+++ /dev/null
-# IEEE Floating Point Adder (Single Precision)
-# Copyright (C) Jonathan P Dawson 2013
-# 2013-12-12
-
-from nmigen import Module, Signal, Cat
-from nmigen.cli import main, verilog
-
-from ieee754.fpcommon.fpbase import (FPNumIn, FPNumOut, FPOpIn,
- FPOpOut, Overflow, FPBase)
-
-from nmutil.nmoperator import eq
-
-
-class FPADD(FPBase):
-
- def __init__(self, width, single_cycle=False):
- FPBase.__init__(self)
- self.width = width
- self.single_cycle = single_cycle
-
- self.in_a = FPOpIn(width)
- self.in_a.data_i = Signal(width)
- self.in_b = FPOpIn(width)
- self.in_b.data_i = Signal(width)
- self.out_z = FPOpOut(width)
- self.out_z.data_o = Signal(width)
-
- def elaborate(self, platform=None):
- """ creates the HDL code-fragment for FPAdd
- """
- m = Module()
-
- # Latches
- a = FPNumIn(self.in_a, self.width)
- b = FPNumIn(self.in_b, self.width)
- z = FPNumOut(self.width, False)
-
- m.submodules.fpnum_a = a
- m.submodules.fpnum_b = b
- m.submodules.fpnum_z = z
- m.submodules.fpnum_in_a = self.in_a
- m.submodules.fpnum_in_b = self.in_b
- m.submodules.fpnum_out_z = self.out_z
-
- m.d.comb += a.v.eq(self.in_a.v)
- m.d.comb += b.v.eq(self.in_b.v)
-
- w = z.m_width + 4
- tot = Signal(w, reset_less=True) # sticky/round/guard, {mantissa} result, 1 overflow
-
- of = Overflow()
-
- m.submodules.overflow = of
-
- with m.FSM() as fsm:
-
- # ******
- # gets operand a
-
- with m.State("get_a"):
- res = self.get_op(m, self.in_a, a, "get_b")
- m.d.sync += eq([a, self.in_a.ready_o], res)
-
- # ******
- # gets operand b
-
- with m.State("get_b"):
- res = self.get_op(m, self.in_b, b, "special_cases")
- m.d.sync += eq([b, self.in_b.ready_o], res)
-
- # ******
- # special cases: NaNs, infs, zeros, denormalised
- # NOTE: some of these are unique to add. see "Special Operations"
- # https://steve.hollasch.net/cgindex/coding/ieeefloat.html
-
- with m.State("special_cases"):
-
- s_nomatch = Signal()
- m.d.comb += s_nomatch.eq(a.s != b.s)
-
- m_match = Signal()
- m.d.comb += m_match.eq(a.m == b.m)
-
- # if a is NaN or b is NaN return NaN
- with m.If(a.is_nan | b.is_nan):
- m.next = "put_z"
- m.d.sync += z.nan(1)
-
- # XXX WEIRDNESS for FP16 non-canonical NaN handling
- # under review
-
- ## if a is zero and b is NaN return -b
- #with m.If(a.is_zero & (a.s==0) & b.is_nan):
- # m.next = "put_z"
- # m.d.sync += z.create(b.s, b.e, Cat(b.m[3:-2], ~b.m[0]))
-
- ## if b is zero and a is NaN return -a
- #with m.Elif(b.is_zero & (b.s==0) & a.is_nan):
- # m.next = "put_z"
- # m.d.sync += z.create(a.s, a.e, Cat(a.m[3:-2], ~a.m[0]))
-
- ## if a is -zero and b is NaN return -b
- #with m.Elif(a.is_zero & (a.s==1) & b.is_nan):
- # m.next = "put_z"
- # m.d.sync += z.create(a.s & b.s, b.e, Cat(b.m[3:-2], 1))
-
- ## if b is -zero and a is NaN return -a
- #with m.Elif(b.is_zero & (b.s==1) & a.is_nan):
- # m.next = "put_z"
- # m.d.sync += z.create(a.s & b.s, a.e, Cat(a.m[3:-2], 1))
-
- # if a is inf return inf (or NaN)
- with m.Elif(a.is_inf):
- m.next = "put_z"
- m.d.sync += z.inf(a.s)
- # if a is inf and signs don't match return NaN
- with m.If(b.exp_128 & s_nomatch):
- m.d.sync += z.nan(1)
-
- # if b is inf return inf
- with m.Elif(b.is_inf):
- m.next = "put_z"
- m.d.sync += z.inf(b.s)
-
- # if a is zero and b zero return signed-a/b
- with m.Elif(a.is_zero & b.is_zero):
- m.next = "put_z"
- m.d.sync += z.create(a.s & b.s, b.e, b.m[3:-1])
-
- # if a is zero return b
- with m.Elif(a.is_zero):
- m.next = "put_z"
- m.d.sync += z.create(b.s, b.e, b.m[3:-1])
-
- # if b is zero return a
- with m.Elif(b.is_zero):
- m.next = "put_z"
- m.d.sync += z.create(a.s, a.e, a.m[3:-1])
-
- # if a equal to -b return zero (+ve zero)
- with m.Elif(s_nomatch & m_match & (a.e == b.e)):
- m.next = "put_z"
- m.d.sync += z.zero(0)
-
- # Denormalised Number checks
- with m.Else():
- m.next = "align"
- self.denormalise(m, a)
- self.denormalise(m, b)
-
- # ******
- # align.
-
- with m.State("align"):
- if not self.single_cycle:
- # NOTE: this does *not* do single-cycle multi-shifting,
- # it *STAYS* in the align state until exponents match
-
- # exponent of a greater than b: shift b down
- with m.If(a.e > b.e):
- m.d.sync += b.shift_down(b)
- # exponent of b greater than a: shift a down
- with m.Elif(a.e < b.e):
- m.d.sync += a.shift_down(a)
- # exponents equal: move to next stage.
- with m.Else():
- m.next = "add_0"
- else:
- # This one however (single-cycle) will do the shift
- # in one go.
-
- # XXX TODO: the shifter used here is quite expensive
- # having only one would be better
-
- ediff = Signal((len(a.e), True), reset_less=True)
- ediffr = Signal((len(a.e), True), reset_less=True)
- m.d.comb += ediff.eq(a.e - b.e)
- m.d.comb += ediffr.eq(b.e - a.e)
- with m.If(ediff > 0):
- m.d.sync += b.shift_down_multi(ediff)
- # exponent of b greater than a: shift a down
- with m.Elif(ediff < 0):
- m.d.sync += a.shift_down_multi(ediffr)
-
- m.next = "add_0"
-
- # ******
- # First stage of add. covers same-sign (add) and subtract
- # special-casing when mantissas are greater or equal, to
- # give greatest accuracy.
-
- with m.State("add_0"):
- m.next = "add_1"
- m.d.sync += z.e.eq(a.e)
- # same-sign (both negative or both positive) add mantissas
- with m.If(a.s == b.s):
- m.d.sync += [
- tot.eq(Cat(a.m, 0) + Cat(b.m, 0)),
- z.s.eq(a.s)
- ]
- # a mantissa greater than b, use a
- with m.Elif(a.m >= b.m):
- m.d.sync += [
- tot.eq(Cat(a.m, 0) - Cat(b.m, 0)),
- z.s.eq(a.s)
- ]
- # b mantissa greater than a, use b
- with m.Else():
- m.d.sync += [
- tot.eq(Cat(b.m, 0) - Cat(a.m, 0)),
- z.s.eq(b.s)
- ]
-
- # ******
- # Second stage of add: preparation for normalisation.
- # detects when tot sum is too big (tot[27] is kinda a carry bit)
-
- with m.State("add_1"):
- m.next = "normalise_1"
- # tot[27] gets set when the sum overflows. shift result down
- with m.If(tot[-1]):
- m.d.sync += [
- z.m.eq(tot[4:]),
- of.m0.eq(tot[4]),
- of.guard.eq(tot[3]),
- of.round_bit.eq(tot[2]),
- of.sticky.eq(tot[1] | tot[0]),
- z.e.eq(z.e + 1)
- ]
- # tot[27] zero case
- with m.Else():
- m.d.sync += [
- z.m.eq(tot[3:]),
- of.m0.eq(tot[3]),
- of.guard.eq(tot[2]),
- of.round_bit.eq(tot[1]),
- of.sticky.eq(tot[0])
- ]
-
- # ******
- # First stage of normalisation.
-
- with m.State("normalise_1"):
- self.normalise_1(m, z, of, "normalise_2")
-
- # ******
- # Second stage of normalisation.
-
- with m.State("normalise_2"):
- self.normalise_2(m, z, of, "round")
-
- # ******
- # rounding stage
-
- with m.State("round"):
- self.roundz(m, z, of.roundz)
- m.next = "corrections"
-
- # ******
- # correction stage
-
- with m.State("corrections"):
- self.corrections(m, z, "pack")
-
- # ******
- # pack stage
-
- with m.State("pack"):
- self.pack(m, z, "put_z")
-
- # ******
- # put_z stage
-
- with m.State("put_z"):
- self.put_z(m, z, self.out_z, "get_a")
-
- return m
-
-
-if __name__ == "__main__":
- alu = FPADD(width=32)
- main(alu, ports=alu.in_a.ports() + alu.in_b.ports() + alu.out_z.ports())
-
-
- # works... but don't use, just do "python fname.py convert -t v"
- #print (verilog.convert(alu, ports=[
- # ports=alu.in_a.ports() + \
- # alu.in_b.ports() + \
- # alu.out_z.ports())
--- /dev/null
+# IEEE Floating Point Adder (Single Precision)
+# Copyright (C) Jonathan P Dawson 2013
+# 2013-12-12
+
+from nmigen import Module, Signal, Cat
+from nmigen.cli import main, verilog
+
+from ieee754.fpcommon.fpbase import (FPNumIn, FPNumOut, FPOpIn,
+ FPOpOut, Overflow, FPBase)
+
+from nmutil.nmoperator import eq
+
+
+class FPADD(FPBase):
+
+ def __init__(self, width, single_cycle=False):
+ FPBase.__init__(self)
+ self.width = width
+ self.single_cycle = single_cycle
+
+ self.in_a = FPOpIn(width)
+ self.in_a.data_i = Signal(width)
+ self.in_b = FPOpIn(width)
+ self.in_b.data_i = Signal(width)
+ self.out_z = FPOpOut(width)
+ self.out_z.data_o = Signal(width)
+
+ def elaborate(self, platform=None):
+ """ creates the HDL code-fragment for FPAdd
+ """
+ m = Module()
+
+ # Latches
+ a = FPNumIn(self.in_a, self.width)
+ b = FPNumIn(self.in_b, self.width)
+ z = FPNumOut(self.width, False)
+
+ m.submodules.fpnum_a = a
+ m.submodules.fpnum_b = b
+ m.submodules.fpnum_z = z
+ m.submodules.fpnum_in_a = self.in_a
+ m.submodules.fpnum_in_b = self.in_b
+ m.submodules.fpnum_out_z = self.out_z
+
+ m.d.comb += a.v.eq(self.in_a.v)
+ m.d.comb += b.v.eq(self.in_b.v)
+
+ w = z.m_width + 4
+ tot = Signal(w, reset_less=True) # sticky/round/guard, {mantissa} result, 1 overflow
+
+ of = Overflow()
+
+ m.submodules.overflow = of
+
+ with m.FSM() as fsm:
+
+ # ******
+ # gets operand a
+
+ with m.State("get_a"):
+ res = self.get_op(m, self.in_a, a, "get_b")
+ m.d.sync += eq([a, self.in_a.ready_o], res)
+
+ # ******
+ # gets operand b
+
+ with m.State("get_b"):
+ res = self.get_op(m, self.in_b, b, "special_cases")
+ m.d.sync += eq([b, self.in_b.ready_o], res)
+
+ # ******
+ # special cases: NaNs, infs, zeros, denormalised
+ # NOTE: some of these are unique to add. see "Special Operations"
+ # https://steve.hollasch.net/cgindex/coding/ieeefloat.html
+
+ with m.State("special_cases"):
+
+ s_nomatch = Signal()
+ m.d.comb += s_nomatch.eq(a.s != b.s)
+
+ m_match = Signal()
+ m.d.comb += m_match.eq(a.m == b.m)
+
+ # if a is NaN or b is NaN return NaN
+ with m.If(a.is_nan | b.is_nan):
+ m.next = "put_z"
+ m.d.sync += z.nan(1)
+
+ # XXX WEIRDNESS for FP16 non-canonical NaN handling
+ # under review
+
+ ## if a is zero and b is NaN return -b
+ #with m.If(a.is_zero & (a.s==0) & b.is_nan):
+ # m.next = "put_z"
+ # m.d.sync += z.create(b.s, b.e, Cat(b.m[3:-2], ~b.m[0]))
+
+ ## if b is zero and a is NaN return -a
+ #with m.Elif(b.is_zero & (b.s==0) & a.is_nan):
+ # m.next = "put_z"
+ # m.d.sync += z.create(a.s, a.e, Cat(a.m[3:-2], ~a.m[0]))
+
+ ## if a is -zero and b is NaN return -b
+ #with m.Elif(a.is_zero & (a.s==1) & b.is_nan):
+ # m.next = "put_z"
+ # m.d.sync += z.create(a.s & b.s, b.e, Cat(b.m[3:-2], 1))
+
+ ## if b is -zero and a is NaN return -a
+ #with m.Elif(b.is_zero & (b.s==1) & a.is_nan):
+ # m.next = "put_z"
+ # m.d.sync += z.create(a.s & b.s, a.e, Cat(a.m[3:-2], 1))
+
+ # if a is inf return inf (or NaN)
+ with m.Elif(a.is_inf):
+ m.next = "put_z"
+ m.d.sync += z.inf(a.s)
+ # if a is inf and signs don't match return NaN
+ with m.If(b.exp_128 & s_nomatch):
+ m.d.sync += z.nan(1)
+
+ # if b is inf return inf
+ with m.Elif(b.is_inf):
+ m.next = "put_z"
+ m.d.sync += z.inf(b.s)
+
+ # if a is zero and b zero return signed-a/b
+ with m.Elif(a.is_zero & b.is_zero):
+ m.next = "put_z"
+ m.d.sync += z.create(a.s & b.s, b.e, b.m[3:-1])
+
+ # if a is zero return b
+ with m.Elif(a.is_zero):
+ m.next = "put_z"
+ m.d.sync += z.create(b.s, b.e, b.m[3:-1])
+
+ # if b is zero return a
+ with m.Elif(b.is_zero):
+ m.next = "put_z"
+ m.d.sync += z.create(a.s, a.e, a.m[3:-1])
+
+ # if a equal to -b return zero (+ve zero)
+ with m.Elif(s_nomatch & m_match & (a.e == b.e)):
+ m.next = "put_z"
+ m.d.sync += z.zero(0)
+
+ # Denormalised Number checks
+ with m.Else():
+ m.next = "align"
+ self.denormalise(m, a)
+ self.denormalise(m, b)
+
+ # ******
+ # align.
+
+ with m.State("align"):
+ if not self.single_cycle:
+ # NOTE: this does *not* do single-cycle multi-shifting,
+ # it *STAYS* in the align state until exponents match
+
+ # exponent of a greater than b: shift b down
+ with m.If(a.e > b.e):
+ m.d.sync += b.shift_down(b)
+ # exponent of b greater than a: shift a down
+ with m.Elif(a.e < b.e):
+ m.d.sync += a.shift_down(a)
+ # exponents equal: move to next stage.
+ with m.Else():
+ m.next = "add_0"
+ else:
+ # This one however (single-cycle) will do the shift
+ # in one go.
+
+ # XXX TODO: the shifter used here is quite expensive
+ # having only one would be better
+
+ ediff = Signal((len(a.e), True), reset_less=True)
+ ediffr = Signal((len(a.e), True), reset_less=True)
+ m.d.comb += ediff.eq(a.e - b.e)
+ m.d.comb += ediffr.eq(b.e - a.e)
+ with m.If(ediff > 0):
+ m.d.sync += b.shift_down_multi(ediff)
+ # exponent of b greater than a: shift a down
+ with m.Elif(ediff < 0):
+ m.d.sync += a.shift_down_multi(ediffr)
+
+ m.next = "add_0"
+
+ # ******
+ # First stage of add. covers same-sign (add) and subtract
+ # special-casing when mantissas are greater or equal, to
+ # give greatest accuracy.
+
+ with m.State("add_0"):
+ m.next = "add_1"
+ m.d.sync += z.e.eq(a.e)
+ # same-sign (both negative or both positive) add mantissas
+ with m.If(a.s == b.s):
+ m.d.sync += [
+ tot.eq(Cat(a.m, 0) + Cat(b.m, 0)),
+ z.s.eq(a.s)
+ ]
+ # a mantissa greater than b, use a
+ with m.Elif(a.m >= b.m):
+ m.d.sync += [
+ tot.eq(Cat(a.m, 0) - Cat(b.m, 0)),
+ z.s.eq(a.s)
+ ]
+ # b mantissa greater than a, use b
+ with m.Else():
+ m.d.sync += [
+ tot.eq(Cat(b.m, 0) - Cat(a.m, 0)),
+ z.s.eq(b.s)
+ ]
+
+ # ******
+ # Second stage of add: preparation for normalisation.
+ # detects when tot sum is too big (tot[27] is kinda a carry bit)
+
+ with m.State("add_1"):
+ m.next = "normalise_1"
+ # tot[27] gets set when the sum overflows. shift result down
+ with m.If(tot[-1]):
+ m.d.sync += [
+ z.m.eq(tot[4:]),
+ of.m0.eq(tot[4]),
+ of.guard.eq(tot[3]),
+ of.round_bit.eq(tot[2]),
+ of.sticky.eq(tot[1] | tot[0]),
+ z.e.eq(z.e + 1)
+ ]
+ # tot[27] zero case
+ with m.Else():
+ m.d.sync += [
+ z.m.eq(tot[3:]),
+ of.m0.eq(tot[3]),
+ of.guard.eq(tot[2]),
+ of.round_bit.eq(tot[1]),
+ of.sticky.eq(tot[0])
+ ]
+
+ # ******
+ # First stage of normalisation.
+
+ with m.State("normalise_1"):
+ self.normalise_1(m, z, of, "normalise_2")
+
+ # ******
+ # Second stage of normalisation.
+
+ with m.State("normalise_2"):
+ self.normalise_2(m, z, of, "round")
+
+ # ******
+ # rounding stage
+
+ with m.State("round"):
+ self.roundz(m, z, of.roundz)
+ m.next = "corrections"
+
+ # ******
+ # correction stage
+
+ with m.State("corrections"):
+ self.corrections(m, z, "pack")
+
+ # ******
+ # pack stage
+
+ with m.State("pack"):
+ self.pack(m, z, "put_z")
+
+ # ******
+ # put_z stage
+
+ with m.State("put_z"):
+ self.put_z(m, z, self.out_z, "get_a")
+
+ return m
+
+
+if __name__ == "__main__":
+ alu = FPADD(width=32)
+ main(alu, ports=alu.in_a.ports() + alu.in_b.ports() + alu.out_z.ports())
+
+
+ # works... but don't use, just do "python fname.py convert -t v"
+ #print (verilog.convert(alu, ports=[
+ # ports=alu.in_a.ports() + \
+ # alu.in_b.ports() + \
+ # alu.out_z.ports())
--- /dev/null
+from nmigen.compat.sim import run_simulation
+from nmigen.cli import verilog, rtlil
+from nmigen import Signal, Module, Elaboratable
+
+
+class SRLatch(Elaboratable):
+ def __init__(self):
+ self.s = Signal(reset_less=True)
+ self.r = Signal(reset_less=True)
+ self.q = Signal(reset_less=True)
+ self.qn = Signal(reset_less=True)
+
+ def elaborate(self, platform):
+ m = Module()
+ q_int = Signal(reset_less=True)
+ qn_int = Signal(reset_less=True)
+
+ m.d.comb += self.q.eq(~(self.s | qn_int))
+ m.d.comb += self.qn.eq(~(self.r | q_int))
+
+ m.d.sync += q_int.eq(self.q)
+ m.d.sync += qn_int.eq(self.qn)
+
+ return m
+
+ def ports(self):
+ return self.s, self.r, self.q, self.qn
+
+
+def sr_sim(dut):
+ yield dut.s.eq(0)
+ yield dut.r.eq(0)
+ yield
+ yield dut.s.eq(1)
+ yield
+ yield dut.s.eq(0)
+ yield
+ yield dut.r.eq(1)
+ yield
+ yield dut.r.eq(0)
+ yield
+ yield
+
+def test_sr():
+ dut = SRLatch()
+ vl = rtlil.convert(dut, ports=dut.ports())
+ with open("test_srlatch.il", "w") as f:
+ f.write(vl)
+
+ run_simulation(dut, sr_sim(dut), vcd_name='test_srlatch.vcd')
+
+if __name__ == '__main__':
+ test_sr()