for i in range(n_inputs)]
self.reg_partition_points = ppoints.like()
- def eq(self, rhs):
- return [self.reg_partition_points.eq(rhs.reg_partition_points)] + \
- [self.inputs[i].eq(rhs.inputs[i])
+ def eq_from(self, reg_partition_points, inputs, part_ops):
+ return [self.reg_partition_points.eq(reg_partition_points)] + \
+ [self.inputs[i].eq(inputs[i])
for i in range(len(self.inputs))] + \
- [self.part_ops[i].eq(rhs.part_ops[i])
+ [self.part_ops[i].eq(part_ops[i])
for i in range(len(self.part_ops))]
+ def eq(self, rhs):
+ return self.eq_from(rhs.reg_partition_points, rhs.inputs, rhs.part_ops)
+
+
+class FinalReduceData:
+
+ def __init__(self, ppoints, output_width, n_parts):
+ self.part_ops = [Signal(2, name=f"part_ops_{i}")
+ for i in range(n_parts)]
+ self.output = Signal(output_width)
+ self.reg_partition_points = ppoints.like()
+
+ def eq_from(self, reg_partition_points, output, part_ops):
+ return [self.reg_partition_points.eq(reg_partition_points)] + \
+ [self.output.eq(output)] + \
+ [self.part_ops[i].eq(part_ops[i])
+ for i in range(len(self.part_ops))]
+
+ def eq(self, rhs):
+ return self.eq_from(rhs.reg_partition_points, rhs.output, rhs.part_ops)
+
class FinalAdd(Elaboratable):
""" Final stage of add reduce
partition_points):
self.i = AddReduceData(partition_points, n_inputs,
output_width, n_parts)
+ self.o = FinalReduceData(partition_points, output_width, n_parts)
+ self.output_width = output_width
self.n_inputs = n_inputs
self.n_parts = n_parts
self.register_levels = list(register_levels)
- self.output = Signal(output_width)
self.partition_points = PartitionPoints(partition_points)
if not self.partition_points.fits_in_width(output_width):
raise ValueError("partition_points doesn't fit in output_width")
- self.intermediate_terms = []
def elaborate(self, platform):
"""Elaborate this module."""
m = Module()
+ output_width = self.output_width
+ output = Signal(output_width)
if self.n_inputs == 0:
# use 0 as the default output value
- m.d.comb += self.output.eq(0)
+ m.d.comb += output.eq(0)
elif self.n_inputs == 1:
# handle single input
- m.d.comb += self.output.eq(self.i.inputs[0])
+ m.d.comb += output.eq(self.i.inputs[0])
else:
# base case for adding 2 inputs
assert self.n_inputs == 2
- adder = PartitionedAdder(len(self.output),
- self.i.reg_partition_points)
+ adder = PartitionedAdder(output_width, self.i.reg_partition_points)
m.submodules.final_adder = adder
m.d.comb += adder.a.eq(self.i.inputs[0])
m.d.comb += adder.b.eq(self.i.inputs[1])
- m.d.comb += self.output.eq(adder.output)
+ m.d.comb += output.eq(adder.output)
+
+ # create output
+ m.d.comb += self.o.eq_from(self.i.reg_partition_points, output,
+ self.i.part_ops)
+
return m
if len(self.groups) != 0:
self.create_next_terms()
+ self.o = AddReduceData(partition_points, len(self._intermediate_terms),
+ output_width, n_parts)
+
@staticmethod
def get_max_level(input_count):
"""Get the maximum level.
"""Elaborate this module."""
m = Module()
- for (value, term) in self._intermediate_terms:
- m.d.comb += term.eq(value)
+ # copy the intermediate terms to the output
+ for i, value in enumerate(self._intermediate_terms):
+ m.d.comb += self.o.inputs[i].eq(value)
+ # copy reg part points and part ops to output
+ m.d.comb += self.o.reg_partition_points.eq(self.i.reg_partition_points)
+ m.d.comb += [self.o.part_ops[i].eq(self.i.part_ops[i])
+ for i in range(len(self.i.part_ops))]
+
+ # set up the partition mask (for the adders)
mask = self.i.reg_partition_points.as_mask(self.output_width)
m.d.comb += self.part_mask.eq(mask)
def create_next_terms(self):
- # go on to prepare recursive case
- intermediate_terms = []
_intermediate_terms = []
def add_intermediate_term(value):
- intermediate_term = Signal(
- self.output_width,
- name=f"intermediate_terms[{len(intermediate_terms)}]")
- _intermediate_terms.append((value, intermediate_term))
- intermediate_terms.append(intermediate_term)
+ _intermediate_terms.append(value)
# store mask in intermediary (simplifies graph)
self.part_mask = Signal(self.output_width, reset_less=True)
else:
assert self.n_inputs % FULL_ADDER_INPUT_COUNT == 0
- self.intermediate_terms = intermediate_terms
self._intermediate_terms = _intermediate_terms
mods = []
next_levels = self.register_levels
partition_points = self.partition_points
- inputs = self.inputs
part_ops = self.part_ops
n_parts = len(part_ops)
+ inputs = self.inputs
+ ilen = len(inputs)
while True:
- ilen = len(inputs)
next_level = AddReduceSingle(ilen, self.output_width, n_parts,
next_levels, partition_points)
mods.append(next_level)
next_levels = list(AddReduce.next_register_levels(next_levels))
partition_points = next_level.i.reg_partition_points
- inputs = next_level.intermediate_terms
+ inputs = next_level.o.inputs
ilen = len(inputs)
part_ops = next_level.i.part_ops
groups = AddReduceSingle.full_adder_groups(len(inputs))
partition_points = self.partition_points
inputs = self.inputs
part_ops = self.part_ops
- for i in range(len(self.levels)):
- mcur = self.levels[i]
- inassign = [mcur.i.inputs[i].eq(inputs[i])
- for i in range(len(inputs))]
- copy_part_ops = [mcur.i.part_ops[i].eq(part_ops[i])
- for i in range(len(part_ops))]
+ n_parts = len(part_ops)
+ n_inputs = len(inputs)
+ output_width = self.output_width
+ i = AddReduceData(partition_points, n_inputs, output_width, n_parts)
+ m.d.comb += i.eq_from(partition_points, inputs, part_ops)
+ for idx in range(len(self.levels)):
+ mcur = self.levels[idx]
if 0 in mcur.register_levels:
- m.d.sync += copy_part_ops
- m.d.sync += inassign
- m.d.sync += mcur.i.reg_partition_points.eq(partition_points)
+ m.d.sync += mcur.i.eq(i)
else:
- m.d.comb += copy_part_ops
- m.d.comb += inassign
- m.d.comb += mcur.i.reg_partition_points.eq(partition_points)
- partition_points = mcur.i.reg_partition_points
- inputs = mcur.intermediate_terms
- part_ops = mcur.i.part_ops
+ m.d.comb += mcur.i.eq(i)
+ i = mcur.o # for next loop
# output comes from last module
- m.d.comb += self.output.eq(next_level.output)
- copy_part_ops = [self.out_part_ops[i].eq(next_level.i.part_ops[i])
- for i in range(len(self.part_ops))]
+ m.d.comb += self.output.eq(i.output)
+ copy_part_ops = [self.out_part_ops[idx].eq(i.part_ops[idx])
+ for idx in range(len(self.part_ops))]
m.d.comb += copy_part_ops
return m
expanded_part_pts,
self.part_ops)
- out_part_ops = add_reduce.levels[-1].i.part_ops
- out_part_pts = add_reduce.levels[-1].i.reg_partition_points
+ out_part_ops = add_reduce.out_part_ops
+ out_part_pts = add_reduce.levels[-1].o.reg_partition_points
m.submodules.add_reduce = add_reduce
m.d.comb += self._intermediate_output.eq(add_reduce.output)