. Some portions of the
+ * hardware support a block width of two gobs, but it is impractical
+ * to use due to lack of support elsewhere, and has no known
+ * benefits.
+ *
+ * 11:9 - Reserved (To support 2D-array textures with variable array stride
+ * in blocks, specified via log2(tile width in blocks)). Must be
+ * zero.
+ *
+ * 19:12 k Page Kind. This value directly maps to a field in the page
+ * tables of all GPUs >= NV50. It affects the exact layout of bits
+ * in memory and can be derived from the tuple
+ *
+ * (format, GPU model, compression type, samples per pixel)
+ *
+ * Where compression type is defined below. If GPU model were
+ * implied by the format modifier, format, or memory buffer, page
+ * kind would not need to be included in the modifier itself, but
+ * since the modifier should define the layout of the associated
+ * memory buffer independent from any device or other context, it
+ * must be included here.
+ *
+ * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed
+ * starting with Fermi GPUs. Additionally, the mapping between page
+ * kind and bit layout has changed at various points.
+ *
+ * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
+ * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping
+ * 2 = Gob Height 8, Turing+ Page Kind mapping
+ * 3 = Reserved for future use.
+ *
+ * 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further
+ * bit remapping step that occurs at an even lower level than the
+ * page kind and block linear swizzles. This causes the layout of
+ * surfaces mapped in those SOC's GPUs to be incompatible with the
+ * equivalent mapping on other GPUs in the same system.
+ *
+ * 0 = Tegra K1 - Tegra Parker/TX2 Layout.
+ * 1 = Desktop GPU and Tegra Xavier+ Layout
+ *
+ * 25:23 c Lossless Framebuffer Compression type.
+ *
+ * 0 = none
+ * 1 = ROP/3D, layout 1, exact compression format implied by Page
+ * Kind field
+ * 2 = ROP/3D, layout 2, exact compression format implied by Page
+ * Kind field
+ * 3 = CDE horizontal
+ * 4 = CDE vertical
+ * 5 = Reserved for future use
+ * 6 = Reserved for future use
+ * 7 = Reserved for future use
+ *
+ * 55:25 - Reserved for future use. Must be zero.
+ */
+#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
+ fourcc_mod_code(NVIDIA, (0x10 | \
+ ((h) & 0xf) | \
+ (((k) & 0xff) << 12) | \
+ (((g) & 0x3) << 20) | \
+ (((s) & 0x1) << 22) | \
+ (((c) & 0x7) << 23)))
+
+/* To grandfather in prior block linear format modifiers to the above layout,
+ * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
+ * with block-linear layouts, is remapped within drivers to the value 0xfe,
+ * which corresponds to the "generic" kind used for simple single-sample
+ * uncompressed color formats on Fermi - Volta GPUs.
+ */
+static __inline__ __u64
+drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
+{
+ if (!(modifier & 0x10) || (modifier & (0xff << 12)))
+ return modifier;
+ else
+ return modifier | (0xfe << 12);
+}
+
+/*
+ * 16Bx2 Block Linear layout, used by Tegra K1 and later
*
* Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
* vertically by a power of 2 (1 to 32 GOBs) to form a block.
* in full detail.
*/
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
- fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf))
+ DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
- fourcc_mod_code(NVIDIA, 0x10)
+ DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
- fourcc_mod_code(NVIDIA, 0x11)
+ DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
- fourcc_mod_code(NVIDIA, 0x12)
+ DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
- fourcc_mod_code(NVIDIA, 0x13)
+ DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
- fourcc_mod_code(NVIDIA, 0x14)
+ DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
- fourcc_mod_code(NVIDIA, 0x15)
+ DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
/*
* Some Broadcom modifiers take parameters, for example the number of
*/
#define AFBC_FORMAT_MOD_BCH (1ULL << 11)
+/* AFBC uncompressed storage mode
+ *
+ * Indicates that the buffer is using AFBC uncompressed storage mode.
+ * In this mode all superblock payloads in the buffer use the uncompressed
+ * storage mode, which is usually only used for data which cannot be compressed.
+ * The buffer layout is the same as for AFBC buffers without USM set, this only
+ * affects the storage mode of the individual superblocks. Note that even a
+ * buffer without USM set may use uncompressed storage mode for some or all
+ * superblocks, USM just guarantees it for all.
+ */
+#define AFBC_FORMAT_MOD_USM (1ULL << 12)
+
/*
* Arm 16x16 Block U-Interleaved modifier
*
*/
#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
+/*
+ * Amlogic Video Framebuffer Compression modifiers
+ *
+ * Amlogic uses a proprietary lossless image compression protocol and format
+ * for their hardware video codec accelerators, either video decoders or
+ * video input encoders.
+ *
+ * It considerably reduces memory bandwidth while writing and reading
+ * frames in memory.
+ *
+ * The underlying storage is considered to be 3 components, 8bit or 10-bit
+ * per component YCbCr 420, single plane :
+ * - DRM_FORMAT_YUV420_8BIT
+ * - DRM_FORMAT_YUV420_10BIT
+ *
+ * The first 8 bits of the mode defines the layout, then the following 8 bits
+ * defines the options changing the layout.
+ *
+ * Not all combinations are valid, and different SoCs may support different
+ * combinations of layout and options.
+ */
+#define __fourcc_mod_amlogic_layout_mask 0xf
+#define __fourcc_mod_amlogic_options_shift 8
+#define __fourcc_mod_amlogic_options_mask 0xf
+
+#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
+ fourcc_mod_code(AMLOGIC, \
+ ((__layout) & __fourcc_mod_amlogic_layout_mask) | \
+ (((__options) & __fourcc_mod_amlogic_options_mask) \
+ << __fourcc_mod_amlogic_options_shift))
+
+/* Amlogic FBC Layouts */
+
+/*
+ * Amlogic FBC Basic Layout
+ *
+ * The basic layout is composed of:
+ * - a body content organized in 64x32 superblocks with 4096 bytes per
+ * superblock in default mode.
+ * - a 32 bytes per 128x64 header block
+ *
+ * This layout is transferrable between Amlogic SoCs supporting this modifier.
+ */
+#define AMLOGIC_FBC_LAYOUT_BASIC (1ULL)
+
+/*
+ * Amlogic FBC Scatter Memory layout
+ *
+ * Indicates the header contains IOMMU references to the compressed
+ * frames content to optimize memory access and layout.
+ *
+ * In this mode, only the header memory address is needed, thus the
+ * content memory organization is tied to the current producer
+ * execution and cannot be saved/dumped neither transferrable between
+ * Amlogic SoCs supporting this modifier.
+ *
+ * Due to the nature of the layout, these buffers are not expected to
+ * be accessible by the user-space clients, but only accessible by the
+ * hardware producers and consumers.
+ *
+ * The user-space clients should expect a failure while trying to mmap
+ * the DMA-BUF handle returned by the producer.
+ */
+#define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL)
+
+/* Amlogic FBC Layout Options Bit Mask */
+
+/*
+ * Amlogic FBC Memory Saving mode
+ *
+ * Indicates the storage is packed when pixel size is multiple of word
+ * boudaries, i.e. 8bit should be stored in this mode to save allocation
+ * memory.
+ *
+ * This mode reduces body layout to 3072 bytes per 64x32 superblock with
+ * the basic layout and 3200 bytes per 64x32 superblock combined with
+ * the scatter layout.
+ */
+#define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0)
+
#if defined(__cplusplus)
}
#endif
* cause the related events to not be seen.
*
* I915_RESET_UEVENT - Event is generated just before an attempt to reset the
- * the GPU. The value supplied with the event is always 1. NOTE: Disable
+ * GPU. The value supplied with the event is always 1. NOTE: Disable
* reset via module parameter will cause this event to not be seen.
*/
#define I915_L3_PARITY_UEVENT "L3_PARITY_ERROR"
*/
#define I915_PARAM_PERF_REVISION 54
+/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
+ * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
+ * I915_EXEC_USE_EXTENSIONS.
+ */
+#define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
+
/* Must be kept compact -- no holes and well documented */
typedef struct drm_i915_getparam {
__u32 flags;
};
+/**
+ * See drm_i915_gem_execbuffer_ext_timeline_fences.
+ */
+#define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
+
+/**
+ * This structure describes an array of drm_syncobj and associated points for
+ * timeline variants of drm_syncobj. It is invalid to append this structure to
+ * the execbuf if I915_EXEC_FENCE_ARRAY is set.
+ */
+struct drm_i915_gem_execbuffer_ext_timeline_fences {
+ struct i915_user_extension base;
+
+ /**
+ * Number of element in the handles_ptr & value_ptr arrays.
+ */
+ __u64 fence_count;
+
+ /**
+ * Pointer to an array of struct drm_i915_gem_exec_fence of length
+ * fence_count.
+ */
+ __u64 handles_ptr;
+
+ /**
+ * Pointer to an array of u64 values of length fence_count. Values
+ * must be 0 for a binary drm_syncobj. A Value of 0 for a timeline
+ * drm_syncobj is invalid as it turns a drm_syncobj into a binary one.
+ */
+ __u64 values_ptr;
+};
+
struct drm_i915_gem_execbuffer2 {
/**
* List of gem_exec_object2 structs
__u32 num_cliprects;
/**
* This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
- * is not set. If I915_EXEC_FENCE_ARRAY is set, then this is a
- * struct drm_i915_gem_exec_fence *fences.
+ * & I915_EXEC_USE_EXTENSIONS are not set.
+ *
+ * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
+ * of struct drm_i915_gem_exec_fence and num_cliprects is the length
+ * of the array.
+ *
+ * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
+ * single struct i915_user_extension and num_cliprects is 0.
*/
__u64 cliprects_ptr;
#define I915_EXEC_RING_MASK (0x3f)
*/
#define I915_EXEC_FENCE_SUBMIT (1 << 20)
-#define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SUBMIT << 1))
+/*
+ * Setting I915_EXEC_USE_EXTENSIONS implies that
+ * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
+ * list of i915_user_extension. Each i915_user_extension node is the base of a
+ * larger structure. The list of supported structures are listed in the
+ * drm_i915_gem_execbuffer_ext enum.
+ */
+#define I915_EXEC_USE_EXTENSIONS (1 << 21)
+
+#define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
#define I915_EXEC_CONTEXT_ID_MASK (0xffffffff)
#define i915_execbuffer2_set_context_id(eb2, context) \
/**
* The value specifies which set of OA unit metrics should be
- * be configured, defining the contents of any OA unit reports.
+ * configured, defining the contents of any OA unit reports.
*
* This property is available in perf revision 1.
*/