--- /dev/null
+# Proof of correctness for partitioned equal signal combiner
+# Copyright (C) 2020 Michael Nolan <mtnolan2640@gmail.com>
+
+from nmigen import Module, Signal, Elaboratable, Mux
+from nmigen.asserts import Assert, AnyConst
+from nmigen.test.utils import FHDLTestCase
+from nmigen.cli import rtlil
+
+from ieee754.part_cmp.experiments.gt_combiner import GTCombiner
+import unittest
+
+
+# This defines a module to drive the device under test and assert
+# properties about its outputs
+class CombinerDriver(Elaboratable):
+ def __init__(self):
+ # inputs and outputs
+ pass
+
+ def elaborate(self, platform):
+ m = Module()
+ comb = m.d.comb
+ width = 3
+
+ # setup the inputs and outputs of the DUT as anyconst
+ eqs = Signal(width)
+ gts = Signal(width)
+ gates = Signal(width-1)
+ out = Signal(width)
+ comb += [eqs.eq(AnyConst(width)),
+ gates.eq(AnyConst(width)),
+ gts.eq(AnyConst(width))]
+
+ m.submodules.dut = dut = GTCombiner(width)
+
+ with m.Switch(gates):
+ with m.Case(0b11):
+ for i in range(out.width):
+ comb += Assert(out[i] == gts[i])
+ with m.Case(0b10):
+ comb += Assert(out[2] == gts[2])
+ comb += Assert(out[1] == 0)
+ comb += Assert(out[0] == (gts[0] | (eqs[0] & gts[1])))
+ with m.Case(0b01):
+ comb += Assert(out[2] == 0)
+ comb += Assert(out[1] == (gts[1] | (eqs[1] & gts[2])))
+ comb += Assert(out[0] == gts[0])
+ with m.Case(0b00):
+ comb += Assert(out[2] == 0)
+ comb += Assert(out[1] == 0)
+ comb += Assert(out[0] == (gts[0] | (eqs[0] & (gts[1] | (eqs[1] & gts[2])))))
+
+
+
+ # connect up the inputs and outputs.
+ comb += dut.eqs.eq(eqs)
+ comb += dut.gts.eq(gts)
+ comb += dut.gates.eq(gates)
+ comb += out.eq(dut.outputs)
+
+ return m
+
+class GTCombinerTestCase(FHDLTestCase):
+ def test_gt_combiner(self):
+ module = CombinerDriver()
+ self.assertFormal(module, mode="bmc", depth=4)
+ def test_ilang(self):
+ dut = GTCombiner(3)
+ vl = rtlil.convert(dut, ports=dut.ports())
+ with open("partition_combiner.il", "w") as f:
+ f.write(vl)
+
+
+if __name__ == '__main__':
+ unittest.main()
--- /dev/null
+from nmigen import Signal, Module, Elaboratable, Mux
+from ieee754.part_mul_add.partpoints import PartitionPoints
+from ieee754.part_cmp.experiments.eq_combiner import Twomux
+
+
+# This is similar to EQCombiner, except that for a greater than
+# comparison, it needs to deal with both the greater than and equals
+# signals from each partition. The signals are combined using a
+# cascaded AND/OR to give the following effect:
+# When a partition is open, the output is set if either the current
+# partition's greater than flag is set, or the current partition's
+# equal flag is set AND the previous partition's greater than output
+# is true
+class GTCombiner(Elaboratable):
+ def __init__(self, width):
+ self.width = width
+ self.eqs = Signal(width, reset_less=True) # the flags for EQ
+ self.gts = Signal(width, reset_less=True) # the flags for GT
+ self.gates = Signal(width-1, reset_less=True)
+ self.outputs = Signal(width, reset_less=True)
+
+ def elaborate(self, platform):
+ m = Module()
+ comb = m.d.comb
+
+ previnput = self.gts[-1]
+ for i in range(self.width-1, 0, -1): # counts down from width-1 to 1
+ m.submodules["mux{}".format(i)] = mux = Twomux()
+
+ comb += mux.ina.eq(previnput)
+ comb += mux.inb.eq(0)
+ comb += mux.sel.eq(self.gates[i-1])
+ comb += self.outputs[i].eq(mux.outb)
+ previnput = self.gts[i-1] | (self.eqs[i-1] & mux.outa)
+
+ comb += self.outputs[0].eq(previnput)
+
+ return m
+
+ def ports(self):
+ return [self.eqs, self.gts, self.gates, self.outputs]