add cookie-cut mul pipeline template
authorLuke Kenneth Casson Leighton <lkcl@lkcl.net>
Fri, 22 May 2020 10:03:22 +0000 (11:03 +0100)
committerLuke Kenneth Casson Leighton <lkcl@lkcl.net>
Fri, 22 May 2020 10:03:22 +0000 (11:03 +0100)
src/soc/fu/mul/__init__.py [new file with mode: 0644]
src/soc/fu/mul/formal/proof_main_stage.py [new file with mode: 0644]
src/soc/fu/mul/main_stage.py [new file with mode: 0644]
src/soc/fu/mul/pipe_data.py [new file with mode: 0644]
src/soc/fu/mul/pipeline.py [new file with mode: 0644]
src/soc/fu/mul/test/test_pipe_caller.py [new file with mode: 0644]

diff --git a/src/soc/fu/mul/__init__.py b/src/soc/fu/mul/__init__.py
new file mode 100644 (file)
index 0000000..e69de29
diff --git a/src/soc/fu/mul/formal/proof_main_stage.py b/src/soc/fu/mul/formal/proof_main_stage.py
new file mode 100644 (file)
index 0000000..afcf12e
--- /dev/null
@@ -0,0 +1,110 @@
+# Proof of correctness for partitioned equal signal combiner
+# Copyright (C) 2020 Michael Nolan <mtnolan2640@gmail.com>
+
+from nmigen import (Module, Signal, Elaboratable, Mux, Cat, Repl,
+                    signed)
+from nmigen.asserts import Assert, AnyConst, Assume, Cover
+from nmigen.test.utils import FHDLTestCase
+from nmigen.cli import rtlil
+
+from soc.fu.shift_rot.main_stage import ShiftRotMainStage
+from soc.fu.alu.pipe_data import ALUPipeSpec
+from soc.fu.alu.alu_input_record import CompALUOpSubset
+from soc.decoder.power_enums import InternalOp
+import unittest
+
+
+# This defines a module to drive the device under test and assert
+# properties about its outputs
+class Driver(Elaboratable):
+    def __init__(self):
+        # inputs and outputs
+        pass
+
+    def elaborate(self, platform):
+        m = Module()
+        comb = m.d.comb
+
+        rec = CompALUOpSubset()
+        recwidth = 0
+        # Setup random inputs for dut.op
+        for p in rec.ports():
+            width = p.width
+            recwidth += width
+            comb += p.eq(AnyConst(width))
+
+        pspec = ALUPipeSpec(id_wid=2, op_wid=recwidth)
+        m.submodules.dut = dut = ShiftRotMainStage(pspec)
+
+        # convenience variables
+        a = dut.i.rs
+        b = dut.i.rb
+        ra = dut.i.ra
+        carry_in = dut.i.xer_ca[0]
+        carry_in32 = dut.i.xer_ca[1]
+        so_in = dut.i.xer_so
+        carry_out = dut.o.xer_ca
+        o = dut.o.o
+
+        # setup random inputs
+        comb += [a.eq(AnyConst(64)),
+                 b.eq(AnyConst(64)),
+                 carry_in.eq(AnyConst(1)),
+                 carry_in32.eq(AnyConst(1)),
+                 so_in.eq(AnyConst(1))]
+
+        comb += dut.i.ctx.op.eq(rec)
+
+        # Assert that op gets copied from the input to output
+        for rec_sig in rec.ports():
+            name = rec_sig.name
+            dut_sig = getattr(dut.o.ctx.op, name)
+            comb += Assert(dut_sig == rec_sig)
+
+        # signed and signed/32 versions of input a
+        a_signed = Signal(signed(64))
+        a_signed_32 = Signal(signed(32))
+        comb += a_signed.eq(a)
+        comb += a_signed_32.eq(a[0:32])
+
+        # main assertion of arithmetic operations
+        with m.Switch(rec.insn_type):
+            with m.Case(InternalOp.OP_SHL):
+                comb += Assume(ra == 0)
+                with m.If(rec.is_32bit):
+                    comb += Assert(o[0:32] == ((a << b[0:6]) & 0xffffffff))
+                    comb += Assert(o[32:64] == 0)
+                with m.Else():
+                    comb += Assert(o == ((a << b[0:7]) & ((1 << 64)-1)))
+            with m.Case(InternalOp.OP_SHR):
+                comb += Assume(ra == 0)
+                with m.If(~rec.is_signed):
+                    with m.If(rec.is_32bit):
+                        comb += Assert(o[0:32] == (a[0:32] >> b[0:6]))
+                        comb += Assert(o[32:64] == 0)
+                    with m.Else():
+                        comb += Assert(o == (a >> b[0:7]))
+                with m.Else():
+                    with m.If(rec.is_32bit):
+                        comb += Assert(o[0:32] == (a_signed_32 >> b[0:6]))
+                        comb += Assert(o[32:64] == Repl(a[31], 32))
+                    with m.Else():
+                        comb += Assert(o == (a_signed >> b[0:7]))
+
+        return m
+
+
+class ALUTestCase(FHDLTestCase):
+    def test_formal(self):
+        module = Driver()
+        self.assertFormal(module, mode="bmc", depth=2)
+        self.assertFormal(module, mode="cover", depth=2)
+    def test_ilang(self):
+        dut = Driver()
+        vl = rtlil.convert(dut, ports=[])
+        with open("main_stage.il", "w") as f:
+            f.write(vl)
+
+
+if __name__ == '__main__':
+    unittest.main()
diff --git a/src/soc/fu/mul/main_stage.py b/src/soc/fu/mul/main_stage.py
new file mode 100644 (file)
index 0000000..ea40da3
--- /dev/null
@@ -0,0 +1,79 @@
+# This stage is intended to do most of the work of executing multiply
+# instructions, as well as carry and overflow generation. This module
+# however should not gate the carry or overflow, that's up to the
+# output stage
+from nmigen import (Module, Signal, Cat, Repl, Mux, Const)
+from nmutil.pipemodbase import PipeModBase
+from soc.fu.alu.pipe_data import ALUOutputData
+from soc.fu.mul.pipe_data import MulInputData
+from ieee754.part.partsig import PartitionedSignal
+from soc.decoder.power_enums import InternalOp
+from soc.fu.shift_rot.rotator import Rotator
+
+from soc.decoder.power_fields import DecodeFields
+from soc.decoder.power_fieldsn import SignalBitRange
+
+
+class ShiftRotMainStage(PipeModBase):
+    def __init__(self, pspec):
+        super().__init__(pspec, "main")
+        self.fields = DecodeFields(SignalBitRange, [self.i.ctx.op.insn])
+        self.fields.create_specs()
+
+    def ispec(self):
+        return MulInputData(self.pspec)
+
+    def ospec(self):
+        return ALUOutputData(self.pspec)
+
+    def elaborate(self, platform):
+        m = Module()
+        comb = m.d.comb
+
+        # obtain me and mb fields from instruction.
+        m_fields = self.fields.instrs['M']
+        md_fields = self.fields.instrs['MD']
+        mb = Signal(m_fields['MB'][0:-1].shape())
+        me = Signal(m_fields['ME'][0:-1].shape())
+        mb_extra = Signal(1, reset_less=True)
+        comb += mb.eq(m_fields['MB'][0:-1])
+        comb += me.eq(m_fields['ME'][0:-1])
+        comb += mb_extra.eq(md_fields['mb'][0:-1][0])
+
+        # set up microwatt rotator module
+        m.submodules.rotator = rotator = Rotator()
+        comb += [
+            rotator.me.eq(me),
+            rotator.mb.eq(mb),
+            rotator.mb_extra.eq(mb_extra),
+            rotator.rs.eq(self.i.rs),
+            rotator.ra.eq(self.i.ra),
+            rotator.shift.eq(self.i.rb),
+            rotator.is_32bit.eq(self.i.ctx.op.is_32bit),
+            rotator.arith.eq(self.i.ctx.op.is_signed),
+        ]
+
+        # instruction rotate type
+        mode = Signal(3, reset_less=True)
+        with m.Switch(self.i.ctx.op.insn_type):
+            with m.Case(InternalOp.OP_SHL):  comb += mode.eq(0b000)
+            with m.Case(InternalOp.OP_SHR):  comb += mode.eq(0b001) # R-shift
+            with m.Case(InternalOp.OP_RLC):  comb += mode.eq(0b110) # clear LR
+            with m.Case(InternalOp.OP_RLCL): comb += mode.eq(0b010) # clear L
+            with m.Case(InternalOp.OP_RLCR): comb += mode.eq(0b100) # clear R
+
+        comb += Cat(rotator.right_shift,
+                    rotator.clear_left,
+                    rotator.clear_right).eq(mode)
+                
+        # outputs from the microwatt rotator module
+        # XXX TODO: carry32
+        comb += [self.o.o.eq(rotator.result_o),
+                 self.o.xer_ca[0].eq(rotator.carry_out_o)]
+
+        ###### sticky overflow and context, both pass-through #####
+
+        comb += self.o.xer_so.data.eq(self.i.xer_so)
+        comb += self.o.ctx.eq(self.i.ctx)
+
+        return m
diff --git a/src/soc/fu/mul/pipe_data.py b/src/soc/fu/mul/pipe_data.py
new file mode 100644 (file)
index 0000000..495d503
--- /dev/null
@@ -0,0 +1,10 @@
+from soc.fu.alu.alu_input_record import CompALUOpSubset
+from soc.fu.pipe_data import IntegerData, CommonPipeSpec
+from soc.fu.alu.pipe_data import ALUOutputData
+from soc.fu.shift_rot.pipe_data import ShoftRotInputData
+
+
+# TODO: replace CompALUOpSubset with CompShiftRotOpSubset
+class ShiftRotPipeSpec(CommonPipeSpec):
+    regspec = (ShiftRotInputData.regspec, ALUOutputData.regspec)
+    opsubsetkls = CompALUOpSubset
diff --git a/src/soc/fu/mul/pipeline.py b/src/soc/fu/mul/pipeline.py
new file mode 100644 (file)
index 0000000..2574517
--- /dev/null
@@ -0,0 +1,31 @@
+from nmutil.singlepipe import ControlBase
+from nmutil.pipemodbase import PipeModBaseChain
+from soc.fu.shift_rot.input_stage import ShiftRotInputStage
+from soc.fu.shift_rot.main_stage import ShiftRotMainStage
+from soc.fu.alu.output_stage import ALUOutputStage
+
+class MulStages1(PipeModBaseChain):
+    def get_chain(self):
+        inp = ALUInputStage(self.pspec)
+        main = MulMainStage1(self.pspec)
+        return [inp, main]
+
+class MulStages2(PipeModBaseChain):
+    def get_chain(self):
+        main2 = MulMainStage2(self.pspec)
+        out = ALUOutputStage(self.pspec)
+        return [main2, out]
+
+
+class ShiftRotBasePipe(ControlBase):
+    def __init__(self, pspec):
+        ControlBase.__init__(self)
+        self.pipe1 = MulStages1(pspec)
+        self.pipe2 = MulStages2(pspec)
+        self._eqs = self.connect([self.pipe1, self.pipe2])
+
+    def elaborate(self, platform):
+        m = ControlBase.elaborate(self, platform)
+        m.submodules.pipe = self.pipe1
+        m.d.comb += self._eqs
+        return m
diff --git a/src/soc/fu/mul/test/test_pipe_caller.py b/src/soc/fu/mul/test/test_pipe_caller.py
new file mode 100644 (file)
index 0000000..713ebd6
--- /dev/null
@@ -0,0 +1,277 @@
+from nmigen import Module, Signal
+from nmigen.back.pysim import Simulator, Delay, Settle
+from nmigen.test.utils import FHDLTestCase
+from nmigen.cli import rtlil
+import unittest
+from soc.decoder.isa.caller import ISACaller, special_sprs
+from soc.decoder.power_decoder import (create_pdecode)
+from soc.decoder.power_decoder2 import (PowerDecode2)
+from soc.decoder.power_enums import (XER_bits, Function)
+from soc.decoder.selectable_int import SelectableInt
+from soc.simulator.program import Program
+from soc.decoder.isa.all import ISA
+
+
+from soc.fu.shift_rot.pipeline import ShiftRotBasePipe
+from soc.fu.alu.alu_input_record import CompALUOpSubset
+from soc.fu.shift_rot.pipe_data import ShiftRotPipeSpec
+import random
+
+class TestCase:
+    def __init__(self, program, regs, sprs, name):
+        self.program = program
+        self.regs = regs
+        self.sprs = sprs
+        self.name = name
+
+def get_rec_width(rec):
+    recwidth = 0
+    # Setup random inputs for dut.op
+    for p in rec.ports():
+        width = p.width
+        recwidth += width
+    return recwidth
+
+def set_alu_inputs(alu, dec2, sim):
+    inputs = []
+    # TODO: see https://bugs.libre-soc.org/show_bug.cgi?id=305#c43
+    # detect the immediate here (with m.If(self.i.ctx.op.imm_data.imm_ok))
+    # and place it into data_i.b
+
+    reg3_ok = yield dec2.e.read_reg3.ok
+    if reg3_ok:
+        reg3_sel = yield dec2.e.read_reg3.data
+        data3 = sim.gpr(reg3_sel).value
+    else:
+        data3 = 0
+    reg1_ok = yield dec2.e.read_reg1.ok
+    if reg1_ok:
+        reg1_sel = yield dec2.e.read_reg1.data
+        data1 = sim.gpr(reg1_sel).value
+    else:
+        data1 = 0
+    reg2_ok = yield dec2.e.read_reg2.ok
+    imm_ok = yield dec2.e.imm_data.ok
+    if reg2_ok:
+        reg2_sel = yield dec2.e.read_reg2.data
+        data2 = sim.gpr(reg2_sel).value
+    elif imm_ok:
+        data2 = yield dec2.e.imm_data.imm
+    else:
+        data2 = 0
+
+    yield alu.p.data_i.ra.eq(data1)
+    yield alu.p.data_i.rb.eq(data2)
+    yield alu.p.data_i.rs.eq(data3)
+
+
+def set_extra_alu_inputs(alu, dec2, sim):
+    carry = 1 if sim.spr['XER'][XER_bits['CA']] else 0
+    carry32 = 1 if sim.spr['XER'][XER_bits['CA32']] else 0
+    yield alu.p.data_i.xer_ca[0].eq(carry)
+    yield alu.p.data_i.xer_ca[1].eq(carry32)
+    so = 1 if sim.spr['XER'][XER_bits['SO']] else 0
+    yield alu.p.data_i.xer_so.eq(so)
+    
+
+# This test bench is a bit different than is usual. Initially when I
+# was writing it, I had all of the tests call a function to create a
+# device under test and simulator, initialize the dut, run the
+# simulation for ~2 cycles, and assert that the dut output what it
+# should have. However, this was really slow, since it needed to
+# create and tear down the dut and simulator for every test case.
+
+# Now, instead of doing that, every test case in ShiftRotTestCase puts some
+# data into the test_data list below, describing the instructions to
+# be tested and the initial state. Once all the tests have been run,
+# test_data gets passed to TestRunner which then sets up the DUT and
+# simulator once, runs all the data through it, and asserts that the
+# results match the pseudocode sim at every cycle.
+
+# By doing this, I've reduced the time it takes to run the test suite
+# massively. Before, it took around 1 minute on my computer, now it
+# takes around 3 seconds
+
+test_data = []
+
+
+class ShiftRotTestCase(FHDLTestCase):
+    def __init__(self, name):
+        super().__init__(name)
+        self.test_name = name
+    def run_tst_program(self, prog, initial_regs=[0] * 32, initial_sprs={}):
+        tc = TestCase(prog, initial_regs, initial_sprs, self.test_name)
+        test_data.append(tc)
+
+
+    def test_shift(self):
+        insns = ["slw", "sld", "srw", "srd", "sraw", "srad"]
+        for i in range(20):
+            choice = random.choice(insns)
+            lst = [f"{choice} 3, 1, 2"]
+            initial_regs = [0] * 32
+            initial_regs[1] = random.randint(0, (1<<64)-1)
+            initial_regs[2] = random.randint(0, 63)
+            print(initial_regs[1], initial_regs[2])
+            self.run_tst_program(Program(lst), initial_regs)
+
+
+    def test_shift_arith(self):
+        lst = ["sraw 3, 1, 2"]
+        initial_regs = [0] * 32
+        initial_regs[1] = random.randint(0, (1<<64)-1)
+        initial_regs[2] = random.randint(0, 63)
+        print(initial_regs[1], initial_regs[2])
+        self.run_tst_program(Program(lst), initial_regs)
+
+    def test_shift_once(self):
+        lst = ["slw 3, 1, 4",
+               "slw 3, 1, 2"]
+        initial_regs = [0] * 32
+        initial_regs[1] = 0x80000000
+        initial_regs[2] = 0x40
+        initial_regs[4] = 0x00
+        self.run_tst_program(Program(lst), initial_regs)
+
+    def test_rlwinm(self):
+        for i in range(10):
+            mb = random.randint(0,31)
+            me = random.randint(0,31)
+            sh = random.randint(0,31)
+            lst = [f"rlwinm 3, 1, {mb}, {me}, {sh}"]
+            initial_regs = [0] * 32
+            initial_regs[1] = random.randint(0, (1<<64)-1)
+            self.run_tst_program(Program(lst), initial_regs)
+
+    def test_rlwimi(self):
+        lst = ["rlwimi 3, 1, 5, 20, 6"]
+        initial_regs = [0] * 32
+        initial_regs[1] = 0xdeadbeef
+        initial_regs[3] = 0x12345678
+        self.run_tst_program(Program(lst), initial_regs)
+
+    def test_rlwnm(self):
+        lst = ["rlwnm 3, 1, 2, 20, 6"]
+        initial_regs = [0] * 32
+        initial_regs[1] = random.randint(0, (1<<64)-1)
+        initial_regs[2] = random.randint(0, 63)
+        self.run_tst_program(Program(lst), initial_regs)
+
+    def test_rldicl(self):
+        lst = ["rldicl 3, 1, 5, 20"]
+        initial_regs = [0] * 32
+        initial_regs[1] = random.randint(0, (1<<64)-1)
+        self.run_tst_program(Program(lst), initial_regs)
+
+    def test_rldicr(self):
+        lst = ["rldicr 3, 1, 5, 20"]
+        initial_regs = [0] * 32
+        initial_regs[1] = random.randint(0, (1<<64)-1)
+        self.run_tst_program(Program(lst), initial_regs)
+
+    def test_rlc(self):
+        insns = ["rldic", "rldicl", "rldicr"]
+        for i in range(20):
+            choice = random.choice(insns)
+            sh = random.randint(0, 63)
+            m = random.randint(0, 63)
+            lst = [f"{choice} 3, 1, {sh}, {m}"]
+            initial_regs = [0] * 32
+            initial_regs[1] = random.randint(0, (1<<64)-1)
+            self.run_tst_program(Program(lst), initial_regs)
+
+    def test_ilang(self):
+        pspec = ShiftRotPipeSpec(id_wid=2)
+        alu = ShiftRotBasePipe(pspec)
+        vl = rtlil.convert(alu, ports=alu.ports())
+        with open("pipeline.il", "w") as f:
+            f.write(vl)
+
+
+class TestRunner(FHDLTestCase):
+    def __init__(self, test_data):
+        super().__init__("run_all")
+        self.test_data = test_data
+
+    def run_all(self):
+        m = Module()
+        comb = m.d.comb
+        instruction = Signal(32)
+
+        pdecode = create_pdecode()
+
+        m.submodules.pdecode2 = pdecode2 = PowerDecode2(pdecode)
+
+        pspec = ShiftRotPipeSpec(id_wid=2)
+        m.submodules.alu = alu = ShiftRotBasePipe(pspec)
+
+        comb += alu.p.data_i.ctx.op.eq_from_execute1(pdecode2.e)
+        comb += alu.p.valid_i.eq(1)
+        comb += alu.n.ready_i.eq(1)
+        comb += pdecode2.dec.raw_opcode_in.eq(instruction)
+        sim = Simulator(m)
+
+        sim.add_clock(1e-6)
+        def process():
+            for test in self.test_data:
+                print(test.name)
+                program = test.program
+                self.subTest(test.name)
+                simulator = ISA(pdecode2, test.regs, test.sprs, 0)
+                gen = program.generate_instructions()
+                instructions = list(zip(gen, program.assembly.splitlines()))
+
+                index = simulator.pc.CIA.value//4
+                while index < len(instructions):
+                    ins, code = instructions[index]
+
+                    print("0x{:X}".format(ins & 0xffffffff))
+                    print(code)
+
+                    # ask the decoder to decode this binary data (endian'd)
+                    yield pdecode2.dec.bigendian.eq(0)  # little / big?
+                    yield instruction.eq(ins)          # raw binary instr.
+                    yield Settle()
+                    fn_unit = yield pdecode2.e.fn_unit
+                    self.assertEqual(fn_unit, Function.SHIFT_ROT.value)
+                    yield from set_alu_inputs(alu, pdecode2, simulator)
+                    yield from set_extra_alu_inputs(alu, pdecode2, simulator)
+                    yield 
+                    opname = code.split(' ')[0]
+                    yield from simulator.call(opname)
+                    index = simulator.pc.CIA.value//4
+
+                    vld = yield alu.n.valid_o
+                    while not vld:
+                        yield
+                        vld = yield alu.n.valid_o
+                    yield
+                    alu_out = yield alu.n.data_o.o
+                    out_reg_valid = yield pdecode2.e.write_reg.ok
+                    if out_reg_valid:
+                        write_reg_idx = yield pdecode2.e.write_reg.data
+                        expected = simulator.gpr(write_reg_idx).value
+                        msg = f"expected {expected:x}, actual: {alu_out:x}"
+                        self.assertEqual(expected, alu_out, msg)
+                    yield from self.check_extra_alu_outputs(alu, pdecode2,
+                                                            simulator)
+
+        sim.add_sync_process(process)
+        with sim.write_vcd("simulator.vcd", "simulator.gtkw",
+                            traces=[]):
+            sim.run()
+    def check_extra_alu_outputs(self, alu, dec2, sim):
+        rc = yield dec2.e.rc.data
+        if rc:
+            cr_expected = sim.crl[0].get_range().value
+            cr_actual = yield alu.n.data_o.cr0
+            self.assertEqual(cr_expected, cr_actual)
+
+
+if __name__ == "__main__":
+    unittest.main(exit=False)
+    suite = unittest.TestSuite()
+    suite.addTest(TestRunner(test_data))
+
+    runner = unittest.TextTestRunner()
+    runner.run(suite)