# ridiculously-simple top-level module. doesn't even have a sync domain
# and can't have one until a clock has been established by ASICPlatform.
class Blinker(Elaboratable):
- def __init__(self, pinset):
+ def __init__(self, pinset, resources):
self.jtag = JTAG({}, "sync")
self.jtag.core_mgr = ResourceManager([], [])
+ self.jtag.core_mgr.add_resources(resources)
# record resource lookup between core IO names and pads
self.jtag.padlookup = {}
+ self.jtag.requests_made = []
memory = Memory(width=32, depth=16)
self.sram = SRAM(memory=memory, bus=self.jtag.wb)
-
def elaborate(self, platform):
+ jtag_resources = self.jtag.core_mgr.resources
m = Module()
m.submodules.jtag = self.jtag
m.submodules.sram = self.sram
count = Signal(5)
- m.d.sync += count.eq(5)
- print ("resources", platform.resources.items())
- gpio = platform.request('gpio')
+ m.d.sync += count.eq(count+1)
+ print ("resources", jtag_resources.items())
+ gpio = self.jtag_request('gpio')
print (gpio, gpio.layout, gpio.fields)
# get the GPIO bank, mess about with some of the pins
m.d.comb += gpio.gpio0.io.o.eq(1)
m.d.comb += gpio.gpio1.io.oe.eq(count[4])
m.d.sync += count[0].eq(gpio.gpio1.io.i)
# get the UART resource, mess with the output tx
- uart = platform.request('uart')
+ uart = self.jtag_request('uart')
print (uart, uart.fields)
intermediary = Signal()
m.d.comb += uart.tx.eq(intermediary)
m.d.comb += intermediary.eq(uart.rx)
- # wire up JTAG otherwise we are in trouble (no clock)
- jtag = platform.request('jtag')
- m.d.comb += self.jtag.bus.tdi.eq(jtag.tdi)
- m.d.comb += self.jtag.bus.tck.eq(jtag.tck)
- m.d.comb += self.jtag.bus.tms.eq(jtag.tms)
- m.d.comb += jtag.tdo.eq(self.jtag.bus.tdo)
+ # platform requested: make the exact same requests,
+ # then add JTAG afterwards
+ if platform is not None:
+ for (name, number, dir, xdr) in self.jtag.requests_made:
+ platform.request(name, number, dir=dir, xdr=xdr)
+
+ # wire up JTAG otherwise we are in trouble (no clock)
+ jtag = platform.request('jtag')
+ m.d.comb += self.jtag.bus.tdi.eq(jtag.tdi)
+ m.d.comb += self.jtag.bus.tck.eq(jtag.tck)
+ m.d.comb += self.jtag.bus.tms.eq(jtag.tms)
+ m.d.comb += jtag.tdo.eq(self.jtag.bus.tdo)
return m
+ def jtag_request(self, name, number=0, *, dir=None, xdr=None):
+ """request a Resource (e.g. name="uart", number=0) which will
+ return a data structure containing Records of all the pins.
+
+ this override will also - automatically - create a JTAG Boundary Scan
+ connection *without* any change to the actual Platform.request() API
+ """
+ core_mgr = self.jtag.core_mgr
+ padlookup = self.jtag.padlookup
+ # okaaaay, bit of shenanigens going on: the important data structure
+ # here is Resourcemanager._ports. requests add to _ports, which is
+ # what needs redirecting. therefore what has to happen is to
+ # capture the number of ports *before* the request. sigh.
+ # start_ports = len(core_mgr._ports)
+ # value = core_mgr.request(name, number, dir=dir, xdr=xdr)
+ # end_ports = len(core_mgr._ports)
+
+ # take a copy of the requests made
+ self.jtag.requests_made.append((name, number, dir, xdr))
+
+ # now make a corresponding (duplicate) request to the pad manager
+ # BUT, if it doesn't exist, don't sweat it: all it means is, the
+ # application did not request Boundary Scan for that resource.
+ pad_start_ports = len(core_mgr._ports)
+ pvalue = core_mgr.request(name, number, dir=dir, xdr=xdr)
+ pad_end_ports = len(core_mgr._ports)
+
+ # ok now we have the lengths: now create a lookup between the pad
+ # and the core, so that JTAG boundary scan can be inserted in between
+ #core = self._ports[start_ports:end_ports]
+ pads = core_mgr._ports[pad_start_ports:pad_end_ports]
+ # oops if not the same numbers added. it's a duplicate. shouldn't happen
+ #assert len(core) == len(pads), "argh, resource manager error"
+ #print ("core", core)
+ print ("pads", pads)
+
+ # pad/core each return a list of tuples of (res, pin, port, attrs)
+ #for pad, core in zip(pads, core):
+ for pad in pads:
+ # create a lookup on pin name to get at the hidden pad instance
+ # this pin name will be handed to get_input, get_output etc.
+ # and without the padlookup you can't find the (duplicate) pad.
+ # note that self.padlookup and self.jtag.ios use the *exact* same
+ # pin.name per pin
+ pin = pad[1]
+ #corepin = core[1]
+ if pin is None: continue # skip when pin is None
+ #assert corepin is not None # if pad was None, core should be too
+ print ("iter", pad, pin.name)
+ print ("existing pads", padlookup.keys())
+ assert pin.name not in padlookup # no overwrites allowed!
+ #assert pin.name == corepin.name # has to be the same!
+ padlookup[pin.name] = pad # store pad by pin name
+
+ # now add the IO Shift Register. first identify the type
+ # then request a JTAG IOConn. we can't wire it up (yet) because
+ # we don't have a Module() instance. doh. that comes in get_input
+ # and get_output etc. etc.
+ iotype = resiotypes[pin.dir] # look up the C4M-JTAG IOType
+ io = self.jtag.add_io(iotype=iotype, name=pin.name) # create IOConn
+ self.jtag.ios[pin.name] = io # store IOConn Record by pin name
+
+ # finally return the value just like ResourceManager.request()
+ return pvalue
+
'''
_trellis_command_templates = [
super().__init__()
# create set of pin resources based on the pinset, this is for the core
+ #jtag_resources = self.jtag.core_mgr.resources
self.add_resources(resources)
# add JTAG without scan
self.add_resources([JTAGResource('jtag', 0)], no_boundary_scan=True)
- def request(self, name, number=0, *, dir=None, xdr=None):
+ def _request(self, name, number=0, *, dir=None, xdr=None):
"""request a Resource (e.g. name="uart", number=0) which will
return a data structure containing Records of all the pins.
return value
def add_resources(self, resources, no_boundary_scan=False):
+ print ("ASICPlatform add_resources", resources)
super().add_resources(resources)
+ return
if no_boundary_scan:
return
# make a *second* - identical - set of pin resources for the IO ring
print (" pad", padres, padpin, padport, attrs)
print (" padpin", padpin.layout)
print (" jtag", io.core.layout, io.pad.layout)
- m.d.comb += pin.i.eq(self._invert_if(invert, port))
- m.d.comb += padpin.i.eq(padport)
- m.d.comb += padport.io.eq(io.core.i)
- m.d.comb += io.pad.i.eq(pin.i)
+ m.d.comb += pin.i.eq(io.core.i)
+ m.d.comb += padpin.i.eq(pin.i)
+ m.d.comb += padport.io.eq(self._invert_if(invert, port))
+ m.d.comb += io.pad.i.eq(padport.io)
print("+=+=+= pin: ", pin)
print("+=+=+= port: ", port.layout)
print (" pad", padres, padpin, padport, padattrs)
print (" pin", padpin.layout)
print (" jtag", io.core.layout, io.pad.layout)
- m.d.comb += port.eq(self._invert_if(invert, pin.o))
- m.d.comb += padport.io.eq(padpin.o)
- m.d.comb += io.core.o.eq(port.io)
- m.d.comb += padpin.o.eq(io.pad.o)
+ m.d.comb += io.core.o.eq(self._invert_if(invert, pin.o))
+ m.d.comb += pin.o.eq(padpin.o)
+ m.d.comb += port.eq(padport.io)
+ m.d.comb += padport.io.eq(io.pad.o)
return m
def get_tristate(self, pin, port, attrs, invert):
o_Y=port,
)
return m
+ return m
(res, pin, port, attrs) = padlookup[pin.name]
io = self.jtag.ios[pin.name]
print (" pad", res, pin, port, attrs)
return m
(padres, padpin, padport, padattrs) = padlookup[pin.name]
io = self.jtag.ios[pin.name]
- print (" pad", padres, padpin, padport, padattrs)
- print (" pin", padpin.layout)
+ print (" padres", padres)
+ print (" padpin", padpin)
+ print (" layout", padpin.layout)
+ print (" padport", padport)
+ print (" layout", padport.layout)
+ print (" padattrs", padattrs)
print (" port layout", port.layout)
- print (" jtag", io.core.layout, io.pad.layout)
+ print (" pin", pin)
+ print (" layout", pin.layout)
+ print (" jtag io.core", io.core.layout)
+ print (" jtag io.pad", io.pad.layout)
#m.submodules += Instance("$tribuf",
# p_WIDTH=pin.width,
# i_EN=io.pad.oe,
padport_o = padport.io[1]
padport_oe = padport.io[2]
- # Connect SoC pins to SoC port
- m.d.comb += pin.i.eq(port_i)
- m.d.comb += port_o.eq(pin.o)
- m.d.comb += port_oe.eq(pin.oe)
- # Connect SoC port to JTAG io.core side
- m.d.comb += port_i.eq(io.core.i)
- m.d.comb += io.core.o.eq(port_o)
- m.d.comb += io.core.oe.eq(port_oe)
- # Connect JTAG io.pad side to pad port
+ # connect i
+ m.d.comb += pin.i[0].eq(io.core.i)
+ m.d.comb += padpin.i[0].eq(pin.i[0])
+ m.d.comb += padport_i.eq(self._invert_if(invert, port_i))
m.d.comb += io.pad.i.eq(padport_i)
+
+ # connect o
+ m.d.comb += io.core.o.eq(self._invert_if(invert, pin.o))
+ m.d.comb += pin.o.eq(padpin.o)
+ m.d.comb += port_o.eq(padport_o)
m.d.comb += padport_o.eq(io.pad.o)
+
+ # connect oe
+ m.d.comb += io.core.oe.eq(self._invert_if(invert, pin.oe))
+ m.d.comb += pin.oe.eq(padpin.oe)
+ m.d.comb += port_oe.eq(padport_oe)
m.d.comb += padport_oe.eq(io.pad.oe)
- # Connect pad port to pad pins
- m.d.comb += padport_i.eq(padpin.i)
- m.d.comb += padpin.o.eq(padport_o)
- m.d.comb += padpin.oe.eq(padport_oe)
+
return m
def toolchain_prepare(self, fragment, name, **kwargs):
p.build(Blinker())
"""
pinset = dummy_pinset()
-top = Blinker(pinset)
+print(pinset)
+resources = create_resources(pinset)
+top = Blinker(pinset, resources)
# XXX these modules are all being added *AFTER* the build process links
cdut._ir_width = top.jtag._ir_width
cdut.scan_len = top.jtag.scan_len
-print(pinset)
-resources = create_resources(pinset)
p = ASICPlatform (resources, top.jtag)
p.build(top)
# this is what needs to gets treated as "top", after "main module" top