self.do_test_formal(1, True)
+class DualPortXorRegfile(Elaboratable):
+ """
+ Builds, from a pair of phased 1W/2R blocks, a true 1W/1R RAM, where both
+ write and (non-transparent) read ports work every cycle.
+
+ It employs a XOR trick, as follows:
+
+ 1) Like before, there are two memories, each reading on every cycle, and
+ writing on alternate cycles
+ 2) Instead of a MUX, the read port is a direct XOR of the two memories.
+ 3) Writes happens in two cycles:
+
+ First, read the current value of the *other* memory, at the write
+ location.
+
+ Then, on *this* memory, write that read value, XORed with the desired
+ value.
+
+ This recovers the desired value when read:
+ (other XOR desired) XOR other = desired
+
+ :param addr_width: width of the address bus
+ :param data_width: width of the data bus
+ :param we_width: number of write enable lines
+ """
+
+ def __init__(self, addr_width, data_width, we_width):
+ self.addr_width = addr_width
+ self.data_width = data_width
+ self.we_width = we_width
+ # interface signals
+ self.wr_addr_i = Signal(addr_width); """write port address"""
+ self.wr_data_i = Signal(data_width); """write port data"""
+ self.wr_we_i = Signal(we_width); """write port enable"""
+ self.rd_addr_i = Signal(addr_width); """read port address"""
+ self.rd_data_o = Signal(data_width); """read port data"""
+
+ def elaborate(self, platform):
+ m = Module()
+ # instantiate the two phased 1W/2R memory blocks
+ mem0 = PhasedReadPhasedWriteFullReadSRAM(
+ self.addr_width, self.data_width, self.we_width, 0, True)
+ mem1 = PhasedReadPhasedWriteFullReadSRAM(
+ self.addr_width, self.data_width, self.we_width, 1, True)
+ m.submodules.mem0 = mem0
+ m.submodules.mem1 = mem1
+ # generate and wire the phases for the phased memories
+ phase = Signal()
+ m.d.sync += phase.eq(~phase)
+ m.d.comb += [
+ mem0.phase.eq(phase),
+ mem1.phase.eq(phase),
+ ]
+ # wire read address to memories, and XOR their output
+ m.d.comb += [
+ mem0.rd_addr_i.eq(self.rd_addr_i),
+ mem1.rd_addr_i.eq(self.rd_addr_i),
+ self.rd_data_o.eq(mem0.rd_data_o ^ mem1.rd_data_o),
+ ]
+ # write path
+ # 1) read the memory location which is about to be written
+ m.d.comb += [
+ mem0.rdp_addr_i.eq(self.wr_addr_i),
+ mem1.rdp_addr_i.eq(self.wr_addr_i),
+ ]
+ # store the write information for the next cycle
+ last_addr = Signal(self.addr_width)
+ last_we = Signal(self.we_width)
+ last_data = Signal(self.data_width)
+ m.d.sync += [
+ last_addr.eq(self.wr_addr_i),
+ last_we.eq(self.wr_we_i),
+ last_data.eq(self.wr_data_i),
+ ]
+ # 2) write the XOR of the other memory data, and the desired value
+ m.d.comb += [
+ mem0.wr_addr_i.eq(last_addr),
+ mem1.wr_addr_i.eq(last_addr),
+ mem0.wr_we_i.eq(last_we),
+ mem1.wr_we_i.eq(last_we),
+ mem0.wr_data_i.eq(last_data ^ mem1.rdp_data_o),
+ mem1.wr_data_i.eq(last_data ^ mem0.rdp_data_o),
+ ]
+ return m
+
+
+class DualPortXorRegfileTestCase(FHDLTestCase):
+
+ def test_case(self):
+ """
+ Simulate some read/write/modify operations on the dual port register
+ file
+ """
+ dut = DualPortXorRegfile(7, 32, 4)
+ sim = Simulator(dut)
+ sim.add_clock(1e-6)
+
+ expected = None
+ last_expected = None
+
+ # compare read data with previously written data
+ # and start a new read
+ def read(rd_addr_i, next_expected=None):
+ nonlocal expected, last_expected
+ if expected is not None:
+ self.assertEqual((yield dut.rd_data_o), expected)
+ yield dut.rd_addr_i.eq(rd_addr_i)
+ # account for the read latency
+ expected = last_expected
+ last_expected = next_expected
+
+ # start a write
+ def write(wr_addr_i, wr_we_i, wr_data_i):
+ yield dut.wr_addr_i.eq(wr_addr_i)
+ yield dut.wr_we_i.eq(wr_we_i)
+ yield dut.wr_data_i.eq(wr_data_i)
+
+ def process():
+ # write a pair of values, one for each memory
+ yield from read(0)
+ yield from write(0x42, 0b1111, 0x87654321)
+ yield
+ yield from read(0x42, 0x87654321)
+ yield from write(0x43, 0b1111, 0x0FEDCBA9)
+ yield
+ # skip a beat
+ yield from read(0x43, 0x0FEDCBA9)
+ yield from write(0, 0, 0)
+ yield
+ # write again, but now they switch memories
+ yield from read(0)
+ yield from write(0x42, 0b1111, 0x12345678)
+ yield
+ yield from read(0x42, 0x12345678)
+ yield from write(0x43, 0b1111, 0x9ABCDEF0)
+ yield
+ yield from read(0x43, 0x9ABCDEF0)
+ yield from write(0, 0, 0)
+ yield
+ # test partial writes
+ yield from read(0)
+ yield from write(0x42, 0b1001, 0x78FFFF12)
+ yield
+ yield from read(0)
+ yield from write(0x43, 0b0110, 0xFFDEABFF)
+ yield
+ yield from read(0x42, 0x78345612)
+ yield from write(0, 0, 0)
+ yield
+ yield from read(0x43, 0x9ADEABF0)
+ yield from write(0, 0, 0)
+ yield
+ yield from read(0)
+ yield from write(0, 0, 0)
+ yield
+ # test simultaneous read and write
+ # non-transparent read: returns the old value
+ yield from read(0x42, 0x78345612)
+ yield from write(0x42, 0b1111, 0x55AA9966)
+ yield
+ # after a cycle, returns the new value
+ yield from read(0x42, 0x55AA9966)
+ yield from write(0, 0, 0)
+ yield
+ # settle down
+ yield from read(0)
+ yield from write(0, 0, 0)
+ yield
+ yield from read(0)
+ yield from write(0, 0, 0)
+
+ sim.add_sync_process(process)
+ debug_file = 'test_dual_port_xor_regfile'
+ traces = ['clk', 'phase',
+ {'comment': 'write port'},
+ 'wr_addr_i[6:0]', 'wr_we_i[3:0]', 'wr_data_i[31:0]',
+ {'comment': 'read port'},
+ 'rd_addr_i[6:0]', 'rd_data_o[31:0]',
+ ]
+ write_gtkw(debug_file + '.gtkw',
+ debug_file + '.vcd',
+ traces, module='top', zoom=-22)
+ sim_writer = sim.write_vcd(debug_file + '.vcd')
+ with sim_writer:
+ sim.run()
+
+
if __name__ == "__main__":
unittest.main()