--- /dev/null
+# Proof of correctness for partitioned equal signal combiner
+# Copyright (C) 2020 Michael Nolan <mtnolan2640@gmail.com>
+
+from nmigen import (Module, Signal, Elaboratable, Mux, Cat, Repl,
+ signed)
+from nmigen.asserts import Assert, AnyConst, Assume, Cover
+from nmigen.test.utils import FHDLTestCase
+from nmigen.cli import rtlil
+
+from soc.fu.shift_rot.main_stage import ShiftRotMainStage
+from soc.fu.alu.pipe_data import ALUPipeSpec
+from soc.fu.alu.alu_input_record import CompALUOpSubset
+from soc.decoder.power_enums import InternalOp
+import unittest
+
+
+# This defines a module to drive the device under test and assert
+# properties about its outputs
+class Driver(Elaboratable):
+ def __init__(self):
+ # inputs and outputs
+ pass
+
+ def elaborate(self, platform):
+ m = Module()
+ comb = m.d.comb
+
+ rec = CompALUOpSubset()
+ recwidth = 0
+ # Setup random inputs for dut.op
+ for p in rec.ports():
+ width = p.width
+ recwidth += width
+ comb += p.eq(AnyConst(width))
+
+ pspec = ALUPipeSpec(id_wid=2, op_wid=recwidth)
+ m.submodules.dut = dut = ShiftRotMainStage(pspec)
+
+ # convenience variables
+ a = dut.i.rs
+ b = dut.i.rb
+ ra = dut.i.ra
+ carry_in = dut.i.xer_ca[0]
+ carry_in32 = dut.i.xer_ca[1]
+ so_in = dut.i.xer_so
+ carry_out = dut.o.xer_ca
+ o = dut.o.o
+
+ # setup random inputs
+ comb += [a.eq(AnyConst(64)),
+ b.eq(AnyConst(64)),
+ carry_in.eq(AnyConst(1)),
+ carry_in32.eq(AnyConst(1)),
+ so_in.eq(AnyConst(1))]
+
+ comb += dut.i.ctx.op.eq(rec)
+
+ # Assert that op gets copied from the input to output
+ for rec_sig in rec.ports():
+ name = rec_sig.name
+ dut_sig = getattr(dut.o.ctx.op, name)
+ comb += Assert(dut_sig == rec_sig)
+
+ # signed and signed/32 versions of input a
+ a_signed = Signal(signed(64))
+ a_signed_32 = Signal(signed(32))
+ comb += a_signed.eq(a)
+ comb += a_signed_32.eq(a[0:32])
+
+ # main assertion of arithmetic operations
+ with m.Switch(rec.insn_type):
+ with m.Case(InternalOp.OP_SHL):
+ comb += Assume(ra == 0)
+ with m.If(rec.is_32bit):
+ comb += Assert(o[0:32] == ((a << b[0:6]) & 0xffffffff))
+ comb += Assert(o[32:64] == 0)
+ with m.Else():
+ comb += Assert(o == ((a << b[0:7]) & ((1 << 64)-1)))
+ with m.Case(InternalOp.OP_SHR):
+ comb += Assume(ra == 0)
+ with m.If(~rec.is_signed):
+ with m.If(rec.is_32bit):
+ comb += Assert(o[0:32] == (a[0:32] >> b[0:6]))
+ comb += Assert(o[32:64] == 0)
+ with m.Else():
+ comb += Assert(o == (a >> b[0:7]))
+ with m.Else():
+ with m.If(rec.is_32bit):
+ comb += Assert(o[0:32] == (a_signed_32 >> b[0:6]))
+ comb += Assert(o[32:64] == Repl(a[31], 32))
+ with m.Else():
+ comb += Assert(o == (a_signed >> b[0:7]))
+
+ return m
+
+
+class ALUTestCase(FHDLTestCase):
+ def test_formal(self):
+ module = Driver()
+ self.assertFormal(module, mode="bmc", depth=2)
+ self.assertFormal(module, mode="cover", depth=2)
+ def test_ilang(self):
+ dut = Driver()
+ vl = rtlil.convert(dut, ports=[])
+ with open("main_stage.il", "w") as f:
+ f.write(vl)
+
+
+if __name__ == '__main__':
+ unittest.main()
--- /dev/null
+# This stage is intended to do most of the work of executing multiply
+# instructions, as well as carry and overflow generation. This module
+# however should not gate the carry or overflow, that's up to the
+# output stage
+from nmigen import (Module, Signal, Cat, Repl, Mux, Const)
+from nmutil.pipemodbase import PipeModBase
+from soc.fu.alu.pipe_data import ALUOutputData
+from soc.fu.mul.pipe_data import MulInputData
+from ieee754.part.partsig import PartitionedSignal
+from soc.decoder.power_enums import InternalOp
+from soc.fu.shift_rot.rotator import Rotator
+
+from soc.decoder.power_fields import DecodeFields
+from soc.decoder.power_fieldsn import SignalBitRange
+
+
+class ShiftRotMainStage(PipeModBase):
+ def __init__(self, pspec):
+ super().__init__(pspec, "main")
+ self.fields = DecodeFields(SignalBitRange, [self.i.ctx.op.insn])
+ self.fields.create_specs()
+
+ def ispec(self):
+ return MulInputData(self.pspec)
+
+ def ospec(self):
+ return ALUOutputData(self.pspec)
+
+ def elaborate(self, platform):
+ m = Module()
+ comb = m.d.comb
+
+ # obtain me and mb fields from instruction.
+ m_fields = self.fields.instrs['M']
+ md_fields = self.fields.instrs['MD']
+ mb = Signal(m_fields['MB'][0:-1].shape())
+ me = Signal(m_fields['ME'][0:-1].shape())
+ mb_extra = Signal(1, reset_less=True)
+ comb += mb.eq(m_fields['MB'][0:-1])
+ comb += me.eq(m_fields['ME'][0:-1])
+ comb += mb_extra.eq(md_fields['mb'][0:-1][0])
+
+ # set up microwatt rotator module
+ m.submodules.rotator = rotator = Rotator()
+ comb += [
+ rotator.me.eq(me),
+ rotator.mb.eq(mb),
+ rotator.mb_extra.eq(mb_extra),
+ rotator.rs.eq(self.i.rs),
+ rotator.ra.eq(self.i.ra),
+ rotator.shift.eq(self.i.rb),
+ rotator.is_32bit.eq(self.i.ctx.op.is_32bit),
+ rotator.arith.eq(self.i.ctx.op.is_signed),
+ ]
+
+ # instruction rotate type
+ mode = Signal(3, reset_less=True)
+ with m.Switch(self.i.ctx.op.insn_type):
+ with m.Case(InternalOp.OP_SHL): comb += mode.eq(0b000)
+ with m.Case(InternalOp.OP_SHR): comb += mode.eq(0b001) # R-shift
+ with m.Case(InternalOp.OP_RLC): comb += mode.eq(0b110) # clear LR
+ with m.Case(InternalOp.OP_RLCL): comb += mode.eq(0b010) # clear L
+ with m.Case(InternalOp.OP_RLCR): comb += mode.eq(0b100) # clear R
+
+ comb += Cat(rotator.right_shift,
+ rotator.clear_left,
+ rotator.clear_right).eq(mode)
+
+ # outputs from the microwatt rotator module
+ # XXX TODO: carry32
+ comb += [self.o.o.eq(rotator.result_o),
+ self.o.xer_ca[0].eq(rotator.carry_out_o)]
+
+ ###### sticky overflow and context, both pass-through #####
+
+ comb += self.o.xer_so.data.eq(self.i.xer_so)
+ comb += self.o.ctx.eq(self.i.ctx)
+
+ return m
--- /dev/null
+from nmigen import Module, Signal
+from nmigen.back.pysim import Simulator, Delay, Settle
+from nmigen.test.utils import FHDLTestCase
+from nmigen.cli import rtlil
+import unittest
+from soc.decoder.isa.caller import ISACaller, special_sprs
+from soc.decoder.power_decoder import (create_pdecode)
+from soc.decoder.power_decoder2 import (PowerDecode2)
+from soc.decoder.power_enums import (XER_bits, Function)
+from soc.decoder.selectable_int import SelectableInt
+from soc.simulator.program import Program
+from soc.decoder.isa.all import ISA
+
+
+from soc.fu.shift_rot.pipeline import ShiftRotBasePipe
+from soc.fu.alu.alu_input_record import CompALUOpSubset
+from soc.fu.shift_rot.pipe_data import ShiftRotPipeSpec
+import random
+
+class TestCase:
+ def __init__(self, program, regs, sprs, name):
+ self.program = program
+ self.regs = regs
+ self.sprs = sprs
+ self.name = name
+
+def get_rec_width(rec):
+ recwidth = 0
+ # Setup random inputs for dut.op
+ for p in rec.ports():
+ width = p.width
+ recwidth += width
+ return recwidth
+
+def set_alu_inputs(alu, dec2, sim):
+ inputs = []
+ # TODO: see https://bugs.libre-soc.org/show_bug.cgi?id=305#c43
+ # detect the immediate here (with m.If(self.i.ctx.op.imm_data.imm_ok))
+ # and place it into data_i.b
+
+ reg3_ok = yield dec2.e.read_reg3.ok
+ if reg3_ok:
+ reg3_sel = yield dec2.e.read_reg3.data
+ data3 = sim.gpr(reg3_sel).value
+ else:
+ data3 = 0
+ reg1_ok = yield dec2.e.read_reg1.ok
+ if reg1_ok:
+ reg1_sel = yield dec2.e.read_reg1.data
+ data1 = sim.gpr(reg1_sel).value
+ else:
+ data1 = 0
+ reg2_ok = yield dec2.e.read_reg2.ok
+ imm_ok = yield dec2.e.imm_data.ok
+ if reg2_ok:
+ reg2_sel = yield dec2.e.read_reg2.data
+ data2 = sim.gpr(reg2_sel).value
+ elif imm_ok:
+ data2 = yield dec2.e.imm_data.imm
+ else:
+ data2 = 0
+
+ yield alu.p.data_i.ra.eq(data1)
+ yield alu.p.data_i.rb.eq(data2)
+ yield alu.p.data_i.rs.eq(data3)
+
+
+def set_extra_alu_inputs(alu, dec2, sim):
+ carry = 1 if sim.spr['XER'][XER_bits['CA']] else 0
+ carry32 = 1 if sim.spr['XER'][XER_bits['CA32']] else 0
+ yield alu.p.data_i.xer_ca[0].eq(carry)
+ yield alu.p.data_i.xer_ca[1].eq(carry32)
+ so = 1 if sim.spr['XER'][XER_bits['SO']] else 0
+ yield alu.p.data_i.xer_so.eq(so)
+
+
+# This test bench is a bit different than is usual. Initially when I
+# was writing it, I had all of the tests call a function to create a
+# device under test and simulator, initialize the dut, run the
+# simulation for ~2 cycles, and assert that the dut output what it
+# should have. However, this was really slow, since it needed to
+# create and tear down the dut and simulator for every test case.
+
+# Now, instead of doing that, every test case in ShiftRotTestCase puts some
+# data into the test_data list below, describing the instructions to
+# be tested and the initial state. Once all the tests have been run,
+# test_data gets passed to TestRunner which then sets up the DUT and
+# simulator once, runs all the data through it, and asserts that the
+# results match the pseudocode sim at every cycle.
+
+# By doing this, I've reduced the time it takes to run the test suite
+# massively. Before, it took around 1 minute on my computer, now it
+# takes around 3 seconds
+
+test_data = []
+
+
+class ShiftRotTestCase(FHDLTestCase):
+ def __init__(self, name):
+ super().__init__(name)
+ self.test_name = name
+ def run_tst_program(self, prog, initial_regs=[0] * 32, initial_sprs={}):
+ tc = TestCase(prog, initial_regs, initial_sprs, self.test_name)
+ test_data.append(tc)
+
+
+ def test_shift(self):
+ insns = ["slw", "sld", "srw", "srd", "sraw", "srad"]
+ for i in range(20):
+ choice = random.choice(insns)
+ lst = [f"{choice} 3, 1, 2"]
+ initial_regs = [0] * 32
+ initial_regs[1] = random.randint(0, (1<<64)-1)
+ initial_regs[2] = random.randint(0, 63)
+ print(initial_regs[1], initial_regs[2])
+ self.run_tst_program(Program(lst), initial_regs)
+
+
+ def test_shift_arith(self):
+ lst = ["sraw 3, 1, 2"]
+ initial_regs = [0] * 32
+ initial_regs[1] = random.randint(0, (1<<64)-1)
+ initial_regs[2] = random.randint(0, 63)
+ print(initial_regs[1], initial_regs[2])
+ self.run_tst_program(Program(lst), initial_regs)
+
+ def test_shift_once(self):
+ lst = ["slw 3, 1, 4",
+ "slw 3, 1, 2"]
+ initial_regs = [0] * 32
+ initial_regs[1] = 0x80000000
+ initial_regs[2] = 0x40
+ initial_regs[4] = 0x00
+ self.run_tst_program(Program(lst), initial_regs)
+
+ def test_rlwinm(self):
+ for i in range(10):
+ mb = random.randint(0,31)
+ me = random.randint(0,31)
+ sh = random.randint(0,31)
+ lst = [f"rlwinm 3, 1, {mb}, {me}, {sh}"]
+ initial_regs = [0] * 32
+ initial_regs[1] = random.randint(0, (1<<64)-1)
+ self.run_tst_program(Program(lst), initial_regs)
+
+ def test_rlwimi(self):
+ lst = ["rlwimi 3, 1, 5, 20, 6"]
+ initial_regs = [0] * 32
+ initial_regs[1] = 0xdeadbeef
+ initial_regs[3] = 0x12345678
+ self.run_tst_program(Program(lst), initial_regs)
+
+ def test_rlwnm(self):
+ lst = ["rlwnm 3, 1, 2, 20, 6"]
+ initial_regs = [0] * 32
+ initial_regs[1] = random.randint(0, (1<<64)-1)
+ initial_regs[2] = random.randint(0, 63)
+ self.run_tst_program(Program(lst), initial_regs)
+
+ def test_rldicl(self):
+ lst = ["rldicl 3, 1, 5, 20"]
+ initial_regs = [0] * 32
+ initial_regs[1] = random.randint(0, (1<<64)-1)
+ self.run_tst_program(Program(lst), initial_regs)
+
+ def test_rldicr(self):
+ lst = ["rldicr 3, 1, 5, 20"]
+ initial_regs = [0] * 32
+ initial_regs[1] = random.randint(0, (1<<64)-1)
+ self.run_tst_program(Program(lst), initial_regs)
+
+ def test_rlc(self):
+ insns = ["rldic", "rldicl", "rldicr"]
+ for i in range(20):
+ choice = random.choice(insns)
+ sh = random.randint(0, 63)
+ m = random.randint(0, 63)
+ lst = [f"{choice} 3, 1, {sh}, {m}"]
+ initial_regs = [0] * 32
+ initial_regs[1] = random.randint(0, (1<<64)-1)
+ self.run_tst_program(Program(lst), initial_regs)
+
+ def test_ilang(self):
+ pspec = ShiftRotPipeSpec(id_wid=2)
+ alu = ShiftRotBasePipe(pspec)
+ vl = rtlil.convert(alu, ports=alu.ports())
+ with open("pipeline.il", "w") as f:
+ f.write(vl)
+
+
+class TestRunner(FHDLTestCase):
+ def __init__(self, test_data):
+ super().__init__("run_all")
+ self.test_data = test_data
+
+ def run_all(self):
+ m = Module()
+ comb = m.d.comb
+ instruction = Signal(32)
+
+ pdecode = create_pdecode()
+
+ m.submodules.pdecode2 = pdecode2 = PowerDecode2(pdecode)
+
+ pspec = ShiftRotPipeSpec(id_wid=2)
+ m.submodules.alu = alu = ShiftRotBasePipe(pspec)
+
+ comb += alu.p.data_i.ctx.op.eq_from_execute1(pdecode2.e)
+ comb += alu.p.valid_i.eq(1)
+ comb += alu.n.ready_i.eq(1)
+ comb += pdecode2.dec.raw_opcode_in.eq(instruction)
+ sim = Simulator(m)
+
+ sim.add_clock(1e-6)
+ def process():
+ for test in self.test_data:
+ print(test.name)
+ program = test.program
+ self.subTest(test.name)
+ simulator = ISA(pdecode2, test.regs, test.sprs, 0)
+ gen = program.generate_instructions()
+ instructions = list(zip(gen, program.assembly.splitlines()))
+
+ index = simulator.pc.CIA.value//4
+ while index < len(instructions):
+ ins, code = instructions[index]
+
+ print("0x{:X}".format(ins & 0xffffffff))
+ print(code)
+
+ # ask the decoder to decode this binary data (endian'd)
+ yield pdecode2.dec.bigendian.eq(0) # little / big?
+ yield instruction.eq(ins) # raw binary instr.
+ yield Settle()
+ fn_unit = yield pdecode2.e.fn_unit
+ self.assertEqual(fn_unit, Function.SHIFT_ROT.value)
+ yield from set_alu_inputs(alu, pdecode2, simulator)
+ yield from set_extra_alu_inputs(alu, pdecode2, simulator)
+ yield
+ opname = code.split(' ')[0]
+ yield from simulator.call(opname)
+ index = simulator.pc.CIA.value//4
+
+ vld = yield alu.n.valid_o
+ while not vld:
+ yield
+ vld = yield alu.n.valid_o
+ yield
+ alu_out = yield alu.n.data_o.o
+ out_reg_valid = yield pdecode2.e.write_reg.ok
+ if out_reg_valid:
+ write_reg_idx = yield pdecode2.e.write_reg.data
+ expected = simulator.gpr(write_reg_idx).value
+ msg = f"expected {expected:x}, actual: {alu_out:x}"
+ self.assertEqual(expected, alu_out, msg)
+ yield from self.check_extra_alu_outputs(alu, pdecode2,
+ simulator)
+
+ sim.add_sync_process(process)
+ with sim.write_vcd("simulator.vcd", "simulator.gtkw",
+ traces=[]):
+ sim.run()
+ def check_extra_alu_outputs(self, alu, dec2, sim):
+ rc = yield dec2.e.rc.data
+ if rc:
+ cr_expected = sim.crl[0].get_range().value
+ cr_actual = yield alu.n.data_o.cr0
+ self.assertEqual(cr_expected, cr_actual)
+
+
+if __name__ == "__main__":
+ unittest.main(exit=False)
+ suite = unittest.TestSuite()
+ suite.addTest(TestRunner(test_data))
+
+ runner = unittest.TextTestRunner()
+ runner.run(suite)