misc: Rename misc.(hh|cc) to logging.(hh|cc)
[gem5.git] / src / arch / x86 / process.cc
1 /*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 * Copyright (c) 2007 The Hewlett-Packard Development Company
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Gabe Black
42 * Ali Saidi
43 */
44
45 #include "arch/x86/process.hh"
46
47 #include <string>
48 #include <vector>
49
50 #include "arch/x86/isa_traits.hh"
51 #include "arch/x86/regs/misc.hh"
52 #include "arch/x86/regs/segment.hh"
53 #include "arch/x86/system.hh"
54 #include "arch/x86/types.hh"
55 #include "base/loader/elf_object.hh"
56 #include "base/loader/object_file.hh"
57 #include "base/logging.hh"
58 #include "base/trace.hh"
59 #include "cpu/thread_context.hh"
60 #include "debug/Stack.hh"
61 #include "mem/multi_level_page_table.hh"
62 #include "mem/page_table.hh"
63 #include "sim/aux_vector.hh"
64 #include "sim/process_impl.hh"
65 #include "sim/syscall_desc.hh"
66 #include "sim/syscall_return.hh"
67 #include "sim/system.hh"
68
69 using namespace std;
70 using namespace X86ISA;
71
72 static const int ArgumentReg[] = {
73 INTREG_RDI,
74 INTREG_RSI,
75 INTREG_RDX,
76 // This argument register is r10 for syscalls and rcx for C.
77 INTREG_R10W,
78 // INTREG_RCX,
79 INTREG_R8W,
80 INTREG_R9W
81 };
82
83 static const int NumArgumentRegs M5_VAR_USED =
84 sizeof(ArgumentReg) / sizeof(const int);
85
86 static const int ArgumentReg32[] = {
87 INTREG_EBX,
88 INTREG_ECX,
89 INTREG_EDX,
90 INTREG_ESI,
91 INTREG_EDI,
92 INTREG_EBP
93 };
94
95 static const int NumArgumentRegs32 M5_VAR_USED =
96 sizeof(ArgumentReg) / sizeof(const int);
97
98 X86Process::X86Process(ProcessParams * params, ObjectFile *objFile,
99 SyscallDesc *_syscallDescs, int _numSyscallDescs)
100 : Process(params, objFile), syscallDescs(_syscallDescs),
101 numSyscallDescs(_numSyscallDescs)
102 {
103 }
104
105 void X86Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
106 Process *p, TheISA::IntReg flags)
107 {
108 Process::clone(old_tc, new_tc, p, flags);
109 X86Process *process = (X86Process*)p;
110 *process = *this;
111 }
112
113 X86_64Process::X86_64Process(ProcessParams *params, ObjectFile *objFile,
114 SyscallDesc *_syscallDescs, int _numSyscallDescs)
115 : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
116 {
117
118 vsyscallPage.base = 0xffffffffff600000ULL;
119 vsyscallPage.size = PageBytes;
120 vsyscallPage.vtimeOffset = 0x400;
121 vsyscallPage.vgettimeofdayOffset = 0x0;
122
123 Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
124 objFile->bssSize(), PageBytes);
125 Addr stack_base = 0x7FFFFFFFF000ULL;
126 Addr max_stack_size = 8 * 1024 * 1024;
127 Addr next_thread_stack_base = stack_base - max_stack_size;
128 Addr mmap_end = 0x7FFFF7FFF000ULL;
129
130 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
131 next_thread_stack_base, mmap_end);
132 }
133
134 void
135 I386Process::syscall(int64_t callnum, ThreadContext *tc, Fault *fault)
136 {
137 TheISA::PCState pc = tc->pcState();
138 Addr eip = pc.pc();
139 if (eip >= vsyscallPage.base &&
140 eip < vsyscallPage.base + vsyscallPage.size) {
141 pc.npc(vsyscallPage.base + vsyscallPage.vsysexitOffset);
142 tc->pcState(pc);
143 }
144 X86Process::syscall(callnum, tc, fault);
145 }
146
147
148 I386Process::I386Process(ProcessParams *params, ObjectFile *objFile,
149 SyscallDesc *_syscallDescs, int _numSyscallDescs)
150 : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
151 {
152 _gdtStart = ULL(0xffffd000);
153 _gdtSize = PageBytes;
154
155 vsyscallPage.base = 0xffffe000ULL;
156 vsyscallPage.size = PageBytes;
157 vsyscallPage.vsyscallOffset = 0x400;
158 vsyscallPage.vsysexitOffset = 0x410;
159
160 Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
161 objFile->bssSize(), PageBytes);
162 Addr stack_base = _gdtStart;
163 Addr max_stack_size = 8 * 1024 * 1024;
164 Addr next_thread_stack_base = stack_base - max_stack_size;
165 Addr mmap_end = 0xB7FFF000ULL;
166
167 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
168 next_thread_stack_base, mmap_end);
169 }
170
171 SyscallDesc*
172 X86Process::getDesc(int callnum)
173 {
174 if (callnum < 0 || callnum >= numSyscallDescs)
175 return NULL;
176 return &syscallDescs[callnum];
177 }
178
179 void
180 X86_64Process::initState()
181 {
182 X86Process::initState();
183
184 argsInit(PageBytes);
185
186 // Set up the vsyscall page for this process.
187 allocateMem(vsyscallPage.base, vsyscallPage.size);
188 uint8_t vtimeBlob[] = {
189 0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00, // mov $0xc9,%rax
190 0x0f,0x05, // syscall
191 0xc3 // retq
192 };
193 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
194 vtimeBlob, sizeof(vtimeBlob));
195
196 uint8_t vgettimeofdayBlob[] = {
197 0x48,0xc7,0xc0,0x60,0x00,0x00,0x00, // mov $0x60,%rax
198 0x0f,0x05, // syscall
199 0xc3 // retq
200 };
201 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
202 vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
203
204 if (kvmInSE) {
205 PortProxy physProxy = system->physProxy;
206
207 /*
208 * Set up the gdt.
209 */
210 uint8_t numGDTEntries = 0;
211 uint64_t nullDescriptor = 0;
212 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
213 (uint8_t *)(&nullDescriptor), 8);
214 numGDTEntries++;
215
216 SegDescriptor initDesc = 0;
217 initDesc.type.codeOrData = 0; // code or data type
218 initDesc.type.c = 0; // conforming
219 initDesc.type.r = 1; // readable
220 initDesc.dpl = 0; // privilege
221 initDesc.p = 1; // present
222 initDesc.l = 1; // longmode - 64 bit
223 initDesc.d = 0; // operand size
224 initDesc.g = 1; // granularity
225 initDesc.s = 1; // system segment
226 initDesc.limitHigh = 0xFFFF;
227 initDesc.limitLow = 0xF;
228 initDesc.baseHigh = 0x0;
229 initDesc.baseLow = 0x0;
230
231 //64 bit code segment
232 SegDescriptor csLowPLDesc = initDesc;
233 csLowPLDesc.type.codeOrData = 1;
234 csLowPLDesc.dpl = 0;
235 uint64_t csLowPLDescVal = csLowPLDesc;
236 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
237 (uint8_t *)(&csLowPLDescVal), 8);
238
239 numGDTEntries++;
240
241 SegSelector csLowPL = 0;
242 csLowPL.si = numGDTEntries - 1;
243 csLowPL.rpl = 0;
244
245 //64 bit data segment
246 SegDescriptor dsLowPLDesc = initDesc;
247 dsLowPLDesc.type.codeOrData = 0;
248 dsLowPLDesc.dpl = 0;
249 uint64_t dsLowPLDescVal = dsLowPLDesc;
250 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
251 (uint8_t *)(&dsLowPLDescVal), 8);
252
253 numGDTEntries++;
254
255 SegSelector dsLowPL = 0;
256 dsLowPL.si = numGDTEntries - 1;
257 dsLowPL.rpl = 0;
258
259 //64 bit data segment
260 SegDescriptor dsDesc = initDesc;
261 dsDesc.type.codeOrData = 0;
262 dsDesc.dpl = 3;
263 uint64_t dsDescVal = dsDesc;
264 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
265 (uint8_t *)(&dsDescVal), 8);
266
267 numGDTEntries++;
268
269 SegSelector ds = 0;
270 ds.si = numGDTEntries - 1;
271 ds.rpl = 3;
272
273 //64 bit code segment
274 SegDescriptor csDesc = initDesc;
275 csDesc.type.codeOrData = 1;
276 csDesc.dpl = 3;
277 uint64_t csDescVal = csDesc;
278 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
279 (uint8_t *)(&csDescVal), 8);
280
281 numGDTEntries++;
282
283 SegSelector cs = 0;
284 cs.si = numGDTEntries - 1;
285 cs.rpl = 3;
286
287 SegSelector scall = 0;
288 scall.si = csLowPL.si;
289 scall.rpl = 0;
290
291 SegSelector sret = 0;
292 sret.si = dsLowPL.si;
293 sret.rpl = 3;
294
295 /* In long mode the TSS has been extended to 16 Bytes */
296 TSSlow TSSDescLow = 0;
297 TSSDescLow.type = 0xB;
298 TSSDescLow.dpl = 0; // Privelege level 0
299 TSSDescLow.p = 1; // Present
300 TSSDescLow.g = 1; // Page granularity
301 TSSDescLow.limitHigh = 0xF;
302 TSSDescLow.limitLow = 0xFFFF;
303 TSSDescLow.baseLow = bits(TSSVirtAddr, 23, 0);
304 TSSDescLow.baseHigh = bits(TSSVirtAddr, 31, 24);
305
306 TSShigh TSSDescHigh = 0;
307 TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);
308
309 struct TSSDesc {
310 uint64_t low;
311 uint64_t high;
312 } tssDescVal = {TSSDescLow, TSSDescHigh};
313
314 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
315 (uint8_t *)(&tssDescVal), sizeof(tssDescVal));
316
317 numGDTEntries++;
318
319 SegSelector tssSel = 0;
320 tssSel.si = numGDTEntries - 1;
321
322 uint64_t tss_base_addr = (TSSDescHigh.base << 32) |
323 (TSSDescLow.baseHigh << 24) |
324 TSSDescLow.baseLow;
325 uint64_t tss_limit = TSSDescLow.limitLow | (TSSDescLow.limitHigh << 16);
326
327 SegAttr tss_attr = 0;
328
329 tss_attr.type = TSSDescLow.type;
330 tss_attr.dpl = TSSDescLow.dpl;
331 tss_attr.present = TSSDescLow.p;
332 tss_attr.granularity = TSSDescLow.g;
333 tss_attr.unusable = 0;
334
335 for (int i = 0; i < contextIds.size(); i++) {
336 ThreadContext * tc = system->getThreadContext(contextIds[i]);
337
338 tc->setMiscReg(MISCREG_CS, cs);
339 tc->setMiscReg(MISCREG_DS, ds);
340 tc->setMiscReg(MISCREG_ES, ds);
341 tc->setMiscReg(MISCREG_FS, ds);
342 tc->setMiscReg(MISCREG_GS, ds);
343 tc->setMiscReg(MISCREG_SS, ds);
344
345 // LDT
346 tc->setMiscReg(MISCREG_TSL, 0);
347 SegAttr tslAttr = 0;
348 tslAttr.present = 1;
349 tslAttr.type = 2;
350 tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);
351
352 tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
353 tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
354
355 tc->setMiscReg(MISCREG_TR, tssSel);
356 tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
357 tc->setMiscReg(MISCREG_TR_EFF_BASE, 0);
358 tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
359 tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);
360
361 //Start using longmode segments.
362 installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
363 installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
364 installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
365 installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
366 installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
367 installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
368
369 Efer efer = 0;
370 efer.sce = 1; // Enable system call extensions.
371 efer.lme = 1; // Enable long mode.
372 efer.lma = 1; // Activate long mode.
373 efer.nxe = 0; // Enable nx support.
374 efer.svme = 1; // Enable svm support for now.
375 efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
376 tc->setMiscReg(MISCREG_EFER, efer);
377
378 //Set up the registers that describe the operating mode.
379 CR0 cr0 = 0;
380 cr0.pg = 1; // Turn on paging.
381 cr0.cd = 0; // Don't disable caching.
382 cr0.nw = 0; // This is bit is defined to be ignored.
383 cr0.am = 1; // No alignment checking
384 cr0.wp = 1; // Supervisor mode can write read only pages
385 cr0.ne = 1;
386 cr0.et = 1; // This should always be 1
387 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
388 // would be pointless.
389 cr0.em = 0; // Allow x87 instructions to execute natively.
390 cr0.mp = 1; // This doesn't really matter, but the manual suggests
391 // setting it to one.
392 cr0.pe = 1; // We're definitely in protected mode.
393 tc->setMiscReg(MISCREG_CR0, cr0);
394
395 CR0 cr2 = 0;
396 tc->setMiscReg(MISCREG_CR2, cr2);
397
398 CR3 cr3 = pageTablePhysAddr;
399 tc->setMiscReg(MISCREG_CR3, cr3);
400
401 CR4 cr4 = 0;
402 //Turn on pae.
403 cr4.osxsave = 1; // Enable XSAVE and Proc Extended States
404 cr4.osxmmexcpt = 1; // Operating System Unmasked Exception
405 cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
406 cr4.pce = 0; // Performance-Monitoring Counter Enable
407 cr4.pge = 0; // Page-Global Enable
408 cr4.mce = 0; // Machine Check Enable
409 cr4.pae = 1; // Physical-Address Extension
410 cr4.pse = 0; // Page Size Extensions
411 cr4.de = 0; // Debugging Extensions
412 cr4.tsd = 0; // Time Stamp Disable
413 cr4.pvi = 0; // Protected-Mode Virtual Interrupts
414 cr4.vme = 0; // Virtual-8086 Mode Extensions
415
416 tc->setMiscReg(MISCREG_CR4, cr4);
417
418 CR4 cr8 = 0;
419 tc->setMiscReg(MISCREG_CR8, cr8);
420
421 const Addr PageMapLevel4 = pageTablePhysAddr;
422 //Point to the page tables.
423 tc->setMiscReg(MISCREG_CR3, PageMapLevel4);
424
425 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
426
427 tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);
428
429 tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
430 tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);
431
432 tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr);
433 tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);
434
435 /* enabling syscall and sysret */
436 MiscReg star = ((MiscReg)sret << 48) | ((MiscReg)scall << 32);
437 tc->setMiscReg(MISCREG_STAR, star);
438 MiscReg lstar = (MiscReg)syscallCodeVirtAddr;
439 tc->setMiscReg(MISCREG_LSTAR, lstar);
440 MiscReg sfmask = (1 << 8) | (1 << 10); // TF | DF
441 tc->setMiscReg(MISCREG_SF_MASK, sfmask);
442 }
443
444 /* Set up the content of the TSS and write it to physical memory. */
445
446 struct {
447 uint32_t reserved0; // +00h
448 uint32_t RSP0_low; // +04h
449 uint32_t RSP0_high; // +08h
450 uint32_t RSP1_low; // +0Ch
451 uint32_t RSP1_high; // +10h
452 uint32_t RSP2_low; // +14h
453 uint32_t RSP2_high; // +18h
454 uint32_t reserved1; // +1Ch
455 uint32_t reserved2; // +20h
456 uint32_t IST1_low; // +24h
457 uint32_t IST1_high; // +28h
458 uint32_t IST2_low; // +2Ch
459 uint32_t IST2_high; // +30h
460 uint32_t IST3_low; // +34h
461 uint32_t IST3_high; // +38h
462 uint32_t IST4_low; // +3Ch
463 uint32_t IST4_high; // +40h
464 uint32_t IST5_low; // +44h
465 uint32_t IST5_high; // +48h
466 uint32_t IST6_low; // +4Ch
467 uint32_t IST6_high; // +50h
468 uint32_t IST7_low; // +54h
469 uint32_t IST7_high; // +58h
470 uint32_t reserved3; // +5Ch
471 uint32_t reserved4; // +60h
472 uint16_t reserved5; // +64h
473 uint16_t IO_MapBase; // +66h
474 } tss;
475
476 /** setting Interrupt Stack Table */
477 uint64_t IST_start = ISTVirtAddr + PageBytes;
478 tss.IST1_low = IST_start;
479 tss.IST1_high = IST_start >> 32;
480 tss.RSP0_low = tss.IST1_low;
481 tss.RSP0_high = tss.IST1_high;
482 tss.RSP1_low = tss.IST1_low;
483 tss.RSP1_high = tss.IST1_high;
484 tss.RSP2_low = tss.IST1_low;
485 tss.RSP2_high = tss.IST1_high;
486 physProxy.writeBlob(TSSPhysAddr, (uint8_t *)(&tss), sizeof(tss));
487
488 /* Setting IDT gates */
489 GateDescriptorLow PFGateLow = 0;
490 PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
491 PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
492 PFGateLow.selector = csLowPL;
493 PFGateLow.p = 1;
494 PFGateLow.dpl = 0;
495 PFGateLow.type = 0xe; // gate interrupt type
496 PFGateLow.IST = 0; // setting IST to 0 and using RSP0
497
498 GateDescriptorHigh PFGateHigh = 0;
499 PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);
500
501 struct {
502 uint64_t low;
503 uint64_t high;
504 } PFGate = {PFGateLow, PFGateHigh};
505
506 physProxy.writeBlob(IDTPhysAddr + 0xE0,
507 (uint8_t *)(&PFGate), sizeof(PFGate));
508
509 /* System call handler */
510 uint8_t syscallBlob[] = {
511 // mov %rax, (0xffffc90000005600)
512 0x48, 0xa3, 0x00, 0x60, 0x00,
513 0x00, 0x00, 0xc9, 0xff, 0xff,
514 // sysret
515 0x48, 0x0f, 0x07
516 };
517
518 physProxy.writeBlob(syscallCodePhysAddr,
519 syscallBlob, sizeof(syscallBlob));
520
521 /** Page fault handler */
522 uint8_t faultBlob[] = {
523 // mov %rax, (0xffffc90000005700)
524 0x48, 0xa3, 0x00, 0x61, 0x00,
525 0x00, 0x00, 0xc9, 0xff, 0xff,
526 // add $0x8, %rsp # skip error
527 0x48, 0x83, 0xc4, 0x08,
528 // iretq
529 0x48, 0xcf
530 };
531
532 physProxy.writeBlob(PFHandlerPhysAddr, faultBlob, sizeof(faultBlob));
533
534 MultiLevelPageTable<PageTableOps> *pt =
535 dynamic_cast<MultiLevelPageTable<PageTableOps> *>(pTable);
536
537 /* Syscall handler */
538 pt->map(syscallCodeVirtAddr, syscallCodePhysAddr, PageBytes, false);
539 /* GDT */
540 pt->map(GDTVirtAddr, GDTPhysAddr, PageBytes, false);
541 /* IDT */
542 pt->map(IDTVirtAddr, IDTPhysAddr, PageBytes, false);
543 /* TSS */
544 pt->map(TSSVirtAddr, TSSPhysAddr, PageBytes, false);
545 /* IST */
546 pt->map(ISTVirtAddr, ISTPhysAddr, PageBytes, false);
547 /* PF handler */
548 pt->map(PFHandlerVirtAddr, PFHandlerPhysAddr, PageBytes, false);
549 /* MMIO region for m5ops */
550 pt->map(MMIORegionVirtAddr, MMIORegionPhysAddr, 16*PageBytes, false);
551 } else {
552 for (int i = 0; i < contextIds.size(); i++) {
553 ThreadContext * tc = system->getThreadContext(contextIds[i]);
554
555 SegAttr dataAttr = 0;
556 dataAttr.dpl = 3;
557 dataAttr.unusable = 0;
558 dataAttr.defaultSize = 1;
559 dataAttr.longMode = 1;
560 dataAttr.avl = 0;
561 dataAttr.granularity = 1;
562 dataAttr.present = 1;
563 dataAttr.type = 3;
564 dataAttr.writable = 1;
565 dataAttr.readable = 1;
566 dataAttr.expandDown = 0;
567 dataAttr.system = 1;
568
569 // Initialize the segment registers.
570 for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
571 tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
572 tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
573 tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
574 }
575
576 SegAttr csAttr = 0;
577 csAttr.dpl = 3;
578 csAttr.unusable = 0;
579 csAttr.defaultSize = 0;
580 csAttr.longMode = 1;
581 csAttr.avl = 0;
582 csAttr.granularity = 1;
583 csAttr.present = 1;
584 csAttr.type = 10;
585 csAttr.writable = 0;
586 csAttr.readable = 1;
587 csAttr.expandDown = 0;
588 csAttr.system = 1;
589
590 tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
591
592 Efer efer = 0;
593 efer.sce = 1; // Enable system call extensions.
594 efer.lme = 1; // Enable long mode.
595 efer.lma = 1; // Activate long mode.
596 efer.nxe = 1; // Enable nx support.
597 efer.svme = 0; // Disable svm support for now. It isn't implemented.
598 efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
599 tc->setMiscReg(MISCREG_EFER, efer);
600
601 // Set up the registers that describe the operating mode.
602 CR0 cr0 = 0;
603 cr0.pg = 1; // Turn on paging.
604 cr0.cd = 0; // Don't disable caching.
605 cr0.nw = 0; // This is bit is defined to be ignored.
606 cr0.am = 0; // No alignment checking
607 cr0.wp = 0; // Supervisor mode can write read only pages
608 cr0.ne = 1;
609 cr0.et = 1; // This should always be 1
610 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
611 // would be pointless.
612 cr0.em = 0; // Allow x87 instructions to execute natively.
613 cr0.mp = 1; // This doesn't really matter, but the manual suggests
614 // setting it to one.
615 cr0.pe = 1; // We're definitely in protected mode.
616 tc->setMiscReg(MISCREG_CR0, cr0);
617
618 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
619 }
620 }
621 }
622
623 void
624 I386Process::initState()
625 {
626 X86Process::initState();
627
628 argsInit(PageBytes);
629
630 /*
631 * Set up a GDT for this process. The whole GDT wouldn't really be for
632 * this process, but the only parts we care about are.
633 */
634 allocateMem(_gdtStart, _gdtSize);
635 uint64_t zero = 0;
636 assert(_gdtSize % sizeof(zero) == 0);
637 for (Addr gdtCurrent = _gdtStart;
638 gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
639 initVirtMem.write(gdtCurrent, zero);
640 }
641
642 // Set up the vsyscall page for this process.
643 allocateMem(vsyscallPage.base, vsyscallPage.size);
644 uint8_t vsyscallBlob[] = {
645 0x51, // push %ecx
646 0x52, // push %edp
647 0x55, // push %ebp
648 0x89, 0xe5, // mov %esp, %ebp
649 0x0f, 0x34 // sysenter
650 };
651 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
652 vsyscallBlob, sizeof(vsyscallBlob));
653
654 uint8_t vsysexitBlob[] = {
655 0x5d, // pop %ebp
656 0x5a, // pop %edx
657 0x59, // pop %ecx
658 0xc3 // ret
659 };
660 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
661 vsysexitBlob, sizeof(vsysexitBlob));
662
663 for (int i = 0; i < contextIds.size(); i++) {
664 ThreadContext * tc = system->getThreadContext(contextIds[i]);
665
666 SegAttr dataAttr = 0;
667 dataAttr.dpl = 3;
668 dataAttr.unusable = 0;
669 dataAttr.defaultSize = 1;
670 dataAttr.longMode = 0;
671 dataAttr.avl = 0;
672 dataAttr.granularity = 1;
673 dataAttr.present = 1;
674 dataAttr.type = 3;
675 dataAttr.writable = 1;
676 dataAttr.readable = 1;
677 dataAttr.expandDown = 0;
678 dataAttr.system = 1;
679
680 // Initialize the segment registers.
681 for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
682 tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
683 tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
684 tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
685 tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
686 tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
687 }
688
689 SegAttr csAttr = 0;
690 csAttr.dpl = 3;
691 csAttr.unusable = 0;
692 csAttr.defaultSize = 1;
693 csAttr.longMode = 0;
694 csAttr.avl = 0;
695 csAttr.granularity = 1;
696 csAttr.present = 1;
697 csAttr.type = 0xa;
698 csAttr.writable = 0;
699 csAttr.readable = 1;
700 csAttr.expandDown = 0;
701 csAttr.system = 1;
702
703 tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
704
705 tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
706 tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
707 tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
708
709 // Set the LDT selector to 0 to deactivate it.
710 tc->setMiscRegNoEffect(MISCREG_TSL, 0);
711
712 Efer efer = 0;
713 efer.sce = 1; // Enable system call extensions.
714 efer.lme = 1; // Enable long mode.
715 efer.lma = 0; // Deactivate long mode.
716 efer.nxe = 1; // Enable nx support.
717 efer.svme = 0; // Disable svm support for now. It isn't implemented.
718 efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
719 tc->setMiscReg(MISCREG_EFER, efer);
720
721 // Set up the registers that describe the operating mode.
722 CR0 cr0 = 0;
723 cr0.pg = 1; // Turn on paging.
724 cr0.cd = 0; // Don't disable caching.
725 cr0.nw = 0; // This is bit is defined to be ignored.
726 cr0.am = 0; // No alignment checking
727 cr0.wp = 0; // Supervisor mode can write read only pages
728 cr0.ne = 1;
729 cr0.et = 1; // This should always be 1
730 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
731 // would be pointless.
732 cr0.em = 0; // Allow x87 instructions to execute natively.
733 cr0.mp = 1; // This doesn't really matter, but the manual suggests
734 // setting it to one.
735 cr0.pe = 1; // We're definitely in protected mode.
736 tc->setMiscReg(MISCREG_CR0, cr0);
737
738 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
739 }
740 }
741
742 template<class IntType>
743 void
744 X86Process::argsInit(int pageSize,
745 std::vector<AuxVector<IntType> > extraAuxvs)
746 {
747 int intSize = sizeof(IntType);
748
749 typedef AuxVector<IntType> auxv_t;
750 std::vector<auxv_t> auxv = extraAuxvs;
751
752 string filename;
753 if (argv.size() < 1)
754 filename = "";
755 else
756 filename = argv[0];
757
758 // We want 16 byte alignment
759 uint64_t align = 16;
760
761 // Patch the ld_bias for dynamic executables.
762 updateBias();
763
764 // load object file into target memory
765 objFile->loadSections(initVirtMem);
766
767 enum X86CpuFeature {
768 X86_OnboardFPU = 1 << 0,
769 X86_VirtualModeExtensions = 1 << 1,
770 X86_DebuggingExtensions = 1 << 2,
771 X86_PageSizeExtensions = 1 << 3,
772
773 X86_TimeStampCounter = 1 << 4,
774 X86_ModelSpecificRegisters = 1 << 5,
775 X86_PhysicalAddressExtensions = 1 << 6,
776 X86_MachineCheckExtensions = 1 << 7,
777
778 X86_CMPXCHG8Instruction = 1 << 8,
779 X86_OnboardAPIC = 1 << 9,
780 X86_SYSENTER_SYSEXIT = 1 << 11,
781
782 X86_MemoryTypeRangeRegisters = 1 << 12,
783 X86_PageGlobalEnable = 1 << 13,
784 X86_MachineCheckArchitecture = 1 << 14,
785 X86_CMOVInstruction = 1 << 15,
786
787 X86_PageAttributeTable = 1 << 16,
788 X86_36BitPSEs = 1 << 17,
789 X86_ProcessorSerialNumber = 1 << 18,
790 X86_CLFLUSHInstruction = 1 << 19,
791
792 X86_DebugTraceStore = 1 << 21,
793 X86_ACPIViaMSR = 1 << 22,
794 X86_MultimediaExtensions = 1 << 23,
795
796 X86_FXSAVE_FXRSTOR = 1 << 24,
797 X86_StreamingSIMDExtensions = 1 << 25,
798 X86_StreamingSIMDExtensions2 = 1 << 26,
799 X86_CPUSelfSnoop = 1 << 27,
800
801 X86_HyperThreading = 1 << 28,
802 X86_AutomaticClockControl = 1 << 29,
803 X86_IA64Processor = 1 << 30
804 };
805
806 // Setup the auxiliary vectors. These will already have endian
807 // conversion. Auxiliary vectors are loaded only for elf formatted
808 // executables; the auxv is responsible for passing information from
809 // the OS to the interpreter.
810 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
811 if (elfObject) {
812 uint64_t features =
813 X86_OnboardFPU |
814 X86_VirtualModeExtensions |
815 X86_DebuggingExtensions |
816 X86_PageSizeExtensions |
817 X86_TimeStampCounter |
818 X86_ModelSpecificRegisters |
819 X86_PhysicalAddressExtensions |
820 X86_MachineCheckExtensions |
821 X86_CMPXCHG8Instruction |
822 X86_OnboardAPIC |
823 X86_SYSENTER_SYSEXIT |
824 X86_MemoryTypeRangeRegisters |
825 X86_PageGlobalEnable |
826 X86_MachineCheckArchitecture |
827 X86_CMOVInstruction |
828 X86_PageAttributeTable |
829 X86_36BitPSEs |
830 // X86_ProcessorSerialNumber |
831 X86_CLFLUSHInstruction |
832 // X86_DebugTraceStore |
833 // X86_ACPIViaMSR |
834 X86_MultimediaExtensions |
835 X86_FXSAVE_FXRSTOR |
836 X86_StreamingSIMDExtensions |
837 X86_StreamingSIMDExtensions2 |
838 // X86_CPUSelfSnoop |
839 // X86_HyperThreading |
840 // X86_AutomaticClockControl |
841 // X86_IA64Processor |
842 0;
843
844 // Bits which describe the system hardware capabilities
845 // XXX Figure out what these should be
846 auxv.push_back(auxv_t(M5_AT_HWCAP, features));
847 // The system page size
848 auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::PageBytes));
849 // Frequency at which times() increments
850 // Defined to be 100 in the kernel source.
851 auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
852 // This is the virtual address of the program header tables if they
853 // appear in the executable image.
854 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
855 // This is the size of a program header entry from the elf file.
856 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
857 // This is the number of program headers from the original elf file.
858 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
859 // This is the base address of the ELF interpreter; it should be
860 // zero for static executables or contain the base address for
861 // dynamic executables.
862 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
863 // XXX Figure out what this should be.
864 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
865 // The entry point to the program
866 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
867 // Different user and group IDs
868 auxv.push_back(auxv_t(M5_AT_UID, uid()));
869 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
870 auxv.push_back(auxv_t(M5_AT_GID, gid()));
871 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
872 // Whether to enable "secure mode" in the executable
873 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
874 // The address of 16 "random" bytes.
875 auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
876 // The name of the program
877 auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
878 // The platform string
879 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
880 }
881
882 // Figure out how big the initial stack needs to be
883
884 // A sentry NULL void pointer at the top of the stack.
885 int sentry_size = intSize;
886
887 // This is the name of the file which is present on the initial stack
888 // It's purpose is to let the user space linker examine the original file.
889 int file_name_size = filename.size() + 1;
890
891 const int numRandomBytes = 16;
892 int aux_data_size = numRandomBytes;
893
894 string platform = "x86_64";
895 aux_data_size += platform.size() + 1;
896
897 int env_data_size = 0;
898 for (int i = 0; i < envp.size(); ++i)
899 env_data_size += envp[i].size() + 1;
900 int arg_data_size = 0;
901 for (int i = 0; i < argv.size(); ++i)
902 arg_data_size += argv[i].size() + 1;
903
904 // The info_block needs to be padded so its size is a multiple of the
905 // alignment mask. Also, it appears that there needs to be at least some
906 // padding, so if the size is already a multiple, we need to increase it
907 // anyway.
908 int base_info_block_size =
909 sentry_size + file_name_size + env_data_size + arg_data_size;
910
911 int info_block_size = roundUp(base_info_block_size, align);
912
913 int info_block_padding = info_block_size - base_info_block_size;
914
915 // Each auxiliary vector is two 8 byte words
916 int aux_array_size = intSize * 2 * (auxv.size() + 1);
917
918 int envp_array_size = intSize * (envp.size() + 1);
919 int argv_array_size = intSize * (argv.size() + 1);
920
921 int argc_size = intSize;
922
923 // Figure out the size of the contents of the actual initial frame
924 int frame_size =
925 aux_array_size +
926 envp_array_size +
927 argv_array_size +
928 argc_size;
929
930 // There needs to be padding after the auxiliary vector data so that the
931 // very bottom of the stack is aligned properly.
932 int partial_size = frame_size + aux_data_size;
933 int aligned_partial_size = roundUp(partial_size, align);
934 int aux_padding = aligned_partial_size - partial_size;
935
936 int space_needed =
937 info_block_size +
938 aux_data_size +
939 aux_padding +
940 frame_size;
941
942 Addr stack_base = memState->getStackBase();
943
944 Addr stack_min = stack_base - space_needed;
945 stack_min = roundDown(stack_min, align);
946
947 unsigned stack_size = stack_base - stack_min;
948 stack_size = roundUp(stack_size, pageSize);
949 memState->setStackSize(stack_size);
950
951 // map memory
952 Addr stack_end = roundDown(stack_base - stack_size, pageSize);
953
954 DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
955 allocateMem(stack_end, stack_size);
956
957 // map out initial stack contents
958 IntType sentry_base = stack_base - sentry_size;
959 IntType file_name_base = sentry_base - file_name_size;
960 IntType env_data_base = file_name_base - env_data_size;
961 IntType arg_data_base = env_data_base - arg_data_size;
962 IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
963 IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
964 IntType envp_array_base = auxv_array_base - envp_array_size;
965 IntType argv_array_base = envp_array_base - argv_array_size;
966 IntType argc_base = argv_array_base - argc_size;
967
968 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
969 DPRINTF(Stack, "0x%x - file name\n", file_name_base);
970 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
971 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
972 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
973 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
974 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
975 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
976 DPRINTF(Stack, "0x%x - argc \n", argc_base);
977 DPRINTF(Stack, "0x%x - stack min\n", stack_min);
978
979 // write contents to stack
980
981 // figure out argc
982 IntType argc = argv.size();
983 IntType guestArgc = X86ISA::htog(argc);
984
985 // Write out the sentry void *
986 IntType sentry_NULL = 0;
987 initVirtMem.writeBlob(sentry_base, (uint8_t*)&sentry_NULL, sentry_size);
988
989 // Write the file name
990 initVirtMem.writeString(file_name_base, filename.c_str());
991
992 // Fix up the aux vectors which point to data
993 assert(auxv[auxv.size() - 3].a_type == M5_AT_RANDOM);
994 auxv[auxv.size() - 3].a_val = aux_data_base;
995 assert(auxv[auxv.size() - 2].a_type == M5_AT_EXECFN);
996 auxv[auxv.size() - 2].a_val = argv_array_base;
997 assert(auxv[auxv.size() - 1].a_type == M5_AT_PLATFORM);
998 auxv[auxv.size() - 1].a_val = aux_data_base + numRandomBytes;
999
1000
1001 // Copy the aux stuff
1002 for (int x = 0; x < auxv.size(); x++) {
1003 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
1004 (uint8_t*)&(auxv[x].a_type), intSize);
1005 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
1006 (uint8_t*)&(auxv[x].a_val), intSize);
1007 }
1008 // Write out the terminating zeroed auxiliary vector
1009 const uint64_t zero = 0;
1010 initVirtMem.writeBlob(auxv_array_base + auxv.size() * 2 * intSize,
1011 (uint8_t*)&zero, intSize);
1012 initVirtMem.writeBlob(auxv_array_base + (auxv.size() * 2 + 1) * intSize,
1013 (uint8_t*)&zero, intSize);
1014
1015 initVirtMem.writeString(aux_data_base, platform.c_str());
1016
1017 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
1018 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
1019
1020 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
1021
1022 ThreadContext *tc = system->getThreadContext(contextIds[0]);
1023 // Set the stack pointer register
1024 tc->setIntReg(StackPointerReg, stack_min);
1025
1026 // There doesn't need to be any segment base added in since we're dealing
1027 // with the flat segmentation model.
1028 tc->pcState(getStartPC());
1029
1030 // Align the "stack_min" to a page boundary.
1031 memState->setStackMin(roundDown(stack_min, pageSize));
1032 }
1033
1034 void
1035 X86_64Process::argsInit(int pageSize)
1036 {
1037 std::vector<AuxVector<uint64_t> > extraAuxvs;
1038 extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
1039 vsyscallPage.base));
1040 X86Process::argsInit<uint64_t>(pageSize, extraAuxvs);
1041 }
1042
1043 void
1044 I386Process::argsInit(int pageSize)
1045 {
1046 std::vector<AuxVector<uint32_t> > extraAuxvs;
1047 //Tell the binary where the vsyscall part of the vsyscall page is.
1048 extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
1049 vsyscallPage.base + vsyscallPage.vsyscallOffset));
1050 extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
1051 vsyscallPage.base));
1052 X86Process::argsInit<uint32_t>(pageSize, extraAuxvs);
1053 }
1054
1055 void
1056 X86Process::setSyscallReturn(ThreadContext *tc, SyscallReturn retval)
1057 {
1058 tc->setIntReg(INTREG_RAX, retval.encodedValue());
1059 }
1060
1061 X86ISA::IntReg
1062 X86_64Process::getSyscallArg(ThreadContext *tc, int &i)
1063 {
1064 assert(i < NumArgumentRegs);
1065 return tc->readIntReg(ArgumentReg[i++]);
1066 }
1067
1068 void
1069 X86_64Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1070 {
1071 assert(i < NumArgumentRegs);
1072 return tc->setIntReg(ArgumentReg[i], val);
1073 }
1074
1075 void
1076 X86_64Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1077 Process *p, TheISA::IntReg flags)
1078 {
1079 X86Process::clone(old_tc, new_tc, p, flags);
1080 ((X86_64Process*)p)->vsyscallPage = vsyscallPage;
1081 }
1082
1083 X86ISA::IntReg
1084 I386Process::getSyscallArg(ThreadContext *tc, int &i)
1085 {
1086 assert(i < NumArgumentRegs32);
1087 return tc->readIntReg(ArgumentReg32[i++]);
1088 }
1089
1090 X86ISA::IntReg
1091 I386Process::getSyscallArg(ThreadContext *tc, int &i, int width)
1092 {
1093 assert(width == 32 || width == 64);
1094 assert(i < NumArgumentRegs);
1095 uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
1096 if (width == 64)
1097 retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
1098 return retVal;
1099 }
1100
1101 void
1102 I386Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1103 {
1104 assert(i < NumArgumentRegs);
1105 return tc->setIntReg(ArgumentReg[i], val);
1106 }
1107
1108 void
1109 I386Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
1110 Process *p, TheISA::IntReg flags)
1111 {
1112 X86Process::clone(old_tc, new_tc, p, flags);
1113 ((I386Process*)p)->vsyscallPage = vsyscallPage;
1114 }