+++ /dev/null
-import sys
-from random import randint
-from random import seed
-
-from sfpy import Float64
-
-def get_mantissa(x):
- return x & 0x000fffffffffffff
-
-def get_exponent(x):
- return ((x & 0x7ff0000000000000) >> 52) - 1023
-
-def get_sign(x):
- return ((x & 0x8000000000000000) >> 63)
-
-def is_nan(x):
- return get_exponent(x) == 1024 and get_mantissa(x) != 0
-
-def is_inf(x):
- return get_exponent(x) == 1024 and get_mantissa(x) == 0
-
-def is_pos_inf(x):
- return is_inf(x) and not get_sign(x)
-
-def is_neg_inf(x):
- return is_inf(x) and get_sign(x)
-
-def match(x, y):
- return (
- (is_pos_inf(x) and is_pos_inf(y)) or
- (is_neg_inf(x) and is_neg_inf(y)) or
- (is_nan(x) and is_nan(y)) or
- (x == y)
- )
-
-def get_case(dut, a, b):
- yield dut.in_a.v.eq(a)
- yield dut.in_a.stb.eq(1)
- yield
- yield
- a_ack = (yield dut.in_a.ack)
- assert a_ack == 0
- yield dut.in_b.v.eq(b)
- yield dut.in_b.stb.eq(1)
- b_ack = (yield dut.in_b.ack)
- assert b_ack == 0
-
- while True:
- yield
- out_z_stb = (yield dut.out_z.stb)
- if not out_z_stb:
- continue
- yield dut.in_a.stb.eq(0)
- yield dut.in_b.stb.eq(0)
- yield dut.out_z.ack.eq(1)
- yield
- yield dut.out_z.ack.eq(0)
- yield
- yield
- break
-
- out_z = yield dut.out_z.v
- return out_z
-
-def check_case(dut, a, b, z):
- out_z = yield from get_case(dut, a, b)
- assert out_z == z, "Output z 0x%x not equal to expected 0x%x" % (out_z, z)
-
-
-def run_test(dut, stimulus_a, stimulus_b, op):
-
- expected_responses = []
- actual_responses = []
- for a, b in zip(stimulus_a, stimulus_b):
- af = Float64.from_bits(a)
- bf = Float64.from_bits(b)
- z = op(af, bf)
- expected_responses.append(z.get_bits())
- #print (af, bf, z)
- actual = yield from get_case(dut, a, b)
- actual_responses.append(actual)
-
- if len(actual_responses) < len(expected_responses):
- print ("Fail ... not enough results")
- exit(0)
-
- for exp, act, a, b in zip(expected_responses, actual_responses,
- stimulus_a, stimulus_b):
- passed = match(exp, act)
-
- if not passed:
-
- print ("Fail ... expected:", hex(exp), "actual:", hex(act))
-
- print (hex(a))
- print ("a mantissa:", a & 0x000fffffffffffff)
- print ("a exponent:", ((a & 0x7ff0000000000000) >> 52)\
- - 1023)
- print ("a sign:", ((a & 0x8000000000000000) >> 63))
-
- print (hex(b))
- print ("b mantissa:", b & 0x000fffffffffffff)
- print ("b exponent:", ((b & 0x7ff0000000000000) >> 52)\
- - 1023)
- print ("b sign:", ((b & 0x8000000000000000) >> 63))
-
- print (hex(exp))
- print ("expected mantissa:", exp & 0x000fffffffffffff)
- print ("expected exponent:", ((exp & 0x7ff0000000000000) >> 52)\
- - 1023)
- print ("expected sign:", ((exp & 0x8000000000000000) >> 63))
-
- print (hex(act))
- print ("actual mantissa:", act & 0x000fffffffffffff)
- print ("actual exponent:", ((act & 0x7ff0000000000000) >> 52)\
- - 1023)
- print ("actual sign:", ((act & 0x8000000000000000) >> 63))
-
- sys.exit(0)
-
-
-def run_corner_cases(dut, count, op):
- #corner cases
- from itertools import permutations
- stimulus_a = [i[0] for i in permutations([
- 0x8000000000000000,
- 0x0000000000000000,
- 0x7ff8000000000000,
- 0xfff8000000000000,
- 0x7ff0000000000000,
- 0xfff0000000000000
- ], 2)]
- stimulus_b = [i[1] for i in permutations([
- 0x8000000000000000,
- 0x0000000000000000,
- 0x7ff8000000000000,
- 0xfff8000000000000,
- 0x7ff0000000000000,
- 0xfff0000000000000
- ], 2)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
-
-def run_edge_cases(dut, count, op):
- #edge cases
- stimulus_a = [0x8000000000000000 for i in range(1000)]
- stimulus_b = [randint(0, 1<<64) for i in range(1000)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_a = [0x0000000000000000 for i in range(1000)]
- stimulus_b = [randint(0, 1<<64) for i in range(1000)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_b = [0x8000000000000000 for i in range(1000)]
- stimulus_a = [randint(0, 1<<64) for i in range(1000)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_b = [0x0000000000000000 for i in range(1000)]
- stimulus_a = [randint(0, 1<<64) for i in range(1000)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_a = [0x7FF8000000000000 for i in range(1000)]
- stimulus_b = [randint(0, 1<<64) for i in range(1000)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_a = [0xFFF8000000000000 for i in range(1000)]
- stimulus_b = [randint(0, 1<<64) for i in range(1000)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_b = [0x7FF8000000000000 for i in range(1000)]
- stimulus_a = [randint(0, 1<<64) for i in range(1000)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_b = [0xFFF8000000000000 for i in range(1000)]
- stimulus_a = [randint(0, 1<<64) for i in range(1000)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_a = [0x7FF0000000000000 for i in range(1000)]
- stimulus_b = [randint(0, 1<<64) for i in range(1000)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_a = [0xFFF0000000000000 for i in range(1000)]
- stimulus_b = [randint(0, 1<<64) for i in range(1000)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_b = [0x7FF0000000000000 for i in range(1000)]
- stimulus_a = [randint(0, 1<<64) for i in range(1000)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_b = [0xFFF0000000000000 for i in range(1000)]
- stimulus_a = [randint(0, 1<<64) for i in range(1000)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- #seed(0)
- for i in range(100000):
- stimulus_a = [randint(0, 1<<64) for i in range(1000)]
- stimulus_b = [randint(0, 1<<64) for i in range(1000)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += 1000
- print (count, "random vectors passed")
-
+++ /dev/null
-from random import randint
-from random import seed
-
-import sys
-from sfpy import Float16
-
-def get_mantissa(x):
- return 0x3ff & x
-
-def get_exponent(x):
- return ((x & 0xf800) >> 11) - 15
-
-def get_sign(x):
- return ((x & 0x8000) >> 15)
-
-def is_nan(x):
- return get_exponent(x) == 16 and get_mantissa(x) != 0
-
-def is_inf(x):
- return get_exponent(x) == 16 and get_mantissa(x) == 0
-
-def is_pos_inf(x):
- return is_inf(x) and not get_sign(x)
-
-def is_neg_inf(x):
- return is_inf(x) and get_sign(x)
-
-def match(x, y):
- return (
- (is_pos_inf(x) and is_pos_inf(y)) or
- (is_neg_inf(x) and is_neg_inf(y)) or
- (is_nan(x) and is_nan(y)) or
- (x == y)
- )
-
-def get_case(dut, a, b):
- yield dut.in_a.v.eq(a)
- yield dut.in_a.stb.eq(1)
- yield
- yield
- a_ack = (yield dut.in_a.ack)
- assert a_ack == 0
- yield dut.in_b.v.eq(b)
- yield dut.in_b.stb.eq(1)
- b_ack = (yield dut.in_b.ack)
- assert b_ack == 0
-
- while True:
- yield
- out_z_stb = (yield dut.out_z.stb)
- if not out_z_stb:
- continue
- yield dut.in_a.stb.eq(0)
- yield dut.in_b.stb.eq(0)
- yield dut.out_z.ack.eq(1)
- yield
- yield dut.out_z.ack.eq(0)
- yield
- yield
- break
-
- out_z = yield dut.out_z.v
- return out_z
-
-def check_case(dut, a, b, z):
- out_z = yield from get_case(dut, a, b)
- assert out_z == z, "Output z 0x%x not equal to expected 0x%x" % (out_z, z)
-
-
-def run_test(dut, stimulus_a, stimulus_b, op):
-
- expected_responses = []
- actual_responses = []
- for a, b in zip(stimulus_a, stimulus_b):
- af = Float16.from_bits(a)
- bf = Float16.from_bits(b)
- z = op(af, bf)
- expected_responses.append(z.get_bits())
- #print (af, bf, z)
- actual = yield from get_case(dut, a, b)
- actual_responses.append(actual)
-
- if len(actual_responses) < len(expected_responses):
- print ("Fail ... not enough results")
- exit(0)
-
- for expected, actual, a, b in zip(expected_responses, actual_responses,
- stimulus_a, stimulus_b):
- passed = match(expected, actual)
-
- if not passed:
-
- print ("Fail ... expected:", hex(expected), "actual:", hex(actual))
-
- print (hex(a))
- print ("a mantissa:", get_mantissa(a))
- print ("a exponent:", get_exponent(a))
- print ("a sign:", get_sign(a))
-
- print (hex(b))
- print ("b mantissa:", get_mantissa(b))
- print ("b exponent:", get_exponent(b))
- print ("b sign:", get_sign(b))
-
- print (hex(expected))
- print ("expected mantissa:", get_mantissa(expected))
- print ("expected exponent:", get_exponent(expected))
- print ("expected sign:", get_sign(expected))
-
- print (hex(actual))
- print ("actual mantissa:", get_mantissa(actual))
- print ("actual exponent:", get_exponent(actual))
- print ("actual sign:", get_sign(actual))
-
- sys.exit(0)
-
-def run_corner_cases(dut, count, op):
- #corner cases
- corners = [0x8000, 0x0000, 0x7800, 0xf800, 0x7c00, 0xfc00]
- from itertools import permutations
- stimulus_a = [i[0] for i in permutations(corners, 2)]
- stimulus_b = [i[1] for i in permutations(corners, 2)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
-
-def run_edge_cases(dut, count, op):
- maxint16 = 1<<16
- maxcount = 10
- #edge cases
- stimulus_a = [0x8000 for i in range(maxcount)]
- stimulus_b = [randint(0, maxint16-1) for i in range(maxcount)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_a = [0x0000 for i in range(maxcount)]
- stimulus_b = [randint(0, maxint16-1) for i in range(maxcount)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_b = [0x8000 for i in range(maxcount)]
- stimulus_a = [randint(0, maxint16-1) for i in range(maxcount)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_b = [0x0000 for i in range(maxcount)]
- stimulus_a = [randint(0, maxint16-1) for i in range(maxcount)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_a = [0x7800 for i in range(maxcount)]
- stimulus_b = [randint(0, maxint16-1) for i in range(maxcount)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_a = [0xF800 for i in range(maxcount)]
- stimulus_b = [randint(0, maxint16-1) for i in range(maxcount)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_b = [0x7800 for i in range(maxcount)]
- stimulus_a = [randint(0, maxint16-1) for i in range(maxcount)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_b = [0xF800 for i in range(maxcount)]
- stimulus_a = [randint(0, maxint16-1) for i in range(maxcount)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_a = [0x7C00 for i in range(maxcount)]
- stimulus_b = [randint(0, maxint16-1) for i in range(maxcount)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_a = [0xFC00 for i in range(maxcount)]
- stimulus_b = [randint(0, maxint16-1) for i in range(maxcount)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_b = [0x7C00 for i in range(maxcount)]
- stimulus_a = [randint(0, maxint16-1) for i in range(maxcount)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- stimulus_b = [0xFC00 for i in range(maxcount)]
- stimulus_a = [randint(0, maxint16-1) for i in range(maxcount)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
- #seed(0)
- for i in range(100000):
- stimulus_a = [randint(0, maxint16-1) for i in range(maxcount)]
- stimulus_b = [randint(0, maxint16-1) for i in range(maxcount)]
- yield from run_test(dut, stimulus_a, stimulus_b, op)
- count += maxcount
- print (count, "random vectors passed")
-
+++ /dev/null
-from random import randint
-from random import seed
-
-import sys
-from sfpy import Float32
-
-def get_mantissa(x):
- return 0x7fffff & x
-
-def get_exponent(x):
- return ((x & 0x7f800000) >> 23) - 127
-
-def set_exponent(x, e):
- return (x & ~0x7f800000) | ((e+127) << 23)
-
-def get_sign(x):
- return ((x & 0x80000000) >> 31)
-
-def is_nan(x):
- return get_exponent(x) == 128 and get_mantissa(x) != 0
-
-def is_inf(x):
- return get_exponent(x) == 128 and get_mantissa(x) == 0
-
-def is_pos_inf(x):
- return is_inf(x) and not get_sign(x)
-
-def is_neg_inf(x):
- return is_inf(x) and get_sign(x)
-
-def match(x, y):
- return (
- (is_pos_inf(x) and is_pos_inf(y)) or
- (is_neg_inf(x) and is_neg_inf(y)) or
- (is_nan(x) and is_nan(y)) or
- (x == y)
- )
-
-def get_rs_case(dut, a, b, mid):
- in_a, in_b = dut.rs[0]
- out_z = dut.res[0]
- yield dut.ids.in_mid.eq(mid)
- yield in_a.v.eq(a)
- yield in_a.valid_i.eq(1)
- yield
- yield
- yield
- yield
- a_ack = (yield in_a.ready_o)
- assert a_ack == 0
-
- yield in_a.valid_i.eq(0)
-
- yield in_b.v.eq(b)
- yield in_b.valid_i.eq(1)
- yield
- yield
- b_ack = (yield in_b.ready_o)
- assert b_ack == 0
-
- yield in_b.valid_i.eq(0)
-
- yield out_z.ready_i.eq(1)
-
- while True:
- out_z_stb = (yield out_z.valid_o)
- if not out_z_stb:
- yield
- continue
- vout_z = yield out_z.v
- #out_mid = yield dut.ids.out_mid
- yield out_z.ready_i.eq(0)
- yield
- break
-
- return vout_z, mid
-
-def check_rs_case(dut, a, b, z, mid=None):
- if mid is None:
- mid = randint(0, 6)
- mid = 0
- out_z, out_mid = yield from get_rs_case(dut, a, b, mid)
- assert out_z == z, "Output z 0x%x not equal to expected 0x%x" % (out_z, z)
- assert out_mid == mid, "Output mid 0x%x != expected 0x%x" % (out_mid, mid)
-
-
-def get_case(dut, a, b, mid):
- #yield dut.in_mid.eq(mid)
- yield dut.in_a.v.eq(a)
- yield dut.in_a.valid_i_test.eq(1)
- yield
- yield
- yield
- yield
- a_ack = (yield dut.in_a.ready_o)
- assert a_ack == 0
-
- yield dut.in_a.valid_i.eq(0)
-
- yield dut.in_b.v.eq(b)
- yield dut.in_b.valid_i.eq(1)
- yield
- yield
- b_ack = (yield dut.in_b.ready_o)
- assert b_ack == 0
-
- yield dut.in_b.valid_i.eq(0)
-
- yield dut.out_z.ready_i.eq(1)
-
- while True:
- out_z_stb = (yield dut.out_z.valid_o)
- if not out_z_stb:
- yield
- continue
- out_z = yield dut.out_z.v
- #out_mid = yield dut.out_mid
- yield dut.out_z.ready_i.eq(0)
- yield
- break
-
- return out_z, mid # TODO: mid
-
-def check_case(dut, a, b, z, mid=None):
- if mid is None:
- mid = randint(0, 6)
- mid = 0
- out_z, out_mid = yield from get_case(dut, a, b, mid)
- assert out_z == z, "Output z 0x%x not equal to expected 0x%x" % (out_z, z)
- assert out_mid == mid, "Output mid 0x%x != expected 0x%x" % (out_mid, mid)
-
-
-def run_test(dut, stimulus_a, stimulus_b, op, get_case_fn):
-
- expected_responses = []
- actual_responses = []
- for a, b in zip(stimulus_a, stimulus_b):
- mid = randint(0, 6)
- mid = 0
- af = Float32.from_bits(a)
- bf = Float32.from_bits(b)
- z = op(af, bf)
- expected_responses.append((z.get_bits(), mid))
- actual = yield from get_case_fn(dut, a, b, mid)
- actual_responses.append(actual)
-
- if len(actual_responses) < len(expected_responses):
- print ("Fail ... not enough results")
- exit(0)
-
- for expected, actual, a, b in zip(expected_responses, actual_responses,
- stimulus_a, stimulus_b):
- passed = match(expected[0], actual[0])
- if expected[1] != actual[1]: # check mid
- print ("MID failed", expected[1], actual[1])
- sys.exit(0)
-
- if not passed:
-
- expected = expected[0]
- actual = actual[0]
- print ("Fail ... expected:", hex(expected), "actual:", hex(actual))
-
- print (hex(a))
- print ("a mantissa:", a & 0x7fffff)
- print ("a exponent:", ((a & 0x7f800000) >> 23) - 127)
- print ("a sign:", ((a & 0x80000000) >> 31))
-
- print (hex(b))
- print ("b mantissa:", b & 0x7fffff)
- print ("b exponent:", ((b & 0x7f800000) >> 23) - 127)
- print ("b sign:", ((b & 0x80000000) >> 31))
-
- print (hex(expected))
- print ("expected mantissa:", expected & 0x7fffff)
- print ("expected exponent:", ((expected & 0x7f800000) >> 23) - 127)
- print ("expected sign:", ((expected & 0x80000000) >> 31))
-
- print (hex(actual))
- print ("actual mantissa:", actual & 0x7fffff)
- print ("actual exponent:", ((actual & 0x7f800000) >> 23) - 127)
- print ("actual sign:", ((actual & 0x80000000) >> 31))
-
- sys.exit(0)
-
-corner_cases = [0x80000000, 0x00000000, 0x7f800000, 0xff800000,
- 0x7fc00000, 0xffc00000]
-
-def run_corner_cases(dut, count, op, get_case_fn):
- #corner cases
- from itertools import permutations
- stimulus_a = [i[0] for i in permutations(corner_cases, 2)]
- stimulus_b = [i[1] for i in permutations(corner_cases, 2)]
- yield from run_test(dut, stimulus_a, stimulus_b, op, get_case_fn)
- count += len(stimulus_a)
- print (count, "vectors passed")
-
-def run_test_2(dut, stimulus_a, stimulus_b, op, get_case_fn):
- yield from run_test(dut, stimulus_a, stimulus_b, op, get_case_fn)
- yield from run_test(dut, stimulus_b, stimulus_a, op, get_case_fn)
-
-def run_cases(dut, count, op, fixed_num, num_entries, get_case_fn):
- if isinstance(fixed_num, int):
- stimulus_a = [fixed_num for i in range(num_entries)]
- report = hex(fixed_num)
- else:
- stimulus_a = fixed_num
- report = "random"
-
- stimulus_b = [randint(0, 1<<32) for i in range(num_entries)]
- yield from run_test_2(dut, stimulus_a, stimulus_b, op, get_case_fn)
- count += len(stimulus_a)
- print (count, "vectors passed 2^32", report)
-
- # non-canonical NaNs.
- stimulus_b = [set_exponent(randint(0, 1<<32), 128) \
- for i in range(num_entries)]
- yield from run_test_2(dut, stimulus_a, stimulus_b, op, get_case_fn)
- count += len(stimulus_a)
- print (count, "vectors passed Non-Canonical NaN", report)
-
- # -127
- stimulus_b = [set_exponent(randint(0, 1<<32), -127) \
- for i in range(num_entries)]
- yield from run_test_2(dut, stimulus_a, stimulus_b, op, get_case_fn)
- count += len(stimulus_a)
- print (count, "vectors passed exp=-127", report)
-
- # nearly zero
- stimulus_b = [set_exponent(randint(0, 1<<32), -126) \
- for i in range(num_entries)]
- yield from run_test_2(dut, stimulus_a, stimulus_b, op, get_case_fn)
- count += len(stimulus_a)
- print (count, "vectors passed exp=-126", report)
-
- # nearly inf
- stimulus_b = [set_exponent(randint(0, 1<<32), 127) \
- for i in range(num_entries)]
- yield from run_test_2(dut, stimulus_a, stimulus_b, op, get_case_fn)
- count += len(stimulus_a)
- print (count, "vectors passed exp=127", report)
-
- return count
-
-def run_edge_cases(dut, count, op, get_case_fn):
- #edge cases
- for testme in corner_cases:
- count = yield from run_cases(dut, count, op, testme, 10, get_case_fn)
-
- for i in range(100000):
- stimulus_a = [randint(0, 1<<32) for i in range(10)]
- count = yield from run_cases(dut, count, op, stimulus_a, 10,
- get_case_fn)
- return count
-
--- /dev/null
+import sys
+from random import randint
+from random import seed
+
+from sfpy import Float64
+
+def get_mantissa(x):
+ return x & 0x000fffffffffffff
+
+def get_exponent(x):
+ return ((x & 0x7ff0000000000000) >> 52) - 1023
+
+def get_sign(x):
+ return ((x & 0x8000000000000000) >> 63)
+
+def is_nan(x):
+ return get_exponent(x) == 1024 and get_mantissa(x) != 0
+
+def is_inf(x):
+ return get_exponent(x) == 1024 and get_mantissa(x) == 0
+
+def is_pos_inf(x):
+ return is_inf(x) and not get_sign(x)
+
+def is_neg_inf(x):
+ return is_inf(x) and get_sign(x)
+
+def match(x, y):
+ return (
+ (is_pos_inf(x) and is_pos_inf(y)) or
+ (is_neg_inf(x) and is_neg_inf(y)) or
+ (is_nan(x) and is_nan(y)) or
+ (x == y)
+ )
+
+def get_case(dut, a, b):
+ yield dut.in_a.v.eq(a)
+ yield dut.in_a.stb.eq(1)
+ yield
+ yield
+ a_ack = (yield dut.in_a.ack)
+ assert a_ack == 0
+ yield dut.in_b.v.eq(b)
+ yield dut.in_b.stb.eq(1)
+ b_ack = (yield dut.in_b.ack)
+ assert b_ack == 0
+
+ while True:
+ yield
+ out_z_stb = (yield dut.out_z.stb)
+ if not out_z_stb:
+ continue
+ yield dut.in_a.stb.eq(0)
+ yield dut.in_b.stb.eq(0)
+ yield dut.out_z.ack.eq(1)
+ yield
+ yield dut.out_z.ack.eq(0)
+ yield
+ yield
+ break
+
+ out_z = yield dut.out_z.v
+ return out_z
+
+def check_case(dut, a, b, z):
+ out_z = yield from get_case(dut, a, b)
+ assert out_z == z, "Output z 0x%x not equal to expected 0x%x" % (out_z, z)
+
+
+def run_test(dut, stimulus_a, stimulus_b, op):
+
+ expected_responses = []
+ actual_responses = []
+ for a, b in zip(stimulus_a, stimulus_b):
+ af = Float64.from_bits(a)
+ bf = Float64.from_bits(b)
+ z = op(af, bf)
+ expected_responses.append(z.get_bits())
+ #print (af, bf, z)
+ actual = yield from get_case(dut, a, b)
+ actual_responses.append(actual)
+
+ if len(actual_responses) < len(expected_responses):
+ print ("Fail ... not enough results")
+ exit(0)
+
+ for exp, act, a, b in zip(expected_responses, actual_responses,
+ stimulus_a, stimulus_b):
+ passed = match(exp, act)
+
+ if not passed:
+
+ print ("Fail ... expected:", hex(exp), "actual:", hex(act))
+
+ print (hex(a))
+ print ("a mantissa:", a & 0x000fffffffffffff)
+ print ("a exponent:", ((a & 0x7ff0000000000000) >> 52)\
+ - 1023)
+ print ("a sign:", ((a & 0x8000000000000000) >> 63))
+
+ print (hex(b))
+ print ("b mantissa:", b & 0x000fffffffffffff)
+ print ("b exponent:", ((b & 0x7ff0000000000000) >> 52)\
+ - 1023)
+ print ("b sign:", ((b & 0x8000000000000000) >> 63))
+
+ print (hex(exp))
+ print ("expected mantissa:", exp & 0x000fffffffffffff)
+ print ("expected exponent:", ((exp & 0x7ff0000000000000) >> 52)\
+ - 1023)
+ print ("expected sign:", ((exp & 0x8000000000000000) >> 63))
+
+ print (hex(act))
+ print ("actual mantissa:", act & 0x000fffffffffffff)
+ print ("actual exponent:", ((act & 0x7ff0000000000000) >> 52)\
+ - 1023)
+ print ("actual sign:", ((act & 0x8000000000000000) >> 63))
+
+ sys.exit(0)
+
+
+def run_corner_cases(dut, count, op):
+ #corner cases
+ from itertools import permutations
+ stimulus_a = [i[0] for i in permutations([
+ 0x8000000000000000,
+ 0x0000000000000000,
+ 0x7ff8000000000000,
+ 0xfff8000000000000,
+ 0x7ff0000000000000,
+ 0xfff0000000000000
+ ], 2)]
+ stimulus_b = [i[1] for i in permutations([
+ 0x8000000000000000,
+ 0x0000000000000000,
+ 0x7ff8000000000000,
+ 0xfff8000000000000,
+ 0x7ff0000000000000,
+ 0xfff0000000000000
+ ], 2)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+
+def run_edge_cases(dut, count, op):
+ #edge cases
+ stimulus_a = [0x8000000000000000 for i in range(1000)]
+ stimulus_b = [randint(0, 1<<64) for i in range(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_a = [0x0000000000000000 for i in range(1000)]
+ stimulus_b = [randint(0, 1<<64) for i in range(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0x8000000000000000 for i in range(1000)]
+ stimulus_a = [randint(0, 1<<64) for i in range(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0x0000000000000000 for i in range(1000)]
+ stimulus_a = [randint(0, 1<<64) for i in range(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_a = [0x7FF8000000000000 for i in range(1000)]
+ stimulus_b = [randint(0, 1<<64) for i in range(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_a = [0xFFF8000000000000 for i in range(1000)]
+ stimulus_b = [randint(0, 1<<64) for i in range(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0x7FF8000000000000 for i in range(1000)]
+ stimulus_a = [randint(0, 1<<64) for i in range(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0xFFF8000000000000 for i in range(1000)]
+ stimulus_a = [randint(0, 1<<64) for i in range(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_a = [0x7FF0000000000000 for i in range(1000)]
+ stimulus_b = [randint(0, 1<<64) for i in range(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_a = [0xFFF0000000000000 for i in range(1000)]
+ stimulus_b = [randint(0, 1<<64) for i in range(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0x7FF0000000000000 for i in range(1000)]
+ stimulus_a = [randint(0, 1<<64) for i in range(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0xFFF0000000000000 for i in range(1000)]
+ stimulus_a = [randint(0, 1<<64) for i in range(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ #seed(0)
+ for i in range(100000):
+ stimulus_a = [randint(0, 1<<64) for i in range(1000)]
+ stimulus_b = [randint(0, 1<<64) for i in range(1000)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += 1000
+ print (count, "random vectors passed")
+
--- /dev/null
+from random import randint
+from random import seed
+
+import sys
+from sfpy import Float16
+
+def get_mantissa(x):
+ return 0x3ff & x
+
+def get_exponent(x):
+ return ((x & 0xf800) >> 11) - 15
+
+def get_sign(x):
+ return ((x & 0x8000) >> 15)
+
+def is_nan(x):
+ return get_exponent(x) == 16 and get_mantissa(x) != 0
+
+def is_inf(x):
+ return get_exponent(x) == 16 and get_mantissa(x) == 0
+
+def is_pos_inf(x):
+ return is_inf(x) and not get_sign(x)
+
+def is_neg_inf(x):
+ return is_inf(x) and get_sign(x)
+
+def match(x, y):
+ return (
+ (is_pos_inf(x) and is_pos_inf(y)) or
+ (is_neg_inf(x) and is_neg_inf(y)) or
+ (is_nan(x) and is_nan(y)) or
+ (x == y)
+ )
+
+def get_case(dut, a, b):
+ yield dut.in_a.v.eq(a)
+ yield dut.in_a.stb.eq(1)
+ yield
+ yield
+ a_ack = (yield dut.in_a.ack)
+ assert a_ack == 0
+ yield dut.in_b.v.eq(b)
+ yield dut.in_b.stb.eq(1)
+ b_ack = (yield dut.in_b.ack)
+ assert b_ack == 0
+
+ while True:
+ yield
+ out_z_stb = (yield dut.out_z.stb)
+ if not out_z_stb:
+ continue
+ yield dut.in_a.stb.eq(0)
+ yield dut.in_b.stb.eq(0)
+ yield dut.out_z.ack.eq(1)
+ yield
+ yield dut.out_z.ack.eq(0)
+ yield
+ yield
+ break
+
+ out_z = yield dut.out_z.v
+ return out_z
+
+def check_case(dut, a, b, z):
+ out_z = yield from get_case(dut, a, b)
+ assert out_z == z, "Output z 0x%x not equal to expected 0x%x" % (out_z, z)
+
+
+def run_test(dut, stimulus_a, stimulus_b, op):
+
+ expected_responses = []
+ actual_responses = []
+ for a, b in zip(stimulus_a, stimulus_b):
+ af = Float16.from_bits(a)
+ bf = Float16.from_bits(b)
+ z = op(af, bf)
+ expected_responses.append(z.get_bits())
+ #print (af, bf, z)
+ actual = yield from get_case(dut, a, b)
+ actual_responses.append(actual)
+
+ if len(actual_responses) < len(expected_responses):
+ print ("Fail ... not enough results")
+ exit(0)
+
+ for expected, actual, a, b in zip(expected_responses, actual_responses,
+ stimulus_a, stimulus_b):
+ passed = match(expected, actual)
+
+ if not passed:
+
+ print ("Fail ... expected:", hex(expected), "actual:", hex(actual))
+
+ print (hex(a))
+ print ("a mantissa:", get_mantissa(a))
+ print ("a exponent:", get_exponent(a))
+ print ("a sign:", get_sign(a))
+
+ print (hex(b))
+ print ("b mantissa:", get_mantissa(b))
+ print ("b exponent:", get_exponent(b))
+ print ("b sign:", get_sign(b))
+
+ print (hex(expected))
+ print ("expected mantissa:", get_mantissa(expected))
+ print ("expected exponent:", get_exponent(expected))
+ print ("expected sign:", get_sign(expected))
+
+ print (hex(actual))
+ print ("actual mantissa:", get_mantissa(actual))
+ print ("actual exponent:", get_exponent(actual))
+ print ("actual sign:", get_sign(actual))
+
+ sys.exit(0)
+
+def run_corner_cases(dut, count, op):
+ #corner cases
+ corners = [0x8000, 0x0000, 0x7800, 0xf800, 0x7c00, 0xfc00]
+ from itertools import permutations
+ stimulus_a = [i[0] for i in permutations(corners, 2)]
+ stimulus_b = [i[1] for i in permutations(corners, 2)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+
+def run_edge_cases(dut, count, op):
+ maxint16 = 1<<16
+ maxcount = 10
+ #edge cases
+ stimulus_a = [0x8000 for i in range(maxcount)]
+ stimulus_b = [randint(0, maxint16-1) for i in range(maxcount)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_a = [0x0000 for i in range(maxcount)]
+ stimulus_b = [randint(0, maxint16-1) for i in range(maxcount)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0x8000 for i in range(maxcount)]
+ stimulus_a = [randint(0, maxint16-1) for i in range(maxcount)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0x0000 for i in range(maxcount)]
+ stimulus_a = [randint(0, maxint16-1) for i in range(maxcount)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_a = [0x7800 for i in range(maxcount)]
+ stimulus_b = [randint(0, maxint16-1) for i in range(maxcount)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_a = [0xF800 for i in range(maxcount)]
+ stimulus_b = [randint(0, maxint16-1) for i in range(maxcount)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0x7800 for i in range(maxcount)]
+ stimulus_a = [randint(0, maxint16-1) for i in range(maxcount)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0xF800 for i in range(maxcount)]
+ stimulus_a = [randint(0, maxint16-1) for i in range(maxcount)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_a = [0x7C00 for i in range(maxcount)]
+ stimulus_b = [randint(0, maxint16-1) for i in range(maxcount)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_a = [0xFC00 for i in range(maxcount)]
+ stimulus_b = [randint(0, maxint16-1) for i in range(maxcount)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0x7C00 for i in range(maxcount)]
+ stimulus_a = [randint(0, maxint16-1) for i in range(maxcount)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ stimulus_b = [0xFC00 for i in range(maxcount)]
+ stimulus_a = [randint(0, maxint16-1) for i in range(maxcount)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+ #seed(0)
+ for i in range(100000):
+ stimulus_a = [randint(0, maxint16-1) for i in range(maxcount)]
+ stimulus_b = [randint(0, maxint16-1) for i in range(maxcount)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op)
+ count += maxcount
+ print (count, "random vectors passed")
+
--- /dev/null
+from random import randint
+from random import seed
+
+import sys
+from sfpy import Float32
+
+def get_mantissa(x):
+ return 0x7fffff & x
+
+def get_exponent(x):
+ return ((x & 0x7f800000) >> 23) - 127
+
+def set_exponent(x, e):
+ return (x & ~0x7f800000) | ((e+127) << 23)
+
+def get_sign(x):
+ return ((x & 0x80000000) >> 31)
+
+def is_nan(x):
+ return get_exponent(x) == 128 and get_mantissa(x) != 0
+
+def is_inf(x):
+ return get_exponent(x) == 128 and get_mantissa(x) == 0
+
+def is_pos_inf(x):
+ return is_inf(x) and not get_sign(x)
+
+def is_neg_inf(x):
+ return is_inf(x) and get_sign(x)
+
+def match(x, y):
+ return (
+ (is_pos_inf(x) and is_pos_inf(y)) or
+ (is_neg_inf(x) and is_neg_inf(y)) or
+ (is_nan(x) and is_nan(y)) or
+ (x == y)
+ )
+
+def get_rs_case(dut, a, b, mid):
+ in_a, in_b = dut.rs[0]
+ out_z = dut.res[0]
+ yield dut.ids.in_mid.eq(mid)
+ yield in_a.v.eq(a)
+ yield in_a.valid_i.eq(1)
+ yield
+ yield
+ yield
+ yield
+ a_ack = (yield in_a.ready_o)
+ assert a_ack == 0
+
+ yield in_a.valid_i.eq(0)
+
+ yield in_b.v.eq(b)
+ yield in_b.valid_i.eq(1)
+ yield
+ yield
+ b_ack = (yield in_b.ready_o)
+ assert b_ack == 0
+
+ yield in_b.valid_i.eq(0)
+
+ yield out_z.ready_i.eq(1)
+
+ while True:
+ out_z_stb = (yield out_z.valid_o)
+ if not out_z_stb:
+ yield
+ continue
+ vout_z = yield out_z.v
+ #out_mid = yield dut.ids.out_mid
+ yield out_z.ready_i.eq(0)
+ yield
+ break
+
+ return vout_z, mid
+
+def check_rs_case(dut, a, b, z, mid=None):
+ if mid is None:
+ mid = randint(0, 6)
+ mid = 0
+ out_z, out_mid = yield from get_rs_case(dut, a, b, mid)
+ assert out_z == z, "Output z 0x%x not equal to expected 0x%x" % (out_z, z)
+ assert out_mid == mid, "Output mid 0x%x != expected 0x%x" % (out_mid, mid)
+
+
+def get_case(dut, a, b, mid):
+ #yield dut.in_mid.eq(mid)
+ yield dut.in_a.v.eq(a)
+ yield dut.in_a.valid_i_test.eq(1)
+ yield
+ yield
+ yield
+ yield
+ a_ack = (yield dut.in_a.ready_o)
+ assert a_ack == 0
+
+ yield dut.in_a.valid_i.eq(0)
+
+ yield dut.in_b.v.eq(b)
+ yield dut.in_b.valid_i.eq(1)
+ yield
+ yield
+ b_ack = (yield dut.in_b.ready_o)
+ assert b_ack == 0
+
+ yield dut.in_b.valid_i.eq(0)
+
+ yield dut.out_z.ready_i.eq(1)
+
+ while True:
+ out_z_stb = (yield dut.out_z.valid_o)
+ if not out_z_stb:
+ yield
+ continue
+ out_z = yield dut.out_z.v
+ #out_mid = yield dut.out_mid
+ yield dut.out_z.ready_i.eq(0)
+ yield
+ break
+
+ return out_z, mid # TODO: mid
+
+def check_case(dut, a, b, z, mid=None):
+ if mid is None:
+ mid = randint(0, 6)
+ mid = 0
+ out_z, out_mid = yield from get_case(dut, a, b, mid)
+ assert out_z == z, "Output z 0x%x not equal to expected 0x%x" % (out_z, z)
+ assert out_mid == mid, "Output mid 0x%x != expected 0x%x" % (out_mid, mid)
+
+
+def run_test(dut, stimulus_a, stimulus_b, op, get_case_fn):
+
+ expected_responses = []
+ actual_responses = []
+ for a, b in zip(stimulus_a, stimulus_b):
+ mid = randint(0, 6)
+ mid = 0
+ af = Float32.from_bits(a)
+ bf = Float32.from_bits(b)
+ z = op(af, bf)
+ expected_responses.append((z.get_bits(), mid))
+ actual = yield from get_case_fn(dut, a, b, mid)
+ actual_responses.append(actual)
+
+ if len(actual_responses) < len(expected_responses):
+ print ("Fail ... not enough results")
+ exit(0)
+
+ for expected, actual, a, b in zip(expected_responses, actual_responses,
+ stimulus_a, stimulus_b):
+ passed = match(expected[0], actual[0])
+ if expected[1] != actual[1]: # check mid
+ print ("MID failed", expected[1], actual[1])
+ sys.exit(0)
+
+ if not passed:
+
+ expected = expected[0]
+ actual = actual[0]
+ print ("Fail ... expected:", hex(expected), "actual:", hex(actual))
+
+ print (hex(a))
+ print ("a mantissa:", a & 0x7fffff)
+ print ("a exponent:", ((a & 0x7f800000) >> 23) - 127)
+ print ("a sign:", ((a & 0x80000000) >> 31))
+
+ print (hex(b))
+ print ("b mantissa:", b & 0x7fffff)
+ print ("b exponent:", ((b & 0x7f800000) >> 23) - 127)
+ print ("b sign:", ((b & 0x80000000) >> 31))
+
+ print (hex(expected))
+ print ("expected mantissa:", expected & 0x7fffff)
+ print ("expected exponent:", ((expected & 0x7f800000) >> 23) - 127)
+ print ("expected sign:", ((expected & 0x80000000) >> 31))
+
+ print (hex(actual))
+ print ("actual mantissa:", actual & 0x7fffff)
+ print ("actual exponent:", ((actual & 0x7f800000) >> 23) - 127)
+ print ("actual sign:", ((actual & 0x80000000) >> 31))
+
+ sys.exit(0)
+
+corner_cases = [0x80000000, 0x00000000, 0x7f800000, 0xff800000,
+ 0x7fc00000, 0xffc00000]
+
+def run_corner_cases(dut, count, op, get_case_fn):
+ #corner cases
+ from itertools import permutations
+ stimulus_a = [i[0] for i in permutations(corner_cases, 2)]
+ stimulus_b = [i[1] for i in permutations(corner_cases, 2)]
+ yield from run_test(dut, stimulus_a, stimulus_b, op, get_case_fn)
+ count += len(stimulus_a)
+ print (count, "vectors passed")
+
+def run_test_2(dut, stimulus_a, stimulus_b, op, get_case_fn):
+ yield from run_test(dut, stimulus_a, stimulus_b, op, get_case_fn)
+ yield from run_test(dut, stimulus_b, stimulus_a, op, get_case_fn)
+
+def run_cases(dut, count, op, fixed_num, num_entries, get_case_fn):
+ if isinstance(fixed_num, int):
+ stimulus_a = [fixed_num for i in range(num_entries)]
+ report = hex(fixed_num)
+ else:
+ stimulus_a = fixed_num
+ report = "random"
+
+ stimulus_b = [randint(0, 1<<32) for i in range(num_entries)]
+ yield from run_test_2(dut, stimulus_a, stimulus_b, op, get_case_fn)
+ count += len(stimulus_a)
+ print (count, "vectors passed 2^32", report)
+
+ # non-canonical NaNs.
+ stimulus_b = [set_exponent(randint(0, 1<<32), 128) \
+ for i in range(num_entries)]
+ yield from run_test_2(dut, stimulus_a, stimulus_b, op, get_case_fn)
+ count += len(stimulus_a)
+ print (count, "vectors passed Non-Canonical NaN", report)
+
+ # -127
+ stimulus_b = [set_exponent(randint(0, 1<<32), -127) \
+ for i in range(num_entries)]
+ yield from run_test_2(dut, stimulus_a, stimulus_b, op, get_case_fn)
+ count += len(stimulus_a)
+ print (count, "vectors passed exp=-127", report)
+
+ # nearly zero
+ stimulus_b = [set_exponent(randint(0, 1<<32), -126) \
+ for i in range(num_entries)]
+ yield from run_test_2(dut, stimulus_a, stimulus_b, op, get_case_fn)
+ count += len(stimulus_a)
+ print (count, "vectors passed exp=-126", report)
+
+ # nearly inf
+ stimulus_b = [set_exponent(randint(0, 1<<32), 127) \
+ for i in range(num_entries)]
+ yield from run_test_2(dut, stimulus_a, stimulus_b, op, get_case_fn)
+ count += len(stimulus_a)
+ print (count, "vectors passed exp=127", report)
+
+ return count
+
+def run_edge_cases(dut, count, op, get_case_fn):
+ #edge cases
+ for testme in corner_cases:
+ count = yield from run_cases(dut, count, op, testme, 10, get_case_fn)
+
+ for i in range(100000):
+ stimulus_a = [randint(0, 1<<32) for i in range(10)]
+ count = yield from run_cases(dut, count, op, stimulus_a, 10,
+ get_case_fn)
+ return count
+