"""
from math import log
-from nmigen import Module, Elaboratable, Signal
+from nmigen import Module, Elaboratable, Signal, Cat
from nmigen.asserts import Assert
+from nmigen.lib.coding import PriorityEncoder
from nmigen.cli import main, verilog
from nmutil.singlepipe import PassThroughStage
from nmutil.multipipe import CombMuxOutPipe
from nmutil.multipipe import PriorityCombMuxInPipe
-from nmutil.multipipe import InputPriorityArbiter
from nmutil.iocontrol import NextControl, PrevControl
+from nmutil import nmoperator
def num_bits(n):
self.n = []
self.alu = alu
# create prev and next ready/valid and add replica of ALU data specs
- for i in range(p_len):
+ for i in range(num_rows):
suffix = "_%d" % i
- p = PrevControl(maskwid=i_wid, name=suffix)
- n = NextControl(maskwid=i_wid, name=suffix)
+ p = PrevControl(name=suffix)
+ n = NextControl(name=suffix)
p.i_data, n.o_data = self.alu.new_specs("rs_%d" % i)
self.p.append(p)
self.n.append(n)
self.pipe = self # for Arbiter to select the incoming prevcontrols
- self.p_mux = InputPriorityArbiter(self, num_rows)
# set up pseudo-alus that look like a standard pipeline
self.pseudoalus = []
pe = PriorityEncoder(self.num_rows) # input priority picker
m.submodules.alu = self.alu
m.submodules.selector = pe
+ for i, (p, n) in enumerate(zip(self.p, self.n)):
+ m.submodules["rs_p_%d" % i] = p
+ m.submodules["rs_n_%d" % i] = n
# Priority picker for one RS
self.active = Signal()
# pick first non-reserved ReservationStation with data not already
# sent into the ALU
- m.d.comb += pe.i.eq(~rsvd & ~sent)
+ m.d.comb += pe.i.eq(rsvd & ~sent)
m.d.comb += self.active.eq(~pe.n) # encoder active (one input valid)
m.d.comb += self.m_id.eq(pe.o) # output one active input
# input side
#####
- # check if ALU is ready
- n_i_ready = Signal(reset_less=True, name="n_i_rdy_data")
- m.d.comb += alu_p_i_valid.eq(self.alu.p.i_valid_test)
-
# first, establish input: select one input to pass data to (p_mux)
for i in range(self.num_rows):
- i_buf = _spec(self.alu.stage.ispec, "i_buf%d" % i) # input buffer
- o_buf = _spec(self.alu.stage.ospec, "o_buf%d" % i) # output buffer
+ i_buf, o_buf = self.alu.new_specs("buf%d" % i) # buffers
with m.FSM():
# indicate ready to accept data, and accept it if incoming
with m.State("ACCEPTING%d" % i):
m.d.comb += self.p[i].o_ready.eq(1) # ready indicator
+ m.d.sync += self.n[i].o_valid.eq(0) # invalidate output
with m.If(self.p[i].i_valid): # valid data incoming
m.d.sync += rsvd[i].eq(1) # now reserved
m.d.sync += nmoperator.eq(i_buf, self.p[i].i_data)
- m.next = "ACCEPTED%d" % i) # move to "accepted"
+ m.next = "ACCEPTED%d" % i # move to "accepted"
# now try to deliver to the ALU, but only if we are "picked"
with m.State("ACCEPTED%d" % i):
- with m.If(mid == i): # priority picker selected us
+ with m.If(mid == i): # picker selected us
with m.If(self.alu.p.o_ready): # ALU can accept
m.d.comb += self.alu.p.i_valid.eq(1) # transfer
m.d.comb += nmoperator.eq(self.alu.p.i_data, i_buf)
m.d.sync += sent[i].eq(1) # now reserved
- m.next = "WAITOUT%d" % i) # move to "wait output"
+ m.next = "WAITOUT%d" % i # move to "wait output"
# waiting for output to appear on the ALU, take a copy
with m.State("WAITOUT%d" % i):
with m.If(o_muxid == i): # when ALU output matches our RS
- with m.If(self.n.alu.o_valid): # ALU can accept
+ with m.If(self.alu.n.o_valid): # ALU can accept
m.d.sync += nmoperator.eq(o_buf, self.alu.n.o_data)
m.d.sync += wait[i].eq(1) # now waiting
- m.next = "SENDON%d" % i) # move to "send data on"
+ m.next = "SENDON%d" % i # move to "send data on"
# waiting for "valid" indicator on RS output: deliver it
with m.State("SENDON%d" % i):
with m.If(self.n[i].i_ready): # user is ready to receive
- m.d.comb += self.n[i].o_valid.eq(1) # indicate valid
+ # XXX this should be combinatorial not sync
+ #m.d.sync += self.n[i].o_valid.eq(1) # indicate valid
+ #m.d.sync += nmoperator.eq(self.n[i].o_data, o_buf)
+ m.d.sync += self.n[i].o_valid.eq(1) # indicate valid
+ m.d.sync += nmoperator.eq(self.n[i].o_data, o_buf)
m.d.sync += wait[i].eq(0) # clear waiting
m.d.sync += sent[i].eq(0) # and sending
m.d.sync += rsvd[i].eq(0) # and reserved
- m.next = "ACCEPTING%d" % i) # and back to "accepting"
+ m.next = "ACCEPTING%d" % i # and back to "accepting"
return m
- def ports(self):
- return self._ports
-
--- /dev/null
+""" key strategic example showing how to do multi-input fan-in into a
+ multi-stage pipeline, then multi-output fanout.
+
+ the multiplex ID from the fan-in is passed in to the pipeline, preserved,
+ and used as a routing ID on the fanout.
+"""
+
+from random import randint
+from math import log
+from nmigen import Module, Signal, Cat, Value, Elaboratable
+from nmigen.compat.sim import run_simulation
+from nmigen.cli import verilog, rtlil
+
+from nmutil.concurrentunit import ReservationStations2
+from nmutil.singlepipe import SimpleHandshake, RecordObject, Object
+
+
+class PassData2(RecordObject):
+ def __init__(self):
+ RecordObject.__init__(self)
+ self.muxid = Signal(2, reset_less=True)
+ self.idx = Signal(8, reset_less=True)
+ self.data = Signal(16, reset_less=True)
+
+
+class PassData(Object):
+ def __init__(self, name=None):
+ Object.__init__(self)
+ if name is None:
+ name = ""
+ self.muxid = Signal(2, name="muxid"+name, reset_less=True)
+ self.idx = Signal(8, name="idx"+name, reset_less=True)
+ self.data = Signal(16, name="data"+name, reset_less=True)
+
+
+
+class PassThroughStage:
+ def ispec(self, name=None):
+ return PassData(name=name)
+ def ospec(self, name=None):
+ return self.ispec(name) # same as ospec
+
+ def process(self, i):
+ return i # pass-through
+
+
+
+class PassThroughPipe(SimpleHandshake):
+ def __init__(self):
+ SimpleHandshake.__init__(self, PassThroughStage())
+
+
+class InputTest:
+ def __init__(self, dut):
+ self.dut = dut
+ self.di = {}
+ self.do = {}
+ self.tlen = 100
+ for muxid in range(dut.num_rows):
+ self.di[muxid] = {}
+ self.do[muxid] = {}
+ for i in range(self.tlen):
+ self.di[muxid][i] = randint(0, 255) + (muxid<<8)
+ self.do[muxid][i] = self.di[muxid][i]
+
+ def send(self, muxid):
+ for i in range(self.tlen):
+ op2 = self.di[muxid][i]
+ rs = self.dut.p[muxid]
+ yield rs.i_valid.eq(1)
+ yield rs.i_data.data.eq(op2)
+ yield rs.i_data.idx.eq(i)
+ yield rs.i_data.muxid.eq(muxid)
+ yield
+ o_p_ready = yield rs.o_ready
+ while not o_p_ready:
+ yield
+ o_p_ready = yield rs.o_ready
+
+ print ("send", muxid, i, hex(op2))
+
+ yield rs.i_valid.eq(0)
+ # wait random period of time before queueing another value
+ for i in range(randint(0, 3)):
+ yield
+
+ yield rs.i_valid.eq(0)
+ yield
+
+ print ("send ended", muxid)
+
+ ## wait random period of time before queueing another value
+ #for i in range(randint(0, 3)):
+ # yield
+
+ #send_range = randint(0, 3)
+ #if send_range == 0:
+ # send = True
+ #else:
+ # send = randint(0, send_range) != 0
+
+ def rcv(self, muxid):
+ while True:
+ #stall_range = randint(0, 3)
+ #for j in range(randint(1,10)):
+ # stall = randint(0, stall_range) != 0
+ # yield self.dut.n[0].i_ready.eq(stall)
+ # yield
+ n = self.dut.n[muxid]
+ yield n.i_ready.eq(1)
+ yield
+ o_n_valid = yield n.o_valid
+ i_n_ready = yield n.i_ready
+ if not o_n_valid or not i_n_ready:
+ continue
+
+ out_muxid = yield n.o_data.muxid
+ out_i = yield n.o_data.idx
+ out_v = yield n.o_data.data
+
+ print ("recv", out_muxid, out_i, hex(out_v))
+
+ # see if this output has occurred already, delete it if it has
+ assert muxid == out_muxid, \
+ "out_muxid %d not correct %d" % (out_muxid, muxid)
+ assert out_i in self.do[muxid], "out_i %d not in array %s" % \
+ (out_i, repr(self.do[muxid]))
+ assert self.do[muxid][out_i] == out_v # pass-through data
+ del self.do[muxid][out_i]
+
+ # check if there's any more outputs
+ if len(self.do[muxid]) == 0:
+ break
+ print ("recv ended", muxid)
+
+
+class TestALU(Elaboratable):
+ def __init__(self):
+ self.pipe1 = PassThroughPipe() # stage 1 (clock-sync)
+ self.pipe2 = PassThroughPipe() # stage 2 (clock-sync)
+
+ self.p = self.pipe1.p
+ self.n = self.pipe2.n
+ self._ports = self.pipe1.ports() + self.pipe2.ports()
+
+ def elaborate(self, platform):
+ m = Module()
+ m.submodules.pipe1 = self.pipe1
+ m.submodules.pipe2 = self.pipe2
+
+ m.d.comb += self.pipe1.connect_to_next(self.pipe2)
+
+ return m
+
+ def new_specs(self, name):
+ return self.pipe1.ispec(name), self.pipe2.ospec(name)
+
+ def ports(self):
+ return self._ports
+
+
+def test1():
+ alu = TestALU()
+ dut = ReservationStations2(alu, num_rows=4)
+ vl = rtlil.convert(dut, ports=dut.ports())
+ with open("test_reservation_stations.il", "w") as f:
+ f.write(vl)
+ #run_simulation(dut, testbench(dut), vcd_name="test_inputgroup.vcd")
+
+ test = InputTest(dut)
+ run_simulation(dut, [test.rcv(1), test.rcv(0),
+ test.rcv(3), test.rcv(2),
+ test.send(0), test.send(1),
+ test.send(3), test.send(2),
+ ],
+ vcd_name="test_reservation_stations.vcd")
+
+if __name__ == '__main__':
+ test1()