class FPDivStage2Mod(FPState, Elaboratable):
- """ Second stage of div: preparation for normalisation.
+ """ Last stage of div: preparation for normalisation.
+
+ NOTE: this phase does NOT do ACTUAL DIV processing, it ONLY
+ does "conversion" *out* of the Q/REM last stage
"""
def __init__(self, pspec):
def elaborate(self, platform):
m = Module()
+ comb = m.d.comb
# copies sign and exponent and mantissa (mantissa and exponent to be
# overridden below)
- m.d.comb += self.o.z.eq(self.i.z)
-
- # TODO: this is "phase 3" of divide (the very end of the pipeline)
- # takes the Q and R data (whatever) and performs
- # last-stage guard/round/sticky and copies mantissa into z.
- # post-processing stages take care of things from that point.
-
- # NOTE: this phase does NOT do ACTUAL DIV processing, it ONLY
- # does "conversion" *out* of the Q/REM last stage
+ comb += self.o.z.eq(self.i.z)
# Operations and input/output mantissa ranges:
# fdiv:
# radicand [1.0, 4.0)
# result (0.5, 1.0]
- # following section partially normalizes result to the range [1.0, 2.0)
-
- qr_int_part = Signal(2, reset_less=True)
- m.d.comb += qr_int_part.eq(
- self.i.quotient_root[self.pspec.core_config.fract_width:][:2])
-
- need_shift = Signal(reset_less=True)
-
- # shift left when result is less than 2.0 since result_m has 1 more
- # fraction bit, making assigning to it the equivalent of dividing by 2.
- # this all comes out to:
- # if quotient_root < 2.0:
- # # div by 2 from assign; mul by 2 from shift left
- # result = (quotient_root * 2) / 2
- # else:
- # # div by 2 from assign
- # result = quotient_root / 2
- m.d.comb += need_shift.eq(qr_int_part < 2)
-
- # one extra fraction bit to accommodate the result when not shifting
- # and for effective div by 2
- result_m_fract_width = self.pspec.core_config.fract_width + 1
- # 1 integer bit since the numbers are less than 2.0
- result_m = Signal(1 + result_m_fract_width, reset_less=True)
- result_e = Signal(len(self.i.z.e), reset_less=True)
-
- m.d.comb += [
- result_m.eq(self.i.quotient_root << need_shift),
- result_e.eq(self.i.z.e + (1 - need_shift))
- ]
-
- # result_m is now in the range [1.0, 2.0)
-
- # FIXME: below comment block out of date
- # NOTE: see FPDivStage0Mod comment. the quotient is assumed
- # to be in the range 0.499999-recurring to 1.999998. normalisation
- # will take care of that, *however*, it *might* be necessary to
- # subtract 1 from the exponent and have one extra bit in the
- # mantissa to compensate. this is pretty much exactly what's
- # done in FPMUL, due to 0.5-0.9999 * 0.5-0.9999 also producing
- # values within the range 0.5 to 1.999998
- # FIXME: above comment block out of date
-
- with m.If(~self.i.out_do_z): # FIXME: does this need to be conditional?
- m.d.comb += [
- self.o.z.m.eq(result_m[3:]),
- self.o.of.m0.eq(result_m[3]), # copy of LSB
- self.o.of.guard.eq(result_m[2]),
- self.o.of.round_bit.eq(result_m[1]),
+ with m.If(~self.i.out_do_z):
+ # following section partially normalizes result to range [1.0, 2.0)
+ fw = self.pspec.core_config.fract_width
+ qr_int_part = Signal(2, reset_less=True)
+ comb += qr_int_part.eq(self.i.quotient_root[fw:][:2])
+
+ need_shift = Signal(reset_less=True)
+
+ # shift left when result is less than 2.0 since result_m has 1 more
+ # fraction bit, making assigning to it the equivalent of
+ # dividing by 2.
+ # this all comes out to:
+ # if quotient_root < 2.0:
+ # # div by 2 from assign; mul by 2 from shift left
+ # result = (quotient_root * 2) / 2
+ # else:
+ # # div by 2 from assign
+ # result = quotient_root / 2
+ comb += need_shift.eq(qr_int_part < 2)
+
+ # one extra fraction bit to accommodate the result when not
+ # shifting and for effective div by 2
+ result_m_fract_width = fw + 1
+ # 1 integer bit since the numbers are less than 2.0
+ result_m = Signal(1 + result_m_fract_width, reset_less=True)
+ result_e = Signal(len(self.i.z.e), reset_less=True)
+
+ comb += [
+ result_m.eq(self.i.quotient_root << need_shift),
+ result_e.eq(self.i.z.e + (1 - need_shift))
+ ]
+
+ # result_m is now in the range [1.0, 2.0)
+ comb += [
+ self.o.z.m.eq(result_m[3:]), # mantissa
+ self.o.of.m0.eq(result_m[3]), # copy of mantissa LSB
+ self.o.of.guard.eq(result_m[2]), # guard
+ self.o.of.round_bit.eq(result_m[1]), # round
self.o.of.sticky.eq(result_m[0] | self.i.remainder.bool()),
self.o.z.e.eq(result_e),
]
- m.d.comb += self.o.out_do_z.eq(self.i.out_do_z)
- m.d.comb += self.o.oz.eq(self.i.oz)
- m.d.comb += self.o.ctx.eq(self.i.ctx)
+ comb += self.o.out_do_z.eq(self.i.out_do_z)
+ comb += self.o.oz.eq(self.i.oz)
+ comb += self.o.ctx.eq(self.i.ctx)
return m