d3c27fa08c5708eeafafd96d190a247176fbc432
[gem5.git] / src / sim / simulate.cc
1 /*
2 * Copyright (c) 2006 The Regents of The University of Michigan
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * Copyright (c) 2013 Mark D. Hill and David A. Wood
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met: redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer;
11 * redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution;
14 * neither the name of the copyright holders nor the names of its
15 * contributors may be used to endorse or promote products derived from
16 * this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * Authors: Nathan Binkert
31 * Steve Reinhardt
32 */
33
34 #include "sim/simulate.hh"
35
36 #include <mutex>
37 #include <thread>
38
39 #include "base/misc.hh"
40 #include "base/pollevent.hh"
41 #include "base/types.hh"
42 #include "sim/async.hh"
43 #include "sim/eventq_impl.hh"
44 #include "sim/sim_events.hh"
45 #include "sim/sim_exit.hh"
46 #include "sim/stat_control.hh"
47
48 //! Mutex for handling async events.
49 std::mutex asyncEventMutex;
50
51 //! Global barrier for synchronizing threads entering/exiting the
52 //! simulation loop.
53 Barrier *threadBarrier;
54
55 //! forward declaration
56 Event *doSimLoop(EventQueue *);
57
58 /**
59 * The main function for all subordinate threads (i.e., all threads
60 * other than the main thread). These threads start by waiting on
61 * threadBarrier. Once all threads have arrived at threadBarrier,
62 * they enter the simulation loop concurrently. When they exit the
63 * loop, they return to waiting on threadBarrier. This process is
64 * repeated until the simulation terminates.
65 */
66 static void
67 thread_loop(EventQueue *queue)
68 {
69 while (true) {
70 threadBarrier->wait();
71 doSimLoop(queue);
72 }
73 }
74
75 GlobalSimLoopExitEvent *simulate_limit_event = nullptr;
76
77 /** Simulate for num_cycles additional cycles. If num_cycles is -1
78 * (the default), do not limit simulation; some other event must
79 * terminate the loop. Exported to Python.
80 * @return The SimLoopExitEvent that caused the loop to exit.
81 */
82 GlobalSimLoopExitEvent *
83 simulate(Tick num_cycles)
84 {
85 // The first time simulate() is called from the Python code, we need to
86 // create a thread for each of event queues referenced by the
87 // instantiated sim objects.
88 static bool threads_initialized = false;
89 static std::vector<std::thread *> threads;
90
91 if (!threads_initialized) {
92 threadBarrier = new Barrier(numMainEventQueues);
93
94 // the main thread (the one we're currently running on)
95 // handles queue 0, so we only need to allocate new threads
96 // for queues 1..N-1. We'll call these the "subordinate" threads.
97 for (uint32_t i = 1; i < numMainEventQueues; i++) {
98 threads.push_back(new std::thread(thread_loop, mainEventQueue[i]));
99 }
100
101 threads_initialized = true;
102 simulate_limit_event =
103 new GlobalSimLoopExitEvent(mainEventQueue[0]->getCurTick(),
104 "simulate() limit reached", 0);
105 }
106
107 inform("Entering event queue @ %d. Starting simulation...\n", curTick());
108
109 if (num_cycles < MaxTick - curTick())
110 num_cycles = curTick() + num_cycles;
111 else // counter would roll over or be set to MaxTick anyhow
112 num_cycles = MaxTick;
113
114 simulate_limit_event->reschedule(num_cycles);
115
116 GlobalSyncEvent *quantum_event = NULL;
117 if (numMainEventQueues > 1) {
118 if (simQuantum == 0) {
119 fatal("Quantum for multi-eventq simulation not specified");
120 }
121
122 quantum_event = new GlobalSyncEvent(curTick() + simQuantum, simQuantum,
123 EventBase::Progress_Event_Pri, 0);
124
125 inParallelMode = true;
126 }
127
128 // all subordinate (created) threads should be waiting on the
129 // barrier; the arrival of the main thread here will satisfy the
130 // barrier, and all threads will enter doSimLoop in parallel
131 threadBarrier->wait();
132 Event *local_event = doSimLoop(mainEventQueue[0]);
133 assert(local_event != NULL);
134
135 inParallelMode = false;
136
137 // locate the global exit event and return it to Python
138 BaseGlobalEvent *global_event = local_event->globalEvent();
139 assert(global_event != NULL);
140
141 GlobalSimLoopExitEvent *global_exit_event =
142 dynamic_cast<GlobalSimLoopExitEvent *>(global_event);
143 assert(global_exit_event != NULL);
144
145 //! Delete the simulation quantum event.
146 if (quantum_event != NULL) {
147 quantum_event->deschedule();
148 delete quantum_event;
149 }
150
151 return global_exit_event;
152 }
153
154 /**
155 * Test and clear the global async_event flag, such that each time the
156 * flag is cleared, only one thread returns true (and thus is assigned
157 * to handle the corresponding async event(s)).
158 */
159 static bool
160 testAndClearAsyncEvent()
161 {
162 bool was_set = false;
163 asyncEventMutex.lock();
164
165 if (async_event) {
166 was_set = true;
167 async_event = false;
168 }
169
170 asyncEventMutex.unlock();
171 return was_set;
172 }
173
174 /**
175 * The main per-thread simulation loop. This loop is executed by all
176 * simulation threads (the main thread and the subordinate threads) in
177 * parallel.
178 */
179 Event *
180 doSimLoop(EventQueue *eventq)
181 {
182 // set the per thread current eventq pointer
183 curEventQueue(eventq);
184 eventq->handleAsyncInsertions();
185
186 while (1) {
187 // there should always be at least one event (the SimLoopExitEvent
188 // we just scheduled) in the queue
189 assert(!eventq->empty());
190 assert(curTick() <= eventq->nextTick() &&
191 "event scheduled in the past");
192
193 if (async_event && testAndClearAsyncEvent()) {
194 // Take the event queue lock in case any of the service
195 // routines want to schedule new events.
196 std::lock_guard<EventQueue> lock(*eventq);
197 if (async_statdump || async_statreset) {
198 Stats::schedStatEvent(async_statdump, async_statreset);
199 async_statdump = false;
200 async_statreset = false;
201 }
202
203 if (async_io) {
204 async_io = false;
205 pollQueue.service();
206 }
207
208 if (async_exit) {
209 async_exit = false;
210 exitSimLoop("user interrupt received");
211 }
212
213 if (async_exception) {
214 async_exception = false;
215 return NULL;
216 }
217 }
218
219 Event *exit_event = eventq->serviceOne();
220 if (exit_event != NULL) {
221 return exit_event;
222 }
223 }
224
225 // not reached... only exit is return on SimLoopExitEvent
226 }