eb8abfb4d0fa12e347198d8024c7bba11331843d
[gem5.git] / src / arch / arm / process.cc
1 /*
2 * Copyright (c) 2010, 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007-2008 The Florida State University
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Stephen Hines
41 * Ali Saidi
42 */
43
44 #include "arch/arm/process.hh"
45
46 #include "arch/arm/isa_traits.hh"
47 #include "arch/arm/types.hh"
48 #include "base/loader/elf_object.hh"
49 #include "base/loader/object_file.hh"
50 #include "base/misc.hh"
51 #include "cpu/thread_context.hh"
52 #include "debug/Stack.hh"
53 #include "mem/page_table.hh"
54 #include "sim/aux_vector.hh"
55 #include "sim/byteswap.hh"
56 #include "sim/process_impl.hh"
57 #include "sim/syscall_return.hh"
58 #include "sim/system.hh"
59
60 using namespace std;
61 using namespace ArmISA;
62
63 ArmProcess::ArmProcess(ProcessParams *params, ObjectFile *objFile,
64 ObjectFile::Arch _arch)
65 : Process(params, objFile), arch(_arch)
66 {
67 }
68
69 ArmProcess32::ArmProcess32(ProcessParams *params, ObjectFile *objFile,
70 ObjectFile::Arch _arch)
71 : ArmProcess(params, objFile, _arch)
72 {
73 Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
74 objFile->bssSize(), PageBytes);
75 Addr stack_base = 0xbf000000L;
76 Addr max_stack_size = 8 * 1024 * 1024;
77 Addr next_thread_stack_base = stack_base - max_stack_size;
78 Addr mmap_end = 0x40000000L;
79
80 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
81 next_thread_stack_base, mmap_end);
82 }
83
84 ArmProcess64::ArmProcess64(ProcessParams *params, ObjectFile *objFile,
85 ObjectFile::Arch _arch)
86 : ArmProcess(params, objFile, _arch)
87 {
88 Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
89 objFile->bssSize(), PageBytes);
90 Addr stack_base = 0x7fffff0000L;
91 Addr max_stack_size = 8 * 1024 * 1024;
92 Addr next_thread_stack_base = stack_base - max_stack_size;
93 Addr mmap_end = 0x4000000000L;
94
95 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
96 next_thread_stack_base, mmap_end);
97 }
98
99 void
100 ArmProcess32::initState()
101 {
102 Process::initState();
103 argsInit<uint32_t>(PageBytes, INTREG_SP);
104 for (int i = 0; i < contextIds.size(); i++) {
105 ThreadContext * tc = system->getThreadContext(contextIds[i]);
106 CPACR cpacr = tc->readMiscReg(MISCREG_CPACR);
107 // Enable the floating point coprocessors.
108 cpacr.cp10 = 0x3;
109 cpacr.cp11 = 0x3;
110 tc->setMiscReg(MISCREG_CPACR, cpacr);
111 // Generically enable floating point support.
112 FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
113 fpexc.en = 1;
114 tc->setMiscReg(MISCREG_FPEXC, fpexc);
115 }
116 }
117
118 void
119 ArmProcess64::initState()
120 {
121 Process::initState();
122 argsInit<uint64_t>(PageBytes, INTREG_SP0);
123 for (int i = 0; i < contextIds.size(); i++) {
124 ThreadContext * tc = system->getThreadContext(contextIds[i]);
125 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
126 cpsr.mode = MODE_EL0T;
127 tc->setMiscReg(MISCREG_CPSR, cpsr);
128 CPACR cpacr = tc->readMiscReg(MISCREG_CPACR_EL1);
129 // Enable the floating point coprocessors.
130 cpacr.cp10 = 0x3;
131 cpacr.cp11 = 0x3;
132 tc->setMiscReg(MISCREG_CPACR_EL1, cpacr);
133 // Generically enable floating point support.
134 FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
135 fpexc.en = 1;
136 tc->setMiscReg(MISCREG_FPEXC, fpexc);
137 }
138 }
139
140 template <class IntType>
141 void
142 ArmProcess::argsInit(int pageSize, IntRegIndex spIndex)
143 {
144 int intSize = sizeof(IntType);
145
146 typedef AuxVector<IntType> auxv_t;
147 std::vector<auxv_t> auxv;
148
149 string filename;
150 if (argv.size() < 1)
151 filename = "";
152 else
153 filename = argv[0];
154
155 //We want 16 byte alignment
156 uint64_t align = 16;
157
158 // Patch the ld_bias for dynamic executables.
159 updateBias();
160
161 // load object file into target memory
162 objFile->loadSections(initVirtMem);
163
164 enum ArmCpuFeature {
165 Arm_Swp = 1 << 0,
166 Arm_Half = 1 << 1,
167 Arm_Thumb = 1 << 2,
168 Arm_26Bit = 1 << 3,
169 Arm_FastMult = 1 << 4,
170 Arm_Fpa = 1 << 5,
171 Arm_Vfp = 1 << 6,
172 Arm_Edsp = 1 << 7,
173 Arm_Java = 1 << 8,
174 Arm_Iwmmxt = 1 << 9,
175 Arm_Crunch = 1 << 10,
176 Arm_ThumbEE = 1 << 11,
177 Arm_Neon = 1 << 12,
178 Arm_Vfpv3 = 1 << 13,
179 Arm_Vfpv3d16 = 1 << 14
180 };
181
182 //Setup the auxilliary vectors. These will already have endian conversion.
183 //Auxilliary vectors are loaded only for elf formatted executables.
184 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
185 if (elfObject) {
186
187 if (objFile->getOpSys() == ObjectFile::Linux) {
188 IntType features =
189 Arm_Swp |
190 Arm_Half |
191 Arm_Thumb |
192 // Arm_26Bit |
193 Arm_FastMult |
194 // Arm_Fpa |
195 Arm_Vfp |
196 Arm_Edsp |
197 // Arm_Java |
198 // Arm_Iwmmxt |
199 // Arm_Crunch |
200 Arm_ThumbEE |
201 Arm_Neon |
202 Arm_Vfpv3 |
203 Arm_Vfpv3d16 |
204 0;
205
206 //Bits which describe the system hardware capabilities
207 //XXX Figure out what these should be
208 auxv.push_back(auxv_t(M5_AT_HWCAP, features));
209 //Frequency at which times() increments
210 auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
211 //Whether to enable "secure mode" in the executable
212 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
213 // Pointer to 16 bytes of random data
214 auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
215 //The filename of the program
216 auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
217 //The string "v71" -- ARM v7 architecture
218 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
219 }
220
221 //The system page size
222 auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::PageBytes));
223 // For statically linked executables, this is the virtual address of the
224 // program header tables if they appear in the executable image
225 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
226 // This is the size of a program header entry from the elf file.
227 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
228 // This is the number of program headers from the original elf file.
229 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
230 // This is the base address of the ELF interpreter; it should be
231 // zero for static executables or contain the base address for
232 // dynamic executables.
233 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
234 //XXX Figure out what this should be.
235 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
236 //The entry point to the program
237 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
238 //Different user and group IDs
239 auxv.push_back(auxv_t(M5_AT_UID, uid()));
240 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
241 auxv.push_back(auxv_t(M5_AT_GID, gid()));
242 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
243 }
244
245 //Figure out how big the initial stack nedes to be
246
247 // A sentry NULL void pointer at the top of the stack.
248 int sentry_size = intSize;
249
250 string platform = "v71";
251 int platform_size = platform.size() + 1;
252
253 // Bytes for AT_RANDOM above, we'll just keep them 0
254 int aux_random_size = 16; // as per the specification
255
256 // The aux vectors are put on the stack in two groups. The first group are
257 // the vectors that are generated as the elf is loaded. The second group
258 // are the ones that were computed ahead of time and include the platform
259 // string.
260 int aux_data_size = filename.size() + 1;
261
262 int env_data_size = 0;
263 for (int i = 0; i < envp.size(); ++i) {
264 env_data_size += envp[i].size() + 1;
265 }
266 int arg_data_size = 0;
267 for (int i = 0; i < argv.size(); ++i) {
268 arg_data_size += argv[i].size() + 1;
269 }
270
271 int info_block_size =
272 sentry_size + env_data_size + arg_data_size +
273 aux_data_size + platform_size + aux_random_size;
274
275 //Each auxilliary vector is two 4 byte words
276 int aux_array_size = intSize * 2 * (auxv.size() + 1);
277
278 int envp_array_size = intSize * (envp.size() + 1);
279 int argv_array_size = intSize * (argv.size() + 1);
280
281 int argc_size = intSize;
282
283 //Figure out the size of the contents of the actual initial frame
284 int frame_size =
285 info_block_size +
286 aux_array_size +
287 envp_array_size +
288 argv_array_size +
289 argc_size;
290
291 //There needs to be padding after the auxiliary vector data so that the
292 //very bottom of the stack is aligned properly.
293 int partial_size = frame_size;
294 int aligned_partial_size = roundUp(partial_size, align);
295 int aux_padding = aligned_partial_size - partial_size;
296
297 int space_needed = frame_size + aux_padding;
298
299 memState->setStackMin(memState->getStackBase() - space_needed);
300 memState->setStackMin(roundDown(memState->getStackMin(), align));
301 memState->setStackSize(memState->getStackBase() - memState->getStackMin());
302
303 // map memory
304 allocateMem(roundDown(memState->getStackMin(), pageSize),
305 roundUp(memState->getStackSize(), pageSize));
306
307 // map out initial stack contents
308 IntType sentry_base = memState->getStackBase() - sentry_size;
309 IntType aux_data_base = sentry_base - aux_data_size;
310 IntType env_data_base = aux_data_base - env_data_size;
311 IntType arg_data_base = env_data_base - arg_data_size;
312 IntType platform_base = arg_data_base - platform_size;
313 IntType aux_random_base = platform_base - aux_random_size;
314 IntType auxv_array_base = aux_random_base - aux_array_size - aux_padding;
315 IntType envp_array_base = auxv_array_base - envp_array_size;
316 IntType argv_array_base = envp_array_base - argv_array_size;
317 IntType argc_base = argv_array_base - argc_size;
318
319 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
320 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
321 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
322 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
323 DPRINTF(Stack, "0x%x - random data\n", aux_random_base);
324 DPRINTF(Stack, "0x%x - platform base\n", platform_base);
325 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
326 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
327 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
328 DPRINTF(Stack, "0x%x - argc \n", argc_base);
329 DPRINTF(Stack, "0x%x - stack min\n", memState->getStackMin());
330
331 // write contents to stack
332
333 // figure out argc
334 IntType argc = argv.size();
335 IntType guestArgc = ArmISA::htog(argc);
336
337 //Write out the sentry void *
338 IntType sentry_NULL = 0;
339 initVirtMem.writeBlob(sentry_base,
340 (uint8_t*)&sentry_NULL, sentry_size);
341
342 //Fix up the aux vectors which point to other data
343 for (int i = auxv.size() - 1; i >= 0; i--) {
344 if (auxv[i].a_type == M5_AT_PLATFORM) {
345 auxv[i].a_val = platform_base;
346 initVirtMem.writeString(platform_base, platform.c_str());
347 } else if (auxv[i].a_type == M5_AT_EXECFN) {
348 auxv[i].a_val = aux_data_base;
349 initVirtMem.writeString(aux_data_base, filename.c_str());
350 } else if (auxv[i].a_type == M5_AT_RANDOM) {
351 auxv[i].a_val = aux_random_base;
352 // Just leave the value 0, we don't want randomness
353 }
354 }
355
356 //Copy the aux stuff
357 for (int x = 0; x < auxv.size(); x++) {
358 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
359 (uint8_t*)&(auxv[x].a_type), intSize);
360 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
361 (uint8_t*)&(auxv[x].a_val), intSize);
362 }
363 //Write out the terminating zeroed auxilliary vector
364 const uint64_t zero = 0;
365 initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
366 (uint8_t*)&zero, 2 * intSize);
367
368 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
369 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
370
371 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
372
373 ThreadContext *tc = system->getThreadContext(contextIds[0]);
374 //Set the stack pointer register
375 tc->setIntReg(spIndex, memState->getStackMin());
376 //A pointer to a function to run when the program exits. We'll set this
377 //to zero explicitly to make sure this isn't used.
378 tc->setIntReg(ArgumentReg0, 0);
379 //Set argument regs 1 and 2 to argv[0] and envp[0] respectively
380 if (argv.size() > 0) {
381 tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size -
382 argv[argv.size() - 1].size() - 1);
383 } else {
384 tc->setIntReg(ArgumentReg1, 0);
385 }
386 if (envp.size() > 0) {
387 tc->setIntReg(ArgumentReg2, env_data_base + env_data_size -
388 envp[envp.size() - 1].size() - 1);
389 } else {
390 tc->setIntReg(ArgumentReg2, 0);
391 }
392
393 PCState pc;
394 pc.thumb(arch == ObjectFile::Thumb);
395 pc.nextThumb(pc.thumb());
396 pc.aarch64(arch == ObjectFile::Arm64);
397 pc.nextAArch64(pc.aarch64());
398 pc.set(getStartPC() & ~mask(1));
399 tc->pcState(pc);
400
401 //Align the "stackMin" to a page boundary.
402 memState->setStackMin(roundDown(memState->getStackMin(), pageSize));
403 }
404
405 ArmISA::IntReg
406 ArmProcess32::getSyscallArg(ThreadContext *tc, int &i)
407 {
408 assert(i < 6);
409 return tc->readIntReg(ArgumentReg0 + i++);
410 }
411
412 ArmISA::IntReg
413 ArmProcess64::getSyscallArg(ThreadContext *tc, int &i)
414 {
415 assert(i < 8);
416 return tc->readIntReg(ArgumentReg0 + i++);
417 }
418
419 ArmISA::IntReg
420 ArmProcess32::getSyscallArg(ThreadContext *tc, int &i, int width)
421 {
422 assert(width == 32 || width == 64);
423 if (width == 32)
424 return getSyscallArg(tc, i);
425
426 // 64 bit arguments are passed starting in an even register
427 if (i % 2 != 0)
428 i++;
429
430 // Registers r0-r6 can be used
431 assert(i < 5);
432 uint64_t val;
433 val = tc->readIntReg(ArgumentReg0 + i++);
434 val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32);
435 return val;
436 }
437
438 ArmISA::IntReg
439 ArmProcess64::getSyscallArg(ThreadContext *tc, int &i, int width)
440 {
441 return getSyscallArg(tc, i);
442 }
443
444
445 void
446 ArmProcess32::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
447 {
448 assert(i < 6);
449 tc->setIntReg(ArgumentReg0 + i, val);
450 }
451
452 void
453 ArmProcess64::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
454 {
455 assert(i < 8);
456 tc->setIntReg(ArgumentReg0 + i, val);
457 }
458
459 void
460 ArmProcess32::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
461 {
462
463 if (objFile->getOpSys() == ObjectFile::FreeBSD) {
464 // Decode return value
465 if (sysret.encodedValue() >= 0)
466 // FreeBSD checks the carry bit to determine if syscall is succeeded
467 tc->setCCReg(CCREG_C, 0);
468 else {
469 sysret = -sysret.encodedValue();
470 }
471 }
472
473 tc->setIntReg(ReturnValueReg, sysret.encodedValue());
474 }
475
476 void
477 ArmProcess64::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
478 {
479
480 if (objFile->getOpSys() == ObjectFile::FreeBSD) {
481 // Decode return value
482 if (sysret.encodedValue() >= 0)
483 // FreeBSD checks the carry bit to determine if syscall is succeeded
484 tc->setCCReg(CCREG_C, 0);
485 else {
486 sysret = -sysret.encodedValue();
487 }
488 }
489
490 tc->setIntReg(ReturnValueReg, sysret.encodedValue());
491 }