--- /dev/null
+# --
+# -- Set associative dcache write-through
+# --
+# -- TODO (in no specific order):
+# --
+# -- * See list in icache.vhdl
+# -- * Complete load misses on the cycle when WB data comes instead of
+# -- at the end of line (this requires dealing with requests coming in
+# -- while not idle...)
+# --
+# library ieee;
+# use ieee.std_logic_1164.all;
+# use ieee.numeric_std.all;
+#
+# library work;
+# use work.utils.all;
+# use work.common.all;
+# use work.helpers.all;
+# use work.wishbone_types.all;
+#
+# entity dcache is
+# generic (
+# -- Line size in bytes
+# LINE_SIZE : positive := 64;
+# -- Number of lines in a set
+# NUM_LINES : positive := 32;
+# -- Number of ways
+# NUM_WAYS : positive := 4;
+# -- L1 DTLB entries per set
+# TLB_SET_SIZE : positive := 64;
+# -- L1 DTLB number of sets
+# TLB_NUM_WAYS : positive := 2;
+# -- L1 DTLB log_2(page_size)
+# TLB_LG_PGSZ : positive := 12;
+# -- Non-zero to enable log data collection
+# LOG_LENGTH : natural := 0
+# );
+# port (
+# clk : in std_ulogic;
+# rst : in std_ulogic;
+#
+# d_in : in Loadstore1ToDcacheType;
+# d_out : out DcacheToLoadstore1Type;
+#
+# m_in : in MmuToDcacheType;
+# m_out : out DcacheToMmuType;
+#
+# stall_out : out std_ulogic;
+#
+# wishbone_out : out wishbone_master_out;
+# wishbone_in : in wishbone_slave_out;
+#
+# log_out : out std_ulogic_vector(19 downto 0)
+# );
+# end entity dcache;
+#
+# architecture rtl of dcache is
+# -- BRAM organisation: We never access more than
+# -- wishbone_data_bits at a time so to save
+# -- resources we make the array only that wide, and
+# -- use consecutive indices for to make a cache "line"
+# --
+# -- ROW_SIZE is the width in bytes of the BRAM
+# -- (based on WB, so 64-bits)
+# constant ROW_SIZE : natural := wishbone_data_bits / 8;
+# -- ROW_PER_LINE is the number of row (wishbone
+# -- transactions) in a line
+# constant ROW_PER_LINE : natural := LINE_SIZE / ROW_SIZE;
+# -- BRAM_ROWS is the number of rows in BRAM needed
+# -- to represent the full dcache
+# constant BRAM_ROWS : natural := NUM_LINES * ROW_PER_LINE;
+#
+# -- Bit fields counts in the address
+#
+# -- REAL_ADDR_BITS is the number of real address
+# -- bits that we store
+# constant REAL_ADDR_BITS : positive := 56;
+# -- ROW_BITS is the number of bits to select a row
+# constant ROW_BITS : natural := log2(BRAM_ROWS);
+# -- ROW_LINEBITS is the number of bits to select
+# -- a row within a line
+# constant ROW_LINEBITS : natural := log2(ROW_PER_LINE);
+# -- LINE_OFF_BITS is the number of bits for
+# -- the offset in a cache line
+# constant LINE_OFF_BITS : natural := log2(LINE_SIZE);
+# -- ROW_OFF_BITS is the number of bits for
+# -- the offset in a row
+# constant ROW_OFF_BITS : natural := log2(ROW_SIZE);
+# -- INDEX_BITS is the number if bits to
+# -- select a cache line
+# constant INDEX_BITS : natural := log2(NUM_LINES);
+# -- SET_SIZE_BITS is the log base 2 of the set size
+# constant SET_SIZE_BITS : natural := LINE_OFF_BITS
+# + INDEX_BITS;
+# -- TAG_BITS is the number of bits of
+# -- the tag part of the address
+# constant TAG_BITS : natural := REAL_ADDR_BITS - SET_SIZE_BITS;
+# -- TAG_WIDTH is the width in bits of each way of the tag RAM
+# constant TAG_WIDTH : natural := TAG_BITS + 7
+# - ((TAG_BITS + 7) mod 8);
+# -- WAY_BITS is the number of bits to select a way
+# constant WAY_BITS : natural := log2(NUM_WAYS);
+#
+# -- Example of layout for 32 lines of 64 bytes:
+# --
+# -- .. tag |index| line |
+# -- .. | row | |
+# -- .. | |---| | ROW_LINEBITS (3)
+# -- .. | |--- - --| LINE_OFF_BITS (6)
+# -- .. | |- --| ROW_OFF_BITS (3)
+# -- .. |----- ---| | ROW_BITS (8)
+# -- .. |-----| | INDEX_BITS (5)
+# -- .. --------| | TAG_BITS (45)
+#
+# subtype row_t is integer range 0 to BRAM_ROWS-1;
+# subtype index_t is integer range 0 to NUM_LINES-1;
+# subtype way_t is integer range 0 to NUM_WAYS-1;
+# subtype row_in_line_t is unsigned(ROW_LINEBITS-1 downto 0);
+#
+# -- The cache data BRAM organized as described above for each way
+# subtype cache_row_t is
+# std_ulogic_vector(wishbone_data_bits-1 downto 0);
+#
+# -- The cache tags LUTRAM has a row per set.
+# -- Vivado is a pain and will not handle a
+# -- clean (commented) definition of the cache
+# -- tags as a 3d memory. For now, work around
+# -- it by putting all the tags
+# subtype cache_tag_t is std_logic_vector(TAG_BITS-1 downto 0);
+# -- type cache_tags_set_t is array(way_t) of cache_tag_t;
+# -- type cache_tags_array_t is array(index_t) of cache_tags_set_t;
+# constant TAG_RAM_WIDTH : natural := TAG_WIDTH * NUM_WAYS;
+# subtype cache_tags_set_t is
+# std_logic_vector(TAG_RAM_WIDTH-1 downto 0);
+# type cache_tags_array_t is array(index_t) of cache_tags_set_t;
+#
+# -- The cache valid bits
+# subtype cache_way_valids_t is
+# std_ulogic_vector(NUM_WAYS-1 downto 0);
+# type cache_valids_t is array(index_t) of cache_way_valids_t;
+# type row_per_line_valid_t is
+# array(0 to ROW_PER_LINE - 1) of std_ulogic;
+#
+# -- Storage. Hopefully "cache_rows" is a BRAM, the rest is LUTs
+# signal cache_tags : cache_tags_array_t;
+# signal cache_tag_set : cache_tags_set_t;
+# signal cache_valids : cache_valids_t;
+#
+# attribute ram_style : string;
+# attribute ram_style of cache_tags : signal is "distributed";
+#
+# -- L1 TLB.
+# constant TLB_SET_BITS : natural := log2(TLB_SET_SIZE);
+# constant TLB_WAY_BITS : natural := log2(TLB_NUM_WAYS);
+# constant TLB_EA_TAG_BITS : natural :=
+# 64 - (TLB_LG_PGSZ + TLB_SET_BITS);
+# constant TLB_TAG_WAY_BITS : natural :=
+# TLB_NUM_WAYS * TLB_EA_TAG_BITS;
+# constant TLB_PTE_BITS : natural := 64;
+# constant TLB_PTE_WAY_BITS : natural :=
+# TLB_NUM_WAYS * TLB_PTE_BITS;
+#
+# subtype tlb_way_t is integer range 0 to TLB_NUM_WAYS - 1;
+# subtype tlb_index_t is integer range 0 to TLB_SET_SIZE - 1;
+# subtype tlb_way_valids_t is
+# std_ulogic_vector(TLB_NUM_WAYS-1 downto 0);
+# type tlb_valids_t is
+# array(tlb_index_t) of tlb_way_valids_t;
+# subtype tlb_tag_t is
+# std_ulogic_vector(TLB_EA_TAG_BITS - 1 downto 0);
+# subtype tlb_way_tags_t is
+# std_ulogic_vector(TLB_TAG_WAY_BITS-1 downto 0);
+# type tlb_tags_t is
+# array(tlb_index_t) of tlb_way_tags_t;
+# subtype tlb_pte_t is
+# std_ulogic_vector(TLB_PTE_BITS - 1 downto 0);
+# subtype tlb_way_ptes_t is
+# std_ulogic_vector(TLB_PTE_WAY_BITS-1 downto 0);
+# type tlb_ptes_t is array(tlb_index_t) of tlb_way_ptes_t;
+# type hit_way_set_t is array(tlb_way_t) of way_t;
+#
+# signal dtlb_valids : tlb_valids_t;
+# signal dtlb_tags : tlb_tags_t;
+# signal dtlb_ptes : tlb_ptes_t;
+# attribute ram_style of dtlb_tags : signal is "distributed";
+# attribute ram_style of dtlb_ptes : signal is "distributed";
+#
+# -- Record for storing permission, attribute, etc. bits from a PTE
+# type perm_attr_t is record
+# reference : std_ulogic;
+# changed : std_ulogic;
+# nocache : std_ulogic;
+# priv : std_ulogic;
+# rd_perm : std_ulogic;
+# wr_perm : std_ulogic;
+# end record;
+#
+# function extract_perm_attr(
+# pte : std_ulogic_vector(TLB_PTE_BITS - 1 downto 0))
+# return perm_attr_t is
+# variable pa : perm_attr_t;
+# begin
+# pa.reference := pte(8);
+# pa.changed := pte(7);
+# pa.nocache := pte(5);
+# pa.priv := pte(3);
+# pa.rd_perm := pte(2);
+# pa.wr_perm := pte(1);
+# return pa;
+# end;
+#
+# constant real_mode_perm_attr : perm_attr_t :=
+# (nocache => '0', others => '1');
+#
+# -- Type of operation on a "valid" input
+# type op_t is
+# (
+# OP_NONE,
+# OP_BAD, -- NC cache hit, TLB miss, prot/RC failure
+# OP_STCX_FAIL, -- conditional store w/o reservation
+# OP_LOAD_HIT, -- Cache hit on load
+# OP_LOAD_MISS, -- Load missing cache
+# OP_LOAD_NC, -- Non-cachable load
+# OP_STORE_HIT, -- Store hitting cache
+# OP_STORE_MISS -- Store missing cache
+# );
+#
+# -- Cache state machine
+# type state_t is
+# (
+# IDLE, -- Normal load hit processing
+# RELOAD_WAIT_ACK, -- Cache reload wait ack
+# STORE_WAIT_ACK, -- Store wait ack
+# NC_LOAD_WAIT_ACK -- Non-cachable load wait ack
+# );
+#
+# --
+# -- Dcache operations:
+# --
+# -- In order to make timing, we use the BRAMs with
+# -- an output buffer, which means that the BRAM
+# -- output is delayed by an extra cycle.
+# --
+# -- Thus, the dcache has a 2-stage internal pipeline
+# -- for cache hits with no stalls.
+# --
+# -- All other operations are handled via stalling
+# -- in the first stage.
+# --
+# -- The second stage can thus complete a hit at the same
+# -- time as the first stage emits a stall for a complex op.
+#
+# -- Stage 0 register, basically contains just the latched request
+# type reg_stage_0_t is record
+# req : Loadstore1ToDcacheType;
+# tlbie : std_ulogic;
+# doall : std_ulogic;
+# tlbld : std_ulogic;
+# mmu_req : std_ulogic; -- indicates source of request
+# end record;
+#
+# signal r0 : reg_stage_0_t;
+# signal r0_full : std_ulogic;
+#
+# type mem_access_request_t is record
+# op : op_t;
+# valid : std_ulogic;
+# dcbz : std_ulogic;
+# real_addr : std_ulogic_vector(REAL_ADDR_BITS - 1 downto 0);
+# data : std_ulogic_vector(63 downto 0);
+# byte_sel : std_ulogic_vector(7 downto 0);
+# hit_way : way_t;
+# same_tag : std_ulogic;
+# mmu_req : std_ulogic;
+# end record;
+#
+# -- First stage register, contains state for stage 1 of load hits
+# -- and for the state machine used by all other operations
+# type reg_stage_1_t is record
+# -- Info about the request
+# full : std_ulogic; -- have uncompleted request
+# mmu_req : std_ulogic; -- request is from MMU
+# req : mem_access_request_t;
+#
+# -- Cache hit state
+# hit_way : way_t;
+# hit_load_valid : std_ulogic;
+# hit_index : index_t;
+# cache_hit : std_ulogic;
+#
+# -- TLB hit state
+# tlb_hit : std_ulogic;
+# tlb_hit_way : tlb_way_t;
+# tlb_hit_index : tlb_index_t;
+#
+# -- 2-stage data buffer for data forwarded from writes to reads
+# forward_data1 : std_ulogic_vector(63 downto 0);
+# forward_data2 : std_ulogic_vector(63 downto 0);
+# forward_sel1 : std_ulogic_vector(7 downto 0);
+# forward_valid1 : std_ulogic;
+# forward_way1 : way_t;
+# forward_row1 : row_t;
+# use_forward1 : std_ulogic;
+# forward_sel : std_ulogic_vector(7 downto 0);
+#
+# -- Cache miss state (reload state machine)
+# state : state_t;
+# dcbz : std_ulogic;
+# write_bram : std_ulogic;
+# write_tag : std_ulogic;
+# slow_valid : std_ulogic;
+# wb : wishbone_master_out;
+# reload_tag : cache_tag_t;
+# store_way : way_t;
+# store_row : row_t;
+# store_index : index_t;
+# end_row_ix : row_in_line_t;
+# rows_valid : row_per_line_valid_t;
+# acks_pending : unsigned(2 downto 0);
+# inc_acks : std_ulogic;
+# dec_acks : std_ulogic;
+#
+# -- Signals to complete (possibly with error)
+# ls_valid : std_ulogic;
+# ls_error : std_ulogic;
+# mmu_done : std_ulogic;
+# mmu_error : std_ulogic;
+# cache_paradox : std_ulogic;
+#
+# -- Signal to complete a failed stcx.
+# stcx_fail : std_ulogic;
+# end record;
+#
+# signal r1 : reg_stage_1_t;
+#
+# -- Reservation information
+# --
+# type reservation_t is record
+# valid : std_ulogic;
+# addr : std_ulogic_vector(63 downto LINE_OFF_BITS);
+# end record;
+#
+# signal reservation : reservation_t;
+#
+# -- Async signals on incoming request
+# signal req_index : index_t;
+# signal req_row : row_t;
+# signal req_hit_way : way_t;
+# signal req_tag : cache_tag_t;
+# signal req_op : op_t;
+# signal req_data : std_ulogic_vector(63 downto 0);
+# signal req_same_tag : std_ulogic;
+# signal req_go : std_ulogic;
+#
+# signal early_req_row : row_t;
+#
+# signal cancel_store : std_ulogic;
+# signal set_rsrv : std_ulogic;
+# signal clear_rsrv : std_ulogic;
+#
+# signal r0_valid : std_ulogic;
+# signal r0_stall : std_ulogic;
+#
+# signal use_forward1_next : std_ulogic;
+# signal use_forward2_next : std_ulogic;
+#
+# -- Cache RAM interface
+# type cache_ram_out_t is array(way_t) of cache_row_t;
+# signal cache_out : cache_ram_out_t;
+#
+# -- PLRU output interface
+# type plru_out_t is array(index_t) of
+# std_ulogic_vector(WAY_BITS-1 downto 0);
+# signal plru_victim : plru_out_t;
+# signal replace_way : way_t;
+#
+# -- Wishbone read/write/cache write formatting signals
+# signal bus_sel : std_ulogic_vector(7 downto 0);
+#
+# -- TLB signals
+# signal tlb_tag_way : tlb_way_tags_t;
+# signal tlb_pte_way : tlb_way_ptes_t;
+# signal tlb_valid_way : tlb_way_valids_t;
+# signal tlb_req_index : tlb_index_t;
+# signal tlb_hit : std_ulogic;
+# signal tlb_hit_way : tlb_way_t;
+# signal pte : tlb_pte_t;
+# signal ra : std_ulogic_vector(REAL_ADDR_BITS - 1 downto 0);
+# signal valid_ra : std_ulogic;
+# signal perm_attr : perm_attr_t;
+# signal rc_ok : std_ulogic;
+# signal perm_ok : std_ulogic;
+# signal access_ok : std_ulogic;
+#
+# -- TLB PLRU output interface
+# type tlb_plru_out_t is array(tlb_index_t) of
+# std_ulogic_vector(TLB_WAY_BITS-1 downto 0);
+# signal tlb_plru_victim : tlb_plru_out_t;
+#
+# --
+# -- Helper functions to decode incoming requests
+# --
+#
+# -- Return the cache line index (tag index) for an address
+# function get_index(addr: std_ulogic_vector) return index_t is
+# begin
+# return to_integer(
+# unsigned(addr(SET_SIZE_BITS - 1 downto LINE_OFF_BITS))
+# );
+# end;
+#
+# -- Return the cache row index (data memory) for an address
+# function get_row(addr: std_ulogic_vector) return row_t is
+# begin
+# return to_integer(
+# unsigned(addr(SET_SIZE_BITS - 1 downto ROW_OFF_BITS))
+# );
+# end;
+#
+# -- Return the index of a row within a line
+# function get_row_of_line(row: row_t) return row_in_line_t is
+# variable row_v : unsigned(ROW_BITS-1 downto 0);
+# begin
+# row_v := to_unsigned(row, ROW_BITS);
+# return row_v(ROW_LINEBITS-1 downto 0);
+# end;
+#
+# -- Returns whether this is the last row of a line
+# function is_last_row_addr(addr: wishbone_addr_type;
+# last: row_in_line_t) return boolean is
+# begin
+# return
+# unsigned(addr(LINE_OFF_BITS-1 downto ROW_OFF_BITS)) = last;
+# end;
+#
+# -- Returns whether this is the last row of a line
+# function is_last_row(row: row_t; last: row_in_line_t)
+# return boolean is
+# begin
+# return get_row_of_line(row) = last;
+# end;
+#
+# -- Return the address of the next row in the current cache line
+# function next_row_addr(addr: wishbone_addr_type)
+# return std_ulogic_vector is
+# variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
+# variable result : wishbone_addr_type;
+# begin
+# -- Is there no simpler way in VHDL to
+# -- generate that 3 bits adder ?
+# row_idx := addr(LINE_OFF_BITS-1 downto ROW_OFF_BITS);
+# row_idx := std_ulogic_vector(unsigned(row_idx) + 1);
+# result := addr;
+# result(LINE_OFF_BITS-1 downto ROW_OFF_BITS) := row_idx;
+# return result;
+# end;
+#
+# -- Return the next row in the current cache line. We use a
+# -- dedicated function in order to limit the size of the
+# -- generated adder to be only the bits within a cache line
+# -- (3 bits with default settings)
+# function next_row(row: row_t) return row_t is
+# variable row_v : std_ulogic_vector(ROW_BITS-1 downto 0);
+# variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
+# variable result : std_ulogic_vector(ROW_BITS-1 downto 0);
+# begin
+# row_v := std_ulogic_vector(to_unsigned(row, ROW_BITS));
+# row_idx := row_v(ROW_LINEBITS-1 downto 0);
+# row_v(ROW_LINEBITS-1 downto 0) :=
+# std_ulogic_vector(unsigned(row_idx) + 1);
+# return to_integer(unsigned(row_v));
+# end;
+#
+# -- Get the tag value from the address
+# function get_tag(addr: std_ulogic_vector) return cache_tag_t is
+# begin
+# return addr(REAL_ADDR_BITS - 1 downto SET_SIZE_BITS);
+# end;
+#
+# -- Read a tag from a tag memory row
+# function read_tag(way: way_t; tagset: cache_tags_set_t)
+# return cache_tag_t is
+# begin
+# return tagset(way * TAG_WIDTH + TAG_BITS
+# - 1 downto way * TAG_WIDTH);
+# end;
+#
+# -- Read a TLB tag from a TLB tag memory row
+# function read_tlb_tag(way: tlb_way_t; tags: tlb_way_tags_t)
+# return tlb_tag_t is
+# variable j : integer;
+# begin
+# j := way * TLB_EA_TAG_BITS;
+# return tags(j + TLB_EA_TAG_BITS - 1 downto j);
+# end;
+#
+# -- Write a TLB tag to a TLB tag memory row
+# procedure write_tlb_tag(way: tlb_way_t; tags: inout tlb_way_tags_t;
+# tag: tlb_tag_t) is
+# variable j : integer;
+# begin
+# j := way * TLB_EA_TAG_BITS;
+# tags(j + TLB_EA_TAG_BITS - 1 downto j) := tag;
+# end;
+#
+# -- Read a PTE from a TLB PTE memory row
+# function read_tlb_pte(way: tlb_way_t; ptes: tlb_way_ptes_t)
+# return tlb_pte_t is
+# variable j : integer;
+# begin
+# j := way * TLB_PTE_BITS;
+# return ptes(j + TLB_PTE_BITS - 1 downto j);
+# end;
+#
+# procedure write_tlb_pte(way: tlb_way_t;
+# ptes: inout tlb_way_ptes_t; newpte: tlb_pte_t) is
+# variable j : integer;
+# begin
+# j := way * TLB_PTE_BITS;
+# ptes(j + TLB_PTE_BITS - 1 downto j) := newpte;
+# end;
+#
+# begin
+#
+# assert LINE_SIZE mod ROW_SIZE = 0
+# report "LINE_SIZE not multiple of ROW_SIZE" severity FAILURE;
+# assert ispow2(LINE_SIZE)
+# report "LINE_SIZE not power of 2" severity FAILURE;
+# assert ispow2(NUM_LINES)
+# report "NUM_LINES not power of 2" severity FAILURE;
+# assert ispow2(ROW_PER_LINE)
+# report "ROW_PER_LINE not power of 2" severity FAILURE;
+# assert (ROW_BITS = INDEX_BITS + ROW_LINEBITS)
+# report "geometry bits don't add up" severity FAILURE;
+# assert (LINE_OFF_BITS = ROW_OFF_BITS + ROW_LINEBITS)
+# report "geometry bits don't add up" severity FAILURE;
+# assert (REAL_ADDR_BITS = TAG_BITS + INDEX_BITS + LINE_OFF_BITS)
+# report "geometry bits don't add up" severity FAILURE;
+# assert (REAL_ADDR_BITS = TAG_BITS + ROW_BITS + ROW_OFF_BITS)
+# report "geometry bits don't add up" severity FAILURE;
+# assert (64 = wishbone_data_bits)
+# report "Can't yet handle a wishbone width that isn't 64-bits"
+# severity FAILURE;
+# assert SET_SIZE_BITS <= TLB_LG_PGSZ
+# report "Set indexed by virtual address" severity FAILURE;
+#
+# -- Latch the request in r0.req as long as we're not stalling
+# stage_0 : process(clk)
+# variable r : reg_stage_0_t;
+# begin
+# if rising_edge(clk) then
+# assert (d_in.valid and m_in.valid) = '0'
+# report "request collision loadstore vs MMU";
+# if m_in.valid = '1' then
+# r.req.valid := '1';
+# r.req.load := not (m_in.tlbie or m_in.tlbld);
+# r.req.dcbz := '0';
+# r.req.nc := '0';
+# r.req.reserve := '0';
+# r.req.virt_mode := '0';
+# r.req.priv_mode := '1';
+# r.req.addr := m_in.addr;
+# r.req.data := m_in.pte;
+# r.req.byte_sel := (others => '1');
+# r.tlbie := m_in.tlbie;
+# r.doall := m_in.doall;
+# r.tlbld := m_in.tlbld;
+# r.mmu_req := '1';
+# else
+# r.req := d_in;
+# r.tlbie := '0';
+# r.doall := '0';
+# r.tlbld := '0';
+# r.mmu_req := '0';
+# end if;
+# if rst = '1' then
+# r0_full <= '0';
+# elsif r1.full = '0' or r0_full = '0' then
+# r0 <= r;
+# r0_full <= r.req.valid;
+# end if;
+# end if;
+# end process;
+#
+# -- we don't yet handle collisions between loadstore1 requests
+# -- and MMU requests
+# m_out.stall <= '0';
+#
+# -- Hold off the request in r0 when r1 has an uncompleted request
+# r0_stall <= r0_full and r1.full;
+# r0_valid <= r0_full and not r1.full;
+# stall_out <= r0_stall;
+#
+# -- TLB
+# -- Operates in the second cycle on the request latched in r0.req.
+# -- TLB updates write the entry at the end of the second cycle.
+# tlb_read : process(clk)
+# variable index : tlb_index_t;
+# variable addrbits :
+# std_ulogic_vector(TLB_SET_BITS - 1 downto 0);
+# begin
+# if rising_edge(clk) then
+# if m_in.valid = '1' then
+# addrbits := m_in.addr(TLB_LG_PGSZ + TLB_SET_BITS
+# - 1 downto TLB_LG_PGSZ);
+# else
+# addrbits := d_in.addr(TLB_LG_PGSZ + TLB_SET_BITS
+# - 1 downto TLB_LG_PGSZ);
+# end if;
+# index := to_integer(unsigned(addrbits));
+# -- If we have any op and the previous op isn't finished,
+# -- then keep the same output for next cycle.
+# if r0_stall = '0' then
+# tlb_valid_way <= dtlb_valids(index);
+# tlb_tag_way <= dtlb_tags(index);
+# tlb_pte_way <= dtlb_ptes(index);
+# end if;
+# end if;
+# end process;
+#
+# -- Generate TLB PLRUs
+# maybe_tlb_plrus: if TLB_NUM_WAYS > 1 generate
+# begin
+# tlb_plrus: for i in 0 to TLB_SET_SIZE - 1 generate
+# -- TLB PLRU interface
+# signal tlb_plru_acc :
+# std_ulogic_vector(TLB_WAY_BITS-1 downto 0);
+# signal tlb_plru_acc_en : std_ulogic;
+# signal tlb_plru_out :
+# std_ulogic_vector(TLB_WAY_BITS-1 downto 0);
+# begin
+# tlb_plru : entity work.plru
+# generic map (
+# BITS => TLB_WAY_BITS
+# )
+# port map (
+# clk => clk,
+# rst => rst,
+# acc => tlb_plru_acc,
+# acc_en => tlb_plru_acc_en,
+# lru => tlb_plru_out
+# );
+#
+# process(all)
+# begin
+# -- PLRU interface
+# if r1.tlb_hit_index = i then
+# tlb_plru_acc_en <= r1.tlb_hit;
+# else
+# tlb_plru_acc_en <= '0';
+# end if;
+# tlb_plru_acc <=
+# std_ulogic_vector(to_unsigned(
+# r1.tlb_hit_way, TLB_WAY_BITS
+# ));
+# tlb_plru_victim(i) <= tlb_plru_out;
+# end process;
+# end generate;
+# end generate;
+#
+# tlb_search : process(all)
+# variable hitway : tlb_way_t;
+# variable hit : std_ulogic;
+# variable eatag : tlb_tag_t;
+# begin
+# tlb_req_index <=
+# to_integer(unsigned(r0.req.addr(
+# TLB_LG_PGSZ + TLB_SET_BITS - 1 downto TLB_LG_PGSZ
+# )));
+# hitway := 0;
+# hit := '0';
+# eatag := r0.req.addr(63 downto TLB_LG_PGSZ + TLB_SET_BITS);
+# for i in tlb_way_t loop
+# if tlb_valid_way(i) = '1' and
+# read_tlb_tag(i, tlb_tag_way) = eatag then
+# hitway := i;
+# hit := '1';
+# end if;
+# end loop;
+# tlb_hit <= hit and r0_valid;
+# tlb_hit_way <= hitway;
+# if tlb_hit = '1' then
+# pte <= read_tlb_pte(hitway, tlb_pte_way);
+# else
+# pte <= (others => '0');
+# end if;
+# valid_ra <= tlb_hit or not r0.req.virt_mode;
+# if r0.req.virt_mode = '1' then
+# ra <= pte(REAL_ADDR_BITS - 1 downto TLB_LG_PGSZ) &
+# r0.req.addr(TLB_LG_PGSZ - 1 downto ROW_OFF_BITS) &
+# (ROW_OFF_BITS-1 downto 0 => '0');
+# perm_attr <= extract_perm_attr(pte);
+# else
+# ra <= r0.req.addr(
+# REAL_ADDR_BITS - 1 downto ROW_OFF_BITS
+# ) & (ROW_OFF_BITS-1 downto 0 => '0');
+# perm_attr <= real_mode_perm_attr;
+# end if;
+# end process;
+#
+# tlb_update : process(clk)
+# variable tlbie : std_ulogic;
+# variable tlbwe : std_ulogic;
+# variable repl_way : tlb_way_t;
+# variable eatag : tlb_tag_t;
+# variable tagset : tlb_way_tags_t;
+# variable pteset : tlb_way_ptes_t;
+# begin
+# if rising_edge(clk) then
+# tlbie := r0_valid and r0.tlbie;
+# tlbwe := r0_valid and r0.tlbld;
+# if rst = '1' or (tlbie = '1' and r0.doall = '1') then
+# -- clear all valid bits at once
+# for i in tlb_index_t loop
+# dtlb_valids(i) <= (others => '0');
+# end loop;
+# elsif tlbie = '1' then
+# if tlb_hit = '1' then
+# dtlb_valids(tlb_req_index)(tlb_hit_way) <= '0';
+# end if;
+# elsif tlbwe = '1' then
+# if tlb_hit = '1' then
+# repl_way := tlb_hit_way;
+# else
+# repl_way := to_integer(unsigned(
+# tlb_plru_victim(tlb_req_index)));
+# end if;
+# eatag := r0.req.addr(
+# 63 downto TLB_LG_PGSZ + TLB_SET_BITS
+# );
+# tagset := tlb_tag_way;
+# write_tlb_tag(repl_way, tagset, eatag);
+# dtlb_tags(tlb_req_index) <= tagset;
+# pteset := tlb_pte_way;
+# write_tlb_pte(repl_way, pteset, r0.req.data);
+# dtlb_ptes(tlb_req_index) <= pteset;
+# dtlb_valids(tlb_req_index)(repl_way) <= '1';
+# end if;
+# end if;
+# end process;
+#
+# -- Generate PLRUs
+# maybe_plrus: if NUM_WAYS > 1 generate
+# begin
+# plrus: for i in 0 to NUM_LINES-1 generate
+# -- PLRU interface
+# signal plru_acc : std_ulogic_vector(WAY_BITS-1 downto 0);
+# signal plru_acc_en : std_ulogic;
+# signal plru_out : std_ulogic_vector(WAY_BITS-1 downto 0);
+#
+# begin
+# plru : entity work.plru
+# generic map (
+# BITS => WAY_BITS
+# )
+# port map (
+# clk => clk,
+# rst => rst,
+# acc => plru_acc,
+# acc_en => plru_acc_en,
+# lru => plru_out
+# );
+#
+# process(all)
+# begin
+# -- PLRU interface
+# if r1.hit_index = i then
+# plru_acc_en <= r1.cache_hit;
+# else
+# plru_acc_en <= '0';
+# end if;
+# plru_acc <= std_ulogic_vector(to_unsigned(
+# r1.hit_way, WAY_BITS
+# ));
+# plru_victim(i) <= plru_out;
+# end process;
+# end generate;
+# end generate;
+#
+# -- Cache tag RAM read port
+# cache_tag_read : process(clk)
+# variable index : index_t;
+# begin
+# if rising_edge(clk) then
+# if r0_stall = '1' then
+# index := req_index;
+# elsif m_in.valid = '1' then
+# index := get_index(m_in.addr);
+# else
+# index := get_index(d_in.addr);
+# end if;
+# cache_tag_set <= cache_tags(index);
+# end if;
+# end process;
+#
+# -- Cache request parsing and hit detection
+# dcache_request : process(all)
+# variable is_hit : std_ulogic;
+# variable hit_way : way_t;
+# variable op : op_t;
+# variable opsel : std_ulogic_vector(2 downto 0);
+# variable go : std_ulogic;
+# variable nc : std_ulogic;
+# variable s_hit : std_ulogic;
+# variable s_tag : cache_tag_t;
+# variable s_pte : tlb_pte_t;
+# variable s_ra : std_ulogic_vector(
+# REAL_ADDR_BITS - 1 downto 0
+# );
+# variable hit_set : std_ulogic_vector(
+# TLB_NUM_WAYS - 1 downto 0
+# );
+# variable hit_way_set : hit_way_set_t;
+# variable rel_matches : std_ulogic_vector(
+# TLB_NUM_WAYS - 1 downto 0
+# );
+# variable rel_match : std_ulogic;
+# begin
+# -- Extract line, row and tag from request
+# req_index <= get_index(r0.req.addr);
+# req_row <= get_row(r0.req.addr);
+# req_tag <= get_tag(ra);
+#
+# go := r0_valid and not (r0.tlbie or r0.tlbld)
+# and not r1.ls_error;
+#
+# -- Test if pending request is a hit on any way
+# -- In order to make timing in virtual mode,
+# -- when we are using the TLB, we compare each
+# --way with each of the real addresses from each way of
+# -- the TLB, and then decide later which match to use.
+# hit_way := 0;
+# is_hit := '0';
+# rel_match := '0';
+# if r0.req.virt_mode = '1' then
+# rel_matches := (others => '0');
+# for j in tlb_way_t loop
+# hit_way_set(j) := 0;
+# s_hit := '0';
+# s_pte := read_tlb_pte(j, tlb_pte_way);
+# s_ra :=
+# s_pte(REAL_ADDR_BITS - 1 downto TLB_LG_PGSZ)
+# & r0.req.addr(TLB_LG_PGSZ - 1 downto 0);
+# s_tag := get_tag(s_ra);
+# for i in way_t loop
+# if go = '1' and cache_valids(req_index)(i) = '1'
+# and read_tag(i, cache_tag_set) = s_tag
+# and tlb_valid_way(j) = '1' then
+# hit_way_set(j) := i;
+# s_hit := '1';
+# end if;
+# end loop;
+# hit_set(j) := s_hit;
+# if s_tag = r1.reload_tag then
+# rel_matches(j) := '1';
+# end if;
+# end loop;
+# if tlb_hit = '1' then
+# is_hit := hit_set(tlb_hit_way);
+# hit_way := hit_way_set(tlb_hit_way);
+# rel_match := rel_matches(tlb_hit_way);
+# end if;
+# else
+# s_tag := get_tag(r0.req.addr);
+# for i in way_t loop
+# if go = '1' and cache_valids(req_index)(i) = '1' and
+# read_tag(i, cache_tag_set) = s_tag then
+# hit_way := i;
+# is_hit := '1';
+# end if;
+# end loop;
+# if s_tag = r1.reload_tag then
+# rel_match := '1';
+# end if;
+# end if;
+# req_same_tag <= rel_match;
+#
+# -- See if the request matches the line currently being reloaded
+# if r1.state = RELOAD_WAIT_ACK and req_index = r1.store_index
+# and rel_match = '1' then
+# -- For a store, consider this a hit even if the row isn't
+# -- valid since it will be by the time we perform the store.
+# -- For a load, check the appropriate row valid bit.
+# is_hit :=
+# not r0.req.load or r1.rows_valid(req_row mod ROW_PER_LINE);
+# hit_way := replace_way;
+# end if;
+#
+# -- Whether to use forwarded data for a load or not
+# use_forward1_next <= '0';
+# if get_row(r1.req.real_addr) = req_row
+# and r1.req.hit_way = hit_way then
+# -- Only need to consider r1.write_bram here, since if we
+# -- are writing refill data here, then we don't have a
+# -- cache hit this cycle on the line being refilled.
+# -- (There is the possibility that the load following the
+# -- load miss that started the refill could be to the old
+# -- contents of the victim line, since it is a couple of
+# -- cycles after the refill starts before we see the updated
+# -- cache tag. In that case we don't use the bypass.)
+# use_forward1_next <= r1.write_bram;
+# end if;
+# use_forward2_next <= '0';
+# if r1.forward_row1 = req_row and r1.forward_way1 = hit_way then
+# use_forward2_next <= r1.forward_valid1;
+# end if;
+#
+# -- The way that matched on a hit
+# req_hit_way <= hit_way;
+#
+# -- The way to replace on a miss
+# if r1.write_tag = '1' then
+# replace_way <= to_integer(unsigned(
+# plru_victim(r1.store_index)
+# ));
+# else
+# replace_way <= r1.store_way;
+# end if;
+#
+# -- work out whether we have permission for this access
+# -- NB we don't yet implement AMR, thus no KUAP
+# rc_ok <= perm_attr.reference and
+# (r0.req.load or perm_attr.changed);
+# perm_ok <= (r0.req.priv_mode or not perm_attr.priv) and
+# (perm_attr.wr_perm or (r0.req.load
+# and perm_attr.rd_perm));
+# access_ok <= valid_ra and perm_ok and rc_ok;
+#
+# -- Combine the request and cache hit status to decide what
+# -- operation needs to be done
+# --
+# nc := r0.req.nc or perm_attr.nocache;
+# op := OP_NONE;
+# if go = '1' then
+# if access_ok = '0' then
+# op := OP_BAD;
+# elsif cancel_store = '1' then
+# op := OP_STCX_FAIL;
+# else
+# opsel := r0.req.load & nc & is_hit;
+# case opsel is
+# when "101" => op := OP_LOAD_HIT;
+# when "100" => op := OP_LOAD_MISS;
+# when "110" => op := OP_LOAD_NC;
+# when "001" => op := OP_STORE_HIT;
+# when "000" => op := OP_STORE_MISS;
+# when "010" => op := OP_STORE_MISS;
+# when "011" => op := OP_BAD;
+# when "111" => op := OP_BAD;
+# when others => op := OP_NONE;
+# end case;
+# end if;
+# end if;
+# req_op <= op;
+# req_go <= go;
+#
+# -- Version of the row number that is valid one cycle earlier
+# -- in the cases where we need to read the cache data BRAM.
+# -- If we're stalling then we need to keep reading the last
+# -- row requested.
+# if r0_stall = '0' then
+# if m_in.valid = '1' then
+# early_req_row <= get_row(m_in.addr);
+# else
+# early_req_row <= get_row(d_in.addr);
+# end if;
+# else
+# early_req_row <= req_row;
+# end if;
+# end process;
+#
+# -- Wire up wishbone request latch out of stage 1
+# wishbone_out <= r1.wb;
+#
+# -- Handle load-with-reservation and store-conditional instructions
+# reservation_comb: process(all)
+# begin
+# cancel_store <= '0';
+# set_rsrv <= '0';
+# clear_rsrv <= '0';
+# if r0_valid = '1' and r0.req.reserve = '1' then
+# -- XXX generate alignment interrupt if address
+# -- is not aligned XXX or if r0.req.nc = '1'
+# if r0.req.load = '1' then
+# -- load with reservation
+# set_rsrv <= '1';
+# else
+# -- store conditional
+# clear_rsrv <= '1';
+# if reservation.valid = '0' or r0.req.addr(63
+# downto LINE_OFF_BITS) /= reservation.addr then
+# cancel_store <= '1';
+# end if;
+# end if;
+# end if;
+# end process;
+#
+# reservation_reg: process(clk)
+# begin
+# if rising_edge(clk) then
+# if rst = '1' then
+# reservation.valid <= '0';
+# elsif r0_valid = '1' and access_ok = '1' then
+# if clear_rsrv = '1' then
+# reservation.valid <= '0';
+# elsif set_rsrv = '1' then
+# reservation.valid <= '1';
+# reservation.addr <=
+# r0.req.addr(63 downto LINE_OFF_BITS);
+# end if;
+# end if;
+# end if;
+# end process;
+#
+# -- Return data for loads & completion control logic
+# --
+# writeback_control: process(all)
+# variable data_out : std_ulogic_vector(63 downto 0);
+# variable data_fwd : std_ulogic_vector(63 downto 0);
+# variable j : integer;
+# begin
+# -- Use the bypass if are reading the row that was
+# -- written 1 or 2 cycles ago, including for the
+# -- slow_valid = 1 case (i.e. completing a load
+# -- miss or a non-cacheable load).
+# if r1.use_forward1 = '1' then
+# data_fwd := r1.forward_data1;
+# else
+# data_fwd := r1.forward_data2;
+# end if;
+# data_out := cache_out(r1.hit_way);
+# for i in 0 to 7 loop
+# j := i * 8;
+# if r1.forward_sel(i) = '1' then
+# data_out(j + 7 downto j) := data_fwd(j + 7 downto j);
+# end if;
+# end loop;
+#
+# d_out.valid <= r1.ls_valid;
+# d_out.data <= data_out;
+# d_out.store_done <= not r1.stcx_fail;
+# d_out.error <= r1.ls_error;
+# d_out.cache_paradox <= r1.cache_paradox;
+#
+# -- Outputs to MMU
+# m_out.done <= r1.mmu_done;
+# m_out.err <= r1.mmu_error;
+# m_out.data <= data_out;
+#
+# -- We have a valid load or store hit or we just completed
+# -- a slow op such as a load miss, a NC load or a store
+# --
+# -- Note: the load hit is delayed by one cycle. However it
+# -- can still not collide with r.slow_valid (well unless I
+# -- miscalculated) because slow_valid can only be set on a
+# -- subsequent request and not on its first cycle (the state
+# -- machine must have advanced), which makes slow_valid
+# -- at least 2 cycles from the previous hit_load_valid.
+#
+# -- Sanity: Only one of these must be set in any given cycle
+# assert (r1.slow_valid and r1.stcx_fail) /= '1'
+# report "unexpected slow_valid collision with stcx_fail"
+# severity FAILURE;
+# assert ((r1.slow_valid or r1.stcx_fail) and r1.hit_load_valid)
+# /= '1' report "unexpected hit_load_delayed collision with
+# slow_valid" severity FAILURE;
+#
+# if r1.mmu_req = '0' then
+# -- Request came from loadstore1...
+# -- Load hit case is the standard path
+# if r1.hit_load_valid = '1' then
+# report
+# "completing load hit data=" & to_hstring(data_out);
+# end if;
+#
+# -- error cases complete without stalling
+# if r1.ls_error = '1' then
+# report "completing ld/st with error";
+# end if;
+#
+# -- Slow ops (load miss, NC, stores)
+# if r1.slow_valid = '1' then
+# report
+# "completing store or load miss data="
+# & to_hstring(data_out);
+# end if;
+#
+# else
+# -- Request came from MMU
+# if r1.hit_load_valid = '1' then
+# report "completing load hit to MMU, data="
+# & to_hstring(m_out.data);
+# end if;
+#
+# -- error cases complete without stalling
+# if r1.mmu_error = '1' then
+# report "completing MMU ld with error";
+# end if;
+#
+# -- Slow ops (i.e. load miss)
+# if r1.slow_valid = '1' then
+# report "completing MMU load miss, data="
+# & to_hstring(m_out.data);
+# end if;
+# end if;
+#
+# end process;
+#
+#
+# -- Generate a cache RAM for each way. This handles the normal
+# -- reads, writes from reloads and the special store-hit update
+# -- path as well.
+# --
+# -- Note: the BRAMs have an extra read buffer, meaning the output
+# -- is pipelined an extra cycle. This differs from the
+# -- icache. The writeback logic needs to take that into
+# -- account by using 1-cycle delayed signals for load hits.
+# --
+# rams: for i in 0 to NUM_WAYS-1 generate
+# signal do_read : std_ulogic;
+# signal rd_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
+# signal do_write : std_ulogic;
+# signal wr_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
+# signal wr_data :
+# std_ulogic_vector(wishbone_data_bits-1 downto 0);
+# signal wr_sel : std_ulogic_vector(ROW_SIZE-1 downto 0);
+# signal wr_sel_m : std_ulogic_vector(ROW_SIZE-1 downto 0);
+# signal dout : cache_row_t;
+# begin
+# way: entity work.cache_ram
+# generic map (
+# ROW_BITS => ROW_BITS,
+# WIDTH => wishbone_data_bits,
+# ADD_BUF => true
+# )
+# port map (
+# clk => clk,
+# rd_en => do_read,
+# rd_addr => rd_addr,
+# rd_data => dout,
+# wr_sel => wr_sel_m,
+# wr_addr => wr_addr,
+# wr_data => wr_data
+# );
+# process(all)
+# begin
+# -- Cache hit reads
+# do_read <= '1';
+# rd_addr <=
+# std_ulogic_vector(to_unsigned(early_req_row, ROW_BITS));
+# cache_out(i) <= dout;
+#
+# -- Write mux:
+# --
+# -- Defaults to wishbone read responses (cache refill)
+# --
+# -- For timing, the mux on wr_data/sel/addr is not
+# -- dependent on anything other than the current state.
+# wr_sel_m <= (others => '0');
+#
+# do_write <= '0';
+# if r1.write_bram = '1' then
+# -- Write store data to BRAM. This happens one
+# -- cycle after the store is in r0.
+# wr_data <= r1.req.data;
+# wr_sel <= r1.req.byte_sel;
+# wr_addr <= std_ulogic_vector(to_unsigned(
+# get_row(r1.req.real_addr), ROW_BITS
+# ));
+# if i = r1.req.hit_way then
+# do_write <= '1';
+# end if;
+# else
+# -- Otherwise, we might be doing a reload or a DCBZ
+# if r1.dcbz = '1' then
+# wr_data <= (others => '0');
+# else
+# wr_data <= wishbone_in.dat;
+# end if;
+# wr_addr <= std_ulogic_vector(to_unsigned(
+# r1.store_row, ROW_BITS
+# ));
+# wr_sel <= (others => '1');
+#
+# if r1.state = RELOAD_WAIT_ACK and
+# wishbone_in.ack = '1' and replace_way = i then
+# do_write <= '1';
+# end if;
+# end if;
+#
+# -- Mask write selects with do_write since BRAM
+# -- doesn't have a global write-enable
+# if do_write = '1' then
+# wr_sel_m <= wr_sel;
+# end if;
+#
+# end process;
+# end generate;
+#
+# -- Cache hit synchronous machine for the easy case.
+# -- This handles load hits.
+# -- It also handles error cases (TLB miss, cache paradox)
+# dcache_fast_hit : process(clk)
+# begin
+# if rising_edge(clk) then
+# if req_op /= OP_NONE then
+# report "op:" & op_t'image(req_op) &
+# " addr:" & to_hstring(r0.req.addr) &
+# " nc:" & std_ulogic'image(r0.req.nc) &
+# " idx:" & integer'image(req_index) &
+# " tag:" & to_hstring(req_tag) &
+# " way: " & integer'image(req_hit_way);
+# end if;
+# if r0_valid = '1' then
+# r1.mmu_req <= r0.mmu_req;
+# end if;
+#
+# -- Fast path for load/store hits.
+# -- Set signals for the writeback controls.
+# r1.hit_way <= req_hit_way;
+# r1.hit_index <= req_index;
+# if req_op = OP_LOAD_HIT then
+# r1.hit_load_valid <= '1';
+# else
+# r1.hit_load_valid <= '0';
+# end if;
+# if req_op = OP_LOAD_HIT or req_op = OP_STORE_HIT then
+# r1.cache_hit <= '1';
+# else
+# r1.cache_hit <= '0';
+# end if;
+#
+# if req_op = OP_BAD then
+# report "Signalling ld/st error valid_ra=" &
+# std_ulogic'image(valid_ra) & " rc_ok=" &
+# std_ulogic'image(rc_ok) & " perm_ok=" &
+# std_ulogic'image(perm_ok);
+# r1.ls_error <= not r0.mmu_req;
+# r1.mmu_error <= r0.mmu_req;
+# r1.cache_paradox <= access_ok;
+# else
+# r1.ls_error <= '0';
+# r1.mmu_error <= '0';
+# r1.cache_paradox <= '0';
+# end if;
+#
+# if req_op = OP_STCX_FAIL then
+# r1.stcx_fail <= '1';
+# else
+# r1.stcx_fail <= '0';
+# end if;
+#
+# -- Record TLB hit information for updating TLB PLRU
+# r1.tlb_hit <= tlb_hit;
+# r1.tlb_hit_way <= tlb_hit_way;
+# r1.tlb_hit_index <= tlb_req_index;
+#
+# end if;
+# end process;
+#
+# -- Memory accesses are handled by this state machine:
+# --
+# -- * Cache load miss/reload (in conjunction with "rams")
+# -- * Load hits for non-cachable forms
+# -- * Stores (the collision case is handled in "rams")
+# --
+# -- All wishbone requests generation is done here.
+# -- This machine operates at stage 1.
+# dcache_slow : process(clk)
+# variable stbs_done : boolean;
+# variable req : mem_access_request_t;
+# variable acks : unsigned(2 downto 0);
+# begin
+# if rising_edge(clk) then
+# r1.use_forward1 <= use_forward1_next;
+# r1.forward_sel <= (others => '0');
+# if use_forward1_next = '1' then
+# r1.forward_sel <= r1.req.byte_sel;
+# elsif use_forward2_next = '1' then
+# r1.forward_sel <= r1.forward_sel1;
+# end if;
+#
+# r1.forward_data2 <= r1.forward_data1;
+# if r1.write_bram = '1' then
+# r1.forward_data1 <= r1.req.data;
+# r1.forward_sel1 <= r1.req.byte_sel;
+# r1.forward_way1 <= r1.req.hit_way;
+# r1.forward_row1 <= get_row(r1.req.real_addr);
+# r1.forward_valid1 <= '1';
+# else
+# if r1.dcbz = '1' then
+# r1.forward_data1 <= (others => '0');
+# else
+# r1.forward_data1 <= wishbone_in.dat;
+# end if;
+# r1.forward_sel1 <= (others => '1');
+# r1.forward_way1 <= replace_way;
+# r1.forward_row1 <= r1.store_row;
+# r1.forward_valid1 <= '0';
+# end if;
+#
+# -- On reset, clear all valid bits to force misses
+# if rst = '1' then
+# for i in index_t loop
+# cache_valids(i) <= (others => '0');
+# end loop;
+# r1.state <= IDLE;
+# r1.full <= '0';
+# r1.slow_valid <= '0';
+# r1.wb.cyc <= '0';
+# r1.wb.stb <= '0';
+# r1.ls_valid <= '0';
+# r1.mmu_done <= '0';
+#
+# -- Not useful normally but helps avoiding
+# -- tons of sim warnings
+# r1.wb.adr <= (others => '0');
+# else
+# -- One cycle pulses reset
+# r1.slow_valid <= '0';
+# r1.write_bram <= '0';
+# r1.inc_acks <= '0';
+# r1.dec_acks <= '0';
+#
+# r1.ls_valid <= '0';
+# -- complete tlbies and TLB loads in the third cycle
+# r1.mmu_done <= r0_valid and (r0.tlbie or r0.tlbld);
+# if req_op = OP_LOAD_HIT or req_op = OP_STCX_FAIL then
+# if r0.mmu_req = '0' then
+# r1.ls_valid <= '1';
+# else
+# r1.mmu_done <= '1';
+# end if;
+# end if;
+#
+# if r1.write_tag = '1' then
+# -- Store new tag in selected way
+# for i in 0 to NUM_WAYS-1 loop
+# if i = replace_way then
+# cache_tags(r1.store_index)(
+# (i + 1) * TAG_WIDTH - 1
+# downto i * TAG_WIDTH
+# ) <=
+# (TAG_WIDTH - 1 downto TAG_BITS => '0')
+# & r1.reload_tag;
+# end if;
+# end loop;
+# r1.store_way <= replace_way;
+# r1.write_tag <= '0';
+# end if;
+#
+# -- Take request from r1.req if there is one there,
+# -- else from req_op, ra, etc.
+# if r1.full = '1' then
+# req := r1.req;
+# else
+# req.op := req_op;
+# req.valid := req_go;
+# req.mmu_req := r0.mmu_req;
+# req.dcbz := r0.req.dcbz;
+# req.real_addr := ra;
+# -- Force data to 0 for dcbz
+# if r0.req.dcbz = '0' then
+# req.data := r0.req.data;
+# else
+# req.data := (others => '0');
+# end if;
+# -- Select all bytes for dcbz
+# -- and for cacheable loads
+# if r0.req.dcbz = '1'
+# or (r0.req.load = '1' and r0.req.nc = '0') then
+# req.byte_sel := (others => '1');
+# else
+# req.byte_sel := r0.req.byte_sel;
+# end if;
+# req.hit_way := req_hit_way;
+# req.same_tag := req_same_tag;
+#
+# -- Store the incoming request from r0,
+# -- if it is a slow request
+# -- Note that r1.full = 1 implies req_op = OP_NONE
+# if req_op = OP_LOAD_MISS or req_op = OP_LOAD_NC
+# or req_op = OP_STORE_MISS
+# or req_op = OP_STORE_HIT then
+# r1.req <= req;
+# r1.full <= '1';
+# end if;
+# end if;
+#
+# -- Main state machine
+# case r1.state is
+# when IDLE =>
+# r1.wb.adr <= req.real_addr(r1.wb.adr'left downto 0);
+# r1.wb.sel <= req.byte_sel;
+# r1.wb.dat <= req.data;
+# r1.dcbz <= req.dcbz;
+#
+# -- Keep track of our index and way
+# -- for subsequent stores.
+# r1.store_index <= get_index(req.real_addr);
+# r1.store_row <= get_row(req.real_addr);
+# r1.end_row_ix <=
+# get_row_of_line(get_row(req.real_addr)) - 1;
+# r1.reload_tag <= get_tag(req.real_addr);
+# r1.req.same_tag <= '1';
+#
+# if req.op = OP_STORE_HIT then
+# r1.store_way <= req.hit_way;
+# end if;
+#
+# -- Reset per-row valid bits,
+# -- ready for handling OP_LOAD_MISS
+# for i in 0 to ROW_PER_LINE - 1 loop
+# r1.rows_valid(i) <= '0';
+# end loop;
+#
+# case req.op is
+# when OP_LOAD_HIT =>
+# -- stay in IDLE state
+#
+# when OP_LOAD_MISS =>
+# -- Normal load cache miss,
+# -- start the reload machine
+# report "cache miss real addr:" &
+# to_hstring(req.real_addr) & " idx:" &
+# integer'image(get_index(req.real_addr)) &
+# " tag:" & to_hstring(get_tag(req.real_addr));
+#
+# -- Start the wishbone cycle
+# r1.wb.we <= '0';
+# r1.wb.cyc <= '1';
+# r1.wb.stb <= '1';
+#
+# -- Track that we had one request sent
+# r1.state <= RELOAD_WAIT_ACK;
+# r1.write_tag <= '1';
+#
+# when OP_LOAD_NC =>
+# r1.wb.cyc <= '1';
+# r1.wb.stb <= '1';
+# r1.wb.we <= '0';
+# r1.state <= NC_LOAD_WAIT_ACK;
+#
+# when OP_STORE_HIT | OP_STORE_MISS =>
+# if req.dcbz = '0' then
+# r1.state <= STORE_WAIT_ACK;
+# r1.acks_pending <= to_unsigned(1, 3);
+# r1.full <= '0';
+# r1.slow_valid <= '1';
+# if req.mmu_req = '0' then
+# r1.ls_valid <= '1';
+# else
+# r1.mmu_done <= '1';
+# end if;
+# if req.op = OP_STORE_HIT then
+# r1.write_bram <= '1';
+# end if;
+# else
+# -- dcbz is handled much like a load
+# -- miss except that we are writing
+# -- to memory instead of reading
+# r1.state <= RELOAD_WAIT_ACK;
+# if req.op = OP_STORE_MISS then
+# r1.write_tag <= '1';
+# end if;
+# end if;
+# r1.wb.we <= '1';
+# r1.wb.cyc <= '1';
+# r1.wb.stb <= '1';
+#
+# -- OP_NONE and OP_BAD do nothing
+# -- OP_BAD & OP_STCX_FAIL were handled above already
+# when OP_NONE =>
+# when OP_BAD =>
+# when OP_STCX_FAIL =>
+# end case;
+#
+# when RELOAD_WAIT_ACK =>
+# -- Requests are all sent if stb is 0
+# stbs_done := r1.wb.stb = '0';
+#
+# -- If we are still sending requests,
+# -- was one accepted?
+# if wishbone_in.stall = '0' and not stbs_done then
+# -- That was the last word ? We are done sending.
+# -- Clear stb and set stbs_done so we can handle
+# -- an eventual last ack on the same cycle.
+# if is_last_row_addr(r1.wb.adr, r1.end_row_ix) then
+# r1.wb.stb <= '0';
+# stbs_done := true;
+# end if;
+#
+# -- Calculate the next row address
+# r1.wb.adr <= next_row_addr(r1.wb.adr);
+# end if;
+#
+# -- Incoming acks processing
+# r1.forward_valid1 <= wishbone_in.ack;
+# if wishbone_in.ack = '1' then
+# r1.rows_valid(
+# r1.store_row mod ROW_PER_LINE
+# ) <= '1';
+# -- If this is the data we were looking for,
+# -- we can complete the request next cycle.
+# -- Compare the whole address in case the
+# -- request in r1.req is not the one that
+# -- started this refill.
+# if r1.full = '1' and r1.req.same_tag = '1'
+# and ((r1.dcbz = '1' and r1.req.dcbz = '1')
+# or (r1.dcbz = '0' and r1.req.op = OP_LOAD_MISS))
+# and r1.store_row = get_row(r1.req.real_addr) then
+# r1.full <= '0';
+# r1.slow_valid <= '1';
+# if r1.mmu_req = '0' then
+# r1.ls_valid <= '1';
+# else
+# r1.mmu_done <= '1';
+# end if;
+# r1.forward_sel <= (others => '1');
+# r1.use_forward1 <= '1';
+# end if;
+#
+# -- Check for completion
+# if stbs_done and is_last_row(r1.store_row,
+# r1.end_row_ix) then
+# -- Complete wishbone cycle
+# r1.wb.cyc <= '0';
+#
+# -- Cache line is now valid
+# cache_valids(r1.store_index)(
+# r1.store_way
+# ) <= '1';
+#
+# r1.state <= IDLE;
+# end if;
+#
+# -- Increment store row counter
+# r1.store_row <= next_row(r1.store_row);
+# end if;
+#
+# when STORE_WAIT_ACK =>
+# stbs_done := r1.wb.stb = '0';
+# acks := r1.acks_pending;
+# if r1.inc_acks /= r1.dec_acks then
+# if r1.inc_acks = '1' then
+# acks := acks + 1;
+# else
+# acks := acks - 1;
+# end if;
+# end if;
+# r1.acks_pending <= acks;
+# -- Clear stb when slave accepted request
+# if wishbone_in.stall = '0' then
+# -- See if there is another store waiting
+# -- to be done which is in the same real page.
+# if req.valid = '1' then
+# r1.wb.adr(
+# SET_SIZE_BITS - 1 downto 0
+# ) <= req.real_addr(
+# SET_SIZE_BITS - 1 downto 0
+# );
+# r1.wb.dat <= req.data;
+# r1.wb.sel <= req.byte_sel;
+# end if;
+# if acks < 7 and req.same_tag = '1'
+# and (req.op = OP_STORE_MISS
+# or req.op = OP_STORE_HIT) then
+# r1.wb.stb <= '1';
+# stbs_done := false;
+# if req.op = OP_STORE_HIT then
+# r1.write_bram <= '1';
+# end if;
+# r1.full <= '0';
+# r1.slow_valid <= '1';
+# -- Store requests never come from the MMU
+# r1.ls_valid <= '1';
+# stbs_done := false;
+# r1.inc_acks <= '1';
+# else
+# r1.wb.stb <= '0';
+# stbs_done := true;
+# end if;
+# end if;
+#
+# -- Got ack ? See if complete.
+# if wishbone_in.ack = '1' then
+# if stbs_done and acks = 1 then
+# r1.state <= IDLE;
+# r1.wb.cyc <= '0';
+# r1.wb.stb <= '0';
+# end if;
+# r1.dec_acks <= '1';
+# end if;
+#
+# when NC_LOAD_WAIT_ACK =>
+# -- Clear stb when slave accepted request
+# if wishbone_in.stall = '0' then
+# r1.wb.stb <= '0';
+# end if;
+#
+# -- Got ack ? complete.
+# if wishbone_in.ack = '1' then
+# r1.state <= IDLE;
+# r1.full <= '0';
+# r1.slow_valid <= '1';
+# if r1.mmu_req = '0' then
+# r1.ls_valid <= '1';
+# else
+# r1.mmu_done <= '1';
+# end if;
+# r1.forward_sel <= (others => '1');
+# r1.use_forward1 <= '1';
+# r1.wb.cyc <= '0';
+# r1.wb.stb <= '0';
+# end if;
+# end case;
+# end if;
+# end if;
+# end process;
+#
+# dc_log: if LOG_LENGTH > 0 generate
+# signal log_data : std_ulogic_vector(19 downto 0);
+# begin
+# dcache_log: process(clk)
+# begin
+# if rising_edge(clk) then
+# log_data <= r1.wb.adr(5 downto 3) &
+# wishbone_in.stall &
+# wishbone_in.ack &
+# r1.wb.stb & r1.wb.cyc &
+# d_out.error &
+# d_out.valid &
+# std_ulogic_vector(
+# to_unsigned(op_t'pos(req_op), 3)) &
+# stall_out &
+# std_ulogic_vector(
+# to_unsigned(tlb_hit_way, 3)) &
+# valid_ra &
+# std_ulogic_vector(
+# to_unsigned(state_t'pos(r1.state), 3));
+# end if;
+# end process;
+# log_out <= log_data;
+# end generate;
+# end;