d9f58d21d71257e25d481defbade9aa3706bb458
[gem5.git] / src / mem / request.hh
1 /*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 * Steve Reinhardt
43 * Ali Saidi
44 */
45
46 /**
47 * @file
48 * Declaration of a request, the overall memory request consisting of
49 the parts of the request that are persistent throughout the transaction.
50 */
51
52 #ifndef __MEM_REQUEST_HH__
53 #define __MEM_REQUEST_HH__
54
55 #include <cassert>
56 #include <climits>
57
58 #include "base/flags.hh"
59 #include "base/misc.hh"
60 #include "base/types.hh"
61 #include "cpu/inst_seq.hh"
62 #include "sim/core.hh"
63
64 /**
65 * Special TaskIds that are used for per-context-switch stats dumps
66 * and Cache Occupancy. Having too many tasks seems to be a problem
67 * with vector stats. 1024 seems to be a reasonable number that
68 * doesn't cause a problem with stats and is large enough to realistic
69 * benchmarks (Linux/Android boot, BBench, etc.)
70 */
71
72 namespace ContextSwitchTaskId {
73 enum TaskId {
74 MaxNormalTaskId = 1021, /* Maximum number of normal tasks */
75 Prefetcher = 1022, /* For cache lines brought in by prefetcher */
76 DMA = 1023, /* Mostly Table Walker */
77 Unknown = 1024,
78 NumTaskId
79 };
80 }
81
82 class Request;
83
84 typedef Request* RequestPtr;
85 typedef uint16_t MasterID;
86
87 class Request
88 {
89 public:
90 typedef uint32_t FlagsType;
91 typedef uint8_t ArchFlagsType;
92 typedef ::Flags<FlagsType> Flags;
93
94 enum : FlagsType {
95 /**
96 * Architecture specific flags.
97 *
98 * These bits int the flag field are reserved for
99 * architecture-specific code. For example, SPARC uses them to
100 * represent ASIs.
101 */
102 ARCH_BITS = 0x000000FF,
103 /** The request was an instruction fetch. */
104 INST_FETCH = 0x00000100,
105 /** The virtual address is also the physical address. */
106 PHYSICAL = 0x00000200,
107 /**
108 * The request is to an uncacheable address.
109 *
110 * @note Uncacheable accesses may be reordered by CPU models. The
111 * STRICT_ORDER flag should be set if such reordering is
112 * undesirable.
113 */
114 UNCACHEABLE = 0x00000400,
115 /**
116 * The request is required to be strictly ordered by <i>CPU
117 * models</i> and is non-speculative.
118 *
119 * A strictly ordered request is guaranteed to never be
120 * re-ordered or executed speculatively by a CPU model. The
121 * memory system may still reorder requests in caches unless
122 * the UNCACHEABLE flag is set as well.
123 */
124 STRICT_ORDER = 0x00000800,
125 /** This request is to a memory mapped register. */
126 MMAPPED_IPR = 0x00002000,
127 /** This request is made in privileged mode. */
128 PRIVILEGED = 0x00008000,
129
130 /**
131 * This is a write that is targeted and zeroing an entire
132 * cache block. There is no need for a read/modify/write
133 */
134 CACHE_BLOCK_ZERO = 0x00010000,
135
136 /** The request should not cause a memory access. */
137 NO_ACCESS = 0x00080000,
138 /**
139 * This request will lock or unlock the accessed memory. When
140 * used with a load, the access locks the particular chunk of
141 * memory. When used with a store, it unlocks. The rule is
142 * that locked accesses have to be made up of a locked load,
143 * some operation on the data, and then a locked store.
144 */
145 LOCKED_RMW = 0x00100000,
146 /** The request is a Load locked/store conditional. */
147 LLSC = 0x00200000,
148 /** This request is for a memory swap. */
149 MEM_SWAP = 0x00400000,
150 MEM_SWAP_COND = 0x00800000,
151
152 /** The request is a prefetch. */
153 PREFETCH = 0x01000000,
154 /** The request should be prefetched into the exclusive state. */
155 PF_EXCLUSIVE = 0x02000000,
156 /** The request should be marked as LRU. */
157 EVICT_NEXT = 0x04000000,
158 /** The request should be marked with ACQUIRE. */
159 ACQUIRE = 0x00020000,
160 /** The request should be marked with RELEASE. */
161 RELEASE = 0x00040000,
162
163 /** The request is an atomic that returns data. */
164 ATOMIC_RETURN_OP = 0x40000000,
165 /** The request is an atomic that does not return data. */
166 ATOMIC_NO_RETURN_OP = 0x80000000,
167
168 /** The request should be marked with KERNEL.
169 * Used to indicate the synchronization associated with a GPU kernel
170 * launch or completion.
171 */
172 KERNEL = 0x00001000,
173
174 /**
175 * The request should be handled by the generic IPR code (only
176 * valid together with MMAPPED_IPR)
177 */
178 GENERIC_IPR = 0x08000000,
179
180 /** The request targets the secure memory space. */
181 SECURE = 0x10000000,
182 /** The request is a page table walk */
183 PT_WALK = 0x20000000,
184
185 /**
186 * These flags are *not* cleared when a Request object is
187 * reused (assigned a new address).
188 */
189 STICKY_FLAGS = INST_FETCH
190 };
191
192 /** Master Ids that are statically allocated
193 * @{*/
194 enum : MasterID {
195 /** This master id is used for writeback requests by the caches */
196 wbMasterId = 0,
197 /**
198 * This master id is used for functional requests that
199 * don't come from a particular device
200 */
201 funcMasterId = 1,
202 /** This master id is used for message signaled interrupts */
203 intMasterId = 2,
204 /**
205 * Invalid master id for assertion checking only. It is
206 * invalid behavior to ever send this id as part of a request.
207 */
208 invldMasterId = std::numeric_limits<MasterID>::max()
209 };
210 /** @} */
211
212 typedef uint32_t MemSpaceConfigFlagsType;
213 typedef ::Flags<MemSpaceConfigFlagsType> MemSpaceConfigFlags;
214
215 enum : MemSpaceConfigFlagsType {
216 /** Has a synchronization scope been set? */
217 SCOPE_VALID = 0x00000001,
218 /** Access has Wavefront scope visibility */
219 WAVEFRONT_SCOPE = 0x00000002,
220 /** Access has Workgroup scope visibility */
221 WORKGROUP_SCOPE = 0x00000004,
222 /** Access has Device (e.g., GPU) scope visibility */
223 DEVICE_SCOPE = 0x00000008,
224 /** Access has System (e.g., CPU + GPU) scope visibility */
225 SYSTEM_SCOPE = 0x00000010,
226
227 /** Global Segment */
228 GLOBAL_SEGMENT = 0x00000020,
229 /** Group Segment */
230 GROUP_SEGMENT = 0x00000040,
231 /** Private Segment */
232 PRIVATE_SEGMENT = 0x00000080,
233 /** Kergarg Segment */
234 KERNARG_SEGMENT = 0x00000100,
235 /** Readonly Segment */
236 READONLY_SEGMENT = 0x00000200,
237 /** Spill Segment */
238 SPILL_SEGMENT = 0x00000400,
239 /** Arg Segment */
240 ARG_SEGMENT = 0x00000800,
241 };
242
243 private:
244 typedef uint8_t PrivateFlagsType;
245 typedef ::Flags<PrivateFlagsType> PrivateFlags;
246
247 enum : PrivateFlagsType {
248 /** Whether or not the size is valid. */
249 VALID_SIZE = 0x00000001,
250 /** Whether or not paddr is valid (has been written yet). */
251 VALID_PADDR = 0x00000002,
252 /** Whether or not the vaddr & asid are valid. */
253 VALID_VADDR = 0x00000004,
254 /** Whether or not the instruction sequence number is valid. */
255 VALID_INST_SEQ_NUM = 0x00000008,
256 /** Whether or not the pc is valid. */
257 VALID_PC = 0x00000010,
258 /** Whether or not the context ID is valid. */
259 VALID_CONTEXT_ID = 0x00000020,
260 /** Whether or not the sc result is valid. */
261 VALID_EXTRA_DATA = 0x00000080,
262 /**
263 * These flags are *not* cleared when a Request object is reused
264 * (assigned a new address).
265 */
266 STICKY_PRIVATE_FLAGS = VALID_CONTEXT_ID
267 };
268
269 private:
270
271 /**
272 * Set up a physical (e.g. device) request in a previously
273 * allocated Request object.
274 */
275 void
276 setPhys(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time)
277 {
278 _paddr = paddr;
279 _size = size;
280 _time = time;
281 _masterId = mid;
282 _flags.clear(~STICKY_FLAGS);
283 _flags.set(flags);
284 privateFlags.clear(~STICKY_PRIVATE_FLAGS);
285 privateFlags.set(VALID_PADDR|VALID_SIZE);
286 depth = 0;
287 accessDelta = 0;
288 //translateDelta = 0;
289 }
290
291 /**
292 * The physical address of the request. Valid only if validPaddr
293 * is set.
294 */
295 Addr _paddr;
296
297 /**
298 * The size of the request. This field must be set when vaddr or
299 * paddr is written via setVirt() or setPhys(), so it is always
300 * valid as long as one of the address fields is valid.
301 */
302 unsigned _size;
303
304 /** The requestor ID which is unique in the system for all ports
305 * that are capable of issuing a transaction
306 */
307 MasterID _masterId;
308
309 /** Flag structure for the request. */
310 Flags _flags;
311
312 /** Memory space configuraiton flag structure for the request. */
313 MemSpaceConfigFlags _memSpaceConfigFlags;
314
315 /** Private flags for field validity checking. */
316 PrivateFlags privateFlags;
317
318 /**
319 * The time this request was started. Used to calculate
320 * latencies. This field is set to curTick() any time paddr or vaddr
321 * is written.
322 */
323 Tick _time;
324
325 /**
326 * The task id associated with this request
327 */
328 uint32_t _taskId;
329
330 /** The address space ID. */
331 int _asid;
332
333 /** The virtual address of the request. */
334 Addr _vaddr;
335
336 /**
337 * Extra data for the request, such as the return value of
338 * store conditional or the compare value for a CAS. */
339 uint64_t _extraData;
340
341 /** The context ID (for statistics, locks, and wakeups). */
342 ContextID _contextId;
343
344 /** program counter of initiating access; for tracing/debugging */
345 Addr _pc;
346
347 /** Sequence number of the instruction that creates the request */
348 InstSeqNum _reqInstSeqNum;
349
350 /** A pointer to an atomic operation */
351 AtomicOpFunctor *atomicOpFunctor;
352
353 public:
354
355 /**
356 * Minimal constructor. No fields are initialized. (Note that
357 * _flags and privateFlags are cleared by Flags default
358 * constructor.)
359 */
360 Request()
361 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
362 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
363 _extraData(0), _contextId(0), _pc(0),
364 _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
365 accessDelta(0), depth(0)
366 {}
367
368 Request(Addr paddr, unsigned size, Flags flags, MasterID mid,
369 InstSeqNum seq_num, ContextID cid)
370 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
371 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
372 _extraData(0), _contextId(0), _pc(0),
373 _reqInstSeqNum(seq_num), atomicOpFunctor(nullptr), translateDelta(0),
374 accessDelta(0), depth(0)
375 {
376 setPhys(paddr, size, flags, mid, curTick());
377 setContext(cid);
378 privateFlags.set(VALID_INST_SEQ_NUM);
379 }
380
381 /**
382 * Constructor for physical (e.g. device) requests. Initializes
383 * just physical address, size, flags, and timestamp (to curTick()).
384 * These fields are adequate to perform a request.
385 */
386 Request(Addr paddr, unsigned size, Flags flags, MasterID mid)
387 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
388 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
389 _extraData(0), _contextId(0), _pc(0),
390 _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
391 accessDelta(0), depth(0)
392 {
393 setPhys(paddr, size, flags, mid, curTick());
394 }
395
396 Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time)
397 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
398 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
399 _extraData(0), _contextId(0), _pc(0),
400 _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
401 accessDelta(0), depth(0)
402 {
403 setPhys(paddr, size, flags, mid, time);
404 }
405
406 Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time,
407 Addr pc)
408 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
409 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
410 _extraData(0), _contextId(0), _pc(pc),
411 _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
412 accessDelta(0), depth(0)
413 {
414 setPhys(paddr, size, flags, mid, time);
415 privateFlags.set(VALID_PC);
416 }
417
418 Request(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
419 Addr pc, ContextID cid)
420 : _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
421 _taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
422 _extraData(0), _contextId(0), _pc(0),
423 _reqInstSeqNum(0), atomicOpFunctor(nullptr), translateDelta(0),
424 accessDelta(0), depth(0)
425 {
426 setVirt(asid, vaddr, size, flags, mid, pc);
427 setContext(cid);
428 }
429
430 Request(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
431 Addr pc, ContextID cid, AtomicOpFunctor *atomic_op)
432 : atomicOpFunctor(atomic_op)
433 {
434 setVirt(asid, vaddr, size, flags, mid, pc);
435 setContext(cid);
436 }
437
438 ~Request()
439 {
440 if (hasAtomicOpFunctor()) {
441 delete atomicOpFunctor;
442 }
443 }
444
445 /**
446 * Set up Context numbers.
447 */
448 void
449 setContext(ContextID context_id)
450 {
451 _contextId = context_id;
452 privateFlags.set(VALID_CONTEXT_ID);
453 }
454
455 /**
456 * Set up a virtual (e.g., CPU) request in a previously
457 * allocated Request object.
458 */
459 void
460 setVirt(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
461 Addr pc)
462 {
463 _asid = asid;
464 _vaddr = vaddr;
465 _size = size;
466 _masterId = mid;
467 _pc = pc;
468 _time = curTick();
469
470 _flags.clear(~STICKY_FLAGS);
471 _flags.set(flags);
472 privateFlags.clear(~STICKY_PRIVATE_FLAGS);
473 privateFlags.set(VALID_VADDR|VALID_SIZE|VALID_PC);
474 depth = 0;
475 accessDelta = 0;
476 translateDelta = 0;
477 }
478
479 /**
480 * Set just the physical address. This usually used to record the
481 * result of a translation. However, when using virtualized CPUs
482 * setPhys() is sometimes called to finalize a physical address
483 * without a virtual address, so we can't check if the virtual
484 * address is valid.
485 */
486 void
487 setPaddr(Addr paddr)
488 {
489 _paddr = paddr;
490 privateFlags.set(VALID_PADDR);
491 }
492
493 /**
494 * Generate two requests as if this request had been split into two
495 * pieces. The original request can't have been translated already.
496 */
497 void splitOnVaddr(Addr split_addr, RequestPtr &req1, RequestPtr &req2)
498 {
499 assert(privateFlags.isSet(VALID_VADDR));
500 assert(privateFlags.noneSet(VALID_PADDR));
501 assert(split_addr > _vaddr && split_addr < _vaddr + _size);
502 req1 = new Request(*this);
503 req2 = new Request(*this);
504 req1->_size = split_addr - _vaddr;
505 req2->_vaddr = split_addr;
506 req2->_size = _size - req1->_size;
507 }
508
509 /**
510 * Accessor for paddr.
511 */
512 bool
513 hasPaddr() const
514 {
515 return privateFlags.isSet(VALID_PADDR);
516 }
517
518 Addr
519 getPaddr() const
520 {
521 assert(privateFlags.isSet(VALID_PADDR));
522 return _paddr;
523 }
524
525 /**
526 * Time for the TLB/table walker to successfully translate this request.
527 */
528 Tick translateDelta;
529
530 /**
531 * Access latency to complete this memory transaction not including
532 * translation time.
533 */
534 Tick accessDelta;
535
536 /**
537 * Level of the cache hierachy where this request was responded to
538 * (e.g. 0 = L1; 1 = L2).
539 */
540 mutable int depth;
541
542 /**
543 * Accessor for size.
544 */
545 bool
546 hasSize() const
547 {
548 return privateFlags.isSet(VALID_SIZE);
549 }
550
551 unsigned
552 getSize() const
553 {
554 assert(privateFlags.isSet(VALID_SIZE));
555 return _size;
556 }
557
558 /** Accessor for time. */
559 Tick
560 time() const
561 {
562 assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
563 return _time;
564 }
565
566 /**
567 * Accessor for atomic-op functor.
568 */
569 bool
570 hasAtomicOpFunctor()
571 {
572 return atomicOpFunctor != NULL;
573 }
574
575 AtomicOpFunctor *
576 getAtomicOpFunctor()
577 {
578 assert(atomicOpFunctor != NULL);
579 return atomicOpFunctor;
580 }
581
582 /** Accessor for flags. */
583 Flags
584 getFlags()
585 {
586 assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
587 return _flags;
588 }
589
590 /** Note that unlike other accessors, this function sets *specific
591 flags* (ORs them in); it does not assign its argument to the
592 _flags field. Thus this method should rightly be called
593 setFlags() and not just flags(). */
594 void
595 setFlags(Flags flags)
596 {
597 assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
598 _flags.set(flags);
599 }
600
601 void
602 setMemSpaceConfigFlags(MemSpaceConfigFlags extraFlags)
603 {
604 assert(privateFlags.isSet(VALID_PADDR | VALID_VADDR));
605 _memSpaceConfigFlags.set(extraFlags);
606 }
607
608 /** Accessor function for vaddr.*/
609 bool
610 hasVaddr() const
611 {
612 return privateFlags.isSet(VALID_VADDR);
613 }
614
615 Addr
616 getVaddr() const
617 {
618 assert(privateFlags.isSet(VALID_VADDR));
619 return _vaddr;
620 }
621
622 /** Accesssor for the requestor id. */
623 MasterID
624 masterId() const
625 {
626 return _masterId;
627 }
628
629 uint32_t
630 taskId() const
631 {
632 return _taskId;
633 }
634
635 void
636 taskId(uint32_t id) {
637 _taskId = id;
638 }
639
640 /** Accessor function for asid.*/
641 int
642 getAsid() const
643 {
644 assert(privateFlags.isSet(VALID_VADDR));
645 return _asid;
646 }
647
648 /** Accessor function for asid.*/
649 void
650 setAsid(int asid)
651 {
652 _asid = asid;
653 }
654
655 /** Accessor function for architecture-specific flags.*/
656 ArchFlagsType
657 getArchFlags() const
658 {
659 assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
660 return _flags & ARCH_BITS;
661 }
662
663 /** Accessor function to check if sc result is valid. */
664 bool
665 extraDataValid() const
666 {
667 return privateFlags.isSet(VALID_EXTRA_DATA);
668 }
669
670 /** Accessor function for store conditional return value.*/
671 uint64_t
672 getExtraData() const
673 {
674 assert(privateFlags.isSet(VALID_EXTRA_DATA));
675 return _extraData;
676 }
677
678 /** Accessor function for store conditional return value.*/
679 void
680 setExtraData(uint64_t extraData)
681 {
682 _extraData = extraData;
683 privateFlags.set(VALID_EXTRA_DATA);
684 }
685
686 bool
687 hasContextId() const
688 {
689 return privateFlags.isSet(VALID_CONTEXT_ID);
690 }
691
692 /** Accessor function for context ID.*/
693 ContextID
694 contextId() const
695 {
696 assert(privateFlags.isSet(VALID_CONTEXT_ID));
697 return _contextId;
698 }
699
700 void
701 setPC(Addr pc)
702 {
703 privateFlags.set(VALID_PC);
704 _pc = pc;
705 }
706
707 bool
708 hasPC() const
709 {
710 return privateFlags.isSet(VALID_PC);
711 }
712
713 /** Accessor function for pc.*/
714 Addr
715 getPC() const
716 {
717 assert(privateFlags.isSet(VALID_PC));
718 return _pc;
719 }
720
721 /**
722 * Increment/Get the depth at which this request is responded to.
723 * This currently happens when the request misses in any cache level.
724 */
725 void incAccessDepth() const { depth++; }
726 int getAccessDepth() const { return depth; }
727
728 /**
729 * Set/Get the time taken for this request to be successfully translated.
730 */
731 void setTranslateLatency() { translateDelta = curTick() - _time; }
732 Tick getTranslateLatency() const { return translateDelta; }
733
734 /**
735 * Set/Get the time taken to complete this request's access, not including
736 * the time to successfully translate the request.
737 */
738 void setAccessLatency() { accessDelta = curTick() - _time - translateDelta; }
739 Tick getAccessLatency() const { return accessDelta; }
740
741 /**
742 * Accessor for the sequence number of instruction that creates the
743 * request.
744 */
745 bool
746 hasInstSeqNum() const
747 {
748 return privateFlags.isSet(VALID_INST_SEQ_NUM);
749 }
750
751 InstSeqNum
752 getReqInstSeqNum() const
753 {
754 assert(privateFlags.isSet(VALID_INST_SEQ_NUM));
755 return _reqInstSeqNum;
756 }
757
758 void
759 setReqInstSeqNum(const InstSeqNum seq_num)
760 {
761 privateFlags.set(VALID_INST_SEQ_NUM);
762 _reqInstSeqNum = seq_num;
763 }
764
765 /** Accessor functions for flags. Note that these are for testing
766 only; setting flags should be done via setFlags(). */
767 bool isUncacheable() const { return _flags.isSet(UNCACHEABLE); }
768 bool isStrictlyOrdered() const { return _flags.isSet(STRICT_ORDER); }
769 bool isInstFetch() const { return _flags.isSet(INST_FETCH); }
770 bool isPrefetch() const { return _flags.isSet(PREFETCH); }
771 bool isLLSC() const { return _flags.isSet(LLSC); }
772 bool isPriv() const { return _flags.isSet(PRIVILEGED); }
773 bool isLockedRMW() const { return _flags.isSet(LOCKED_RMW); }
774 bool isSwap() const { return _flags.isSet(MEM_SWAP|MEM_SWAP_COND); }
775 bool isCondSwap() const { return _flags.isSet(MEM_SWAP_COND); }
776 bool isMmappedIpr() const { return _flags.isSet(MMAPPED_IPR); }
777 bool isSecure() const { return _flags.isSet(SECURE); }
778 bool isPTWalk() const { return _flags.isSet(PT_WALK); }
779 bool isAcquire() const { return _flags.isSet(ACQUIRE); }
780 bool isRelease() const { return _flags.isSet(RELEASE); }
781 bool isKernel() const { return _flags.isSet(KERNEL); }
782 bool isAtomicReturn() const { return _flags.isSet(ATOMIC_RETURN_OP); }
783 bool isAtomicNoReturn() const { return _flags.isSet(ATOMIC_NO_RETURN_OP); }
784
785 bool
786 isAtomic() const
787 {
788 return _flags.isSet(ATOMIC_RETURN_OP) ||
789 _flags.isSet(ATOMIC_NO_RETURN_OP);
790 }
791
792 /**
793 * Accessor functions for the memory space configuration flags and used by
794 * GPU ISAs such as the Heterogeneous System Architecture (HSA). Note that
795 * these are for testing only; setting extraFlags should be done via
796 * setMemSpaceConfigFlags().
797 */
798 bool isScoped() const { return _memSpaceConfigFlags.isSet(SCOPE_VALID); }
799
800 bool
801 isWavefrontScope() const
802 {
803 assert(isScoped());
804 return _memSpaceConfigFlags.isSet(WAVEFRONT_SCOPE);
805 }
806
807 bool
808 isWorkgroupScope() const
809 {
810 assert(isScoped());
811 return _memSpaceConfigFlags.isSet(WORKGROUP_SCOPE);
812 }
813
814 bool
815 isDeviceScope() const
816 {
817 assert(isScoped());
818 return _memSpaceConfigFlags.isSet(DEVICE_SCOPE);
819 }
820
821 bool
822 isSystemScope() const
823 {
824 assert(isScoped());
825 return _memSpaceConfigFlags.isSet(SYSTEM_SCOPE);
826 }
827
828 bool
829 isGlobalSegment() const
830 {
831 return _memSpaceConfigFlags.isSet(GLOBAL_SEGMENT) ||
832 (!isGroupSegment() && !isPrivateSegment() &&
833 !isKernargSegment() && !isReadonlySegment() &&
834 !isSpillSegment() && !isArgSegment());
835 }
836
837 bool
838 isGroupSegment() const
839 {
840 return _memSpaceConfigFlags.isSet(GROUP_SEGMENT);
841 }
842
843 bool
844 isPrivateSegment() const
845 {
846 return _memSpaceConfigFlags.isSet(PRIVATE_SEGMENT);
847 }
848
849 bool
850 isKernargSegment() const
851 {
852 return _memSpaceConfigFlags.isSet(KERNARG_SEGMENT);
853 }
854
855 bool
856 isReadonlySegment() const
857 {
858 return _memSpaceConfigFlags.isSet(READONLY_SEGMENT);
859 }
860
861 bool
862 isSpillSegment() const
863 {
864 return _memSpaceConfigFlags.isSet(SPILL_SEGMENT);
865 }
866
867 bool
868 isArgSegment() const
869 {
870 return _memSpaceConfigFlags.isSet(ARG_SEGMENT);
871 }
872 };
873
874 #endif // __MEM_REQUEST_HH__