(no commit message)
[libreriscv.git] / resources.mdwn
1 # Resources and Specifications
2
3 This page aims to collect all the resources and specifications we need
4 in one place for quick access. We will try our best to keep links here
5 up-to-date. Feel free to add more links here.
6
7 [[!toc ]]
8
9 # Getting Started
10
11 This section is primarily a series of useful links found online
12
13 * [FSiC2019](https://wiki.f-si.org/index.php/FSiC2019)
14 * Fundamentals to learn to get started [[3d_gpu/tutorial]]
15
16 ## Is Open Source Hardware Profitable?
17 [RaptorCS on FOSS Hardware Interview](https://www.youtube.com/watch?v=o5Ihqg72T3c&feature=youtu.be)
18
19 # OpenPOWER ISA
20
21 * [3.0 PDF](https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0)
22 * [2.07 PDF](https://openpowerfoundation.org/?resource_lib=ibm-power-isa-version-2-07-b)
23
24 ## Overview of the user ISA:
25
26 [Raymond Chen's PowerPC series](https://devblogs.microsoft.com/oldnewthing/20180806-00/?p=99425)
27
28 ## OpenPOWER OpenFSI Spec (2016)
29
30 * [OpenPOWER OpenFSI Spec](http://openpowerfoundation.org/wp-content/uploads/resources/OpenFSI-spec-100/OpenFSI-spec-20161212.pdf)
31
32 * [OpenPOWER OpenFSI Compliance Spec](http://openpowerfoundation.org/wp-content/uploads/resources/openpower-fsi-thts-1.0/openpower-fsi-thts-20180130.pdf)
33
34 # Communities
35
36 * <https://www.reddit.com/r/OpenPOWER/>
37 * <http://lists.mailinglist.openpowerfoundation.org/pipermail/openpower-hdl-cores/>
38 * <http://lists.mailinglist.openpowerfoundation.org/pipermail/openpower-community-dev/>
39
40
41 # JTAG
42
43 * [Useful JTAG implementation reference: Design Of IEEE 1149.1 TAP Controller IP Core by Shelja, Nandakumar and Muruganantham, DOI:10.5121/csit.2016.60910](https://web.archive.org/web/20201021174944/https://airccj.org/CSCP/vol6/csit65610.pdf)
44
45 Abstract
46
47 "The objective of this work is to design and implement a TAP controller IP core compatible with IEEE 1149.1-2013 revision of the standard. The test logic architecture also includes the Test Mode Persistence controller and its associated logic. This work is expected to serve as a ready to use module that can be directly inserted in to a new digital IC designs with little modifications."
48
49 # RISC-V Instruction Set Architecture
50
51 **PLEASE UPDATE** - we are no longer implementing full RISCV, only user-space
52 RISCV
53
54 The Libre RISC-V Project is building a hybrid CPU/GPU SoC. As the name
55 of the project implies, we will be following the RISC-V ISA I due to it
56 being open-source and also because of the huge software and hardware
57 ecosystem building around it. There are other open-source ISAs but none
58 of them have the same momentum and energy behind it as RISC-V.
59
60 To fully take advantage of the RISC-V ecosystem, it is important to be
61 compliant with the RISC-V standards. Doing so will allow us to to reuse
62 most software as-is and avoid major forks.
63
64 * [Official compiled PDFs of RISC-V ISA Manual]
65 (https://github.com/riscv/riscv-isa-manual/releases/latest)
66 * [Working draft of the proposed RISC-V Bitmanipulation extension](https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-draft.pdf)
67 * [RISC-V "V" Vector Extension](https://riscv.github.io/documents/riscv-v-spec/)
68 * [RISC-V Supervisor Binary Interface Specification](https://github.com/riscv/riscv-sbi-doc/blob/master/riscv-sbi.md)
69
70 Note: As far as I know, we aren't using the RISC-V V Extension directly
71 at the moment (correction: we were never going to). However, there are many wiki pages that make a reference
72 to the V extension so it would be good to include it here as a reference
73 for comparative/informative purposes with regard to Simple-V.
74 <https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#vsetvlivsetvl-instructions>
75
76 # Radix MMU
77 - [Qemu emulation](https://github.com/qemu/qemu/commit/d5fee0bbe68d5e61e2d2beb5ff6de0b9c1cfd182)
78
79 # D-Cache
80
81 ## D-Cache Possible Optimizations papers and links
82 - [ACDC: Small, Predictable and High-Performance Data Cache](https://dl.acm.org/doi/10.1145/2677093)
83
84 # BW Enhancing Shared L1 Cache Design research done in cooperation with AMD
85 - [Youtube video PACT 2020 - Analyzing and Leveraging Shared L1 Caches in GPUs](https://m.youtube.com/watch?v=CGIhOnt7F6s)
86 - [Url to PDF of paper on author's website (clicking will download the pdf)](https://adwaitjog.github.io/docs/pdf/sharedl1-pact20.pdf)
87
88
89 # RTL Arithmetic SQRT, FPU etc.
90
91 ## Wallace vs Dadda Multipliers
92
93 * [Paper comparing efficiency of Wallace and Dadda Multipliers in RTL implementations (clicking will download the pdf from archive.org)](https://web.archive.org/web/20180717013227/http://ieeemilestones.ethw.org/images/d/db/A_comparison_of_Dadda_and_Wallace_multiplier_delays.pdf)
94
95 ## Sqrt
96 * [Fast Floating Point Square Root](https://pdfs.semanticscholar.org/5060/4e9aff0e37089c4ab9a376c3f35761ffe28b.pdf)
97 * [Reciprocal Square Root Algorithm](http://www.acsel-lab.com/arithmetic/arith15/papers/ARITH15_Takagi.pdf)
98
99 ## CORDIC and related algorithms
100
101 * <https://bugs.libre-soc.org/show_bug.cgi?id=127> research into CORDIC
102 * <https://bugs.libre-soc.org/show_bug.cgi?id=208>
103 * [BKM (log(x) and e^x)](https://en.wikipedia.org/wiki/BKM_algorithm)
104 * [CORDIC](http://www.andraka.com/files/crdcsrvy.pdf)
105 - Does not have an easy way of computing tan(x)
106 * [zipcpu CORDIC](https://zipcpu.com/dsp/2017/08/30/cordic.html)
107 * [Low latency and Low error floating point TCORDIC](https://ieeexplore.ieee.org/document/7784797) (email Michael or Cole if you don't have IEEE access)
108 * <http://www.myhdl.org/docs/examples/sinecomp/> MyHDL version of CORDIC
109 * <https://dspguru.com/dsp/faqs/cordic/>
110
111 ## IEEE Standard for Floating-Point Arithmetic (IEEE 754)
112
113 Almost all modern computers follow the IEEE Floating-Point Standard. Of
114 course, we will follow it as well for interoperability.
115
116 * IEEE 754-2019: <https://standards.ieee.org/standard/754-2019.html>
117
118 Note: Even though this is such an important standard used by everyone,
119 it is unfortunately not freely available and requires a payment to
120 access. However, each of the Libre RISC-V members already have access
121 to the document.
122
123 * [Lecture notes - Floating Point Appreciation](http://pages.cs.wisc.edu/~markhill/cs354/Fall2008/notes/flpt.apprec.html)
124
125 Among other things, has a nice explanation on arithmetic, rounding modes and the sticky bit.
126
127 * [What Every Computer Scientist Should Know About Floating-Point Arithmetic](https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html)
128
129 Nice resource on rounding errors (ulps and epsilon) and the "table maker's dilemma".
130
131 ## Past FPU Mistakes to learn from
132
133 * [Intel Underestimates Error Bounds by 1.3 quintillion on
134 Random ASCII – tech blog of Bruce Dawson ](https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/)
135 * [Intel overstates FPU accuracy 06/01/2013](http://notabs.org/fpuaccuracy)
136 * How not to design an ISA
137 <https://player.vimeo.com/video/450406346>
138 Meester Forsyth <http://eelpi.gotdns.org/>
139 # Khronos Standards
140
141 The Khronos Group creates open standards for authoring and acceleration
142 of graphics, media, and computation. It is a requirement for our hybrid
143 CPU/GPU to be compliant with these standards *as well* as with IEEE754,
144 in order to be commercially-competitive in both areas: especially Vulkan
145 and OpenCL being the most important. SPIR-V is also important for the
146 Kazan driver.
147
148 Thus the [[zfpacc_proposal]] has been created which permits runtime dynamic
149 switching between different accuracy levels, in userspace applications.
150
151 [**SPIR-V Main Page Link**](https://www.khronos.org/registry/spir-v/)
152
153 * [SPIR-V 1.5 Specification Revision 1](https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html)
154 * [SPIR-V OpenCL Extended Instruction Set](https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.ExtendedInstructionSet.100.html)
155 * [SPIR-V GLSL Extended Instruction Set](https://www.khronos.org/registry/spir-v/specs/unified1/GLSL.std.450.html)
156
157 [**Vulkan Main Page Link**](https://www.khronos.org/registry/vulkan/)
158
159 * [Vulkan 1.1.122](https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/index.html)
160
161 [**OpenCL Main Page**](https://www.khronos.org/registry/OpenCL/)
162
163 * [OpenCL 2.2 API Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_API.html)
164 * [OpenCL 2.2 Extension Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_Ext.html)
165 * [OpenCL 2.2 SPIR-V Environment Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_Env.html)
166
167 * OpenCL released the proposed OpenCL 3.0 spec for comments in april 2020
168
169 * [Announcement video](https://youtu.be/h0_syTg6TtY)
170 * [Announcement video slides (PDF)](https://www.khronos.org/assets/uploads/apis/OpenCL-3.0-Launch-Apr20.pdf)
171
172 Note: We are implementing hardware accelerated Vulkan and
173 OpenCL while relying on other software projects to translate APIs to
174 Vulkan. E.g. Zink allows for OpenGL-to-Vulkan in software.
175
176 # Graphics and Compute API Stack
177
178 I found this informative post that mentions Kazan and a whole bunch of
179 other stuff. It looks like *many* APIs can be emulated on top of Vulkan,
180 although performance is not evaluated.
181
182 <https://synappsis.wordpress.com/2017/06/03/opengl-over-vulkan-dev/>
183
184 * Pixilica is heading up an initiative to create a RISC-V graphical ISA
185
186 * [Pixilica 3D Graphical ISA Slides](https://b5792ddd-543e-4dd4-9b97-fe259caf375d.filesusr.com/ugd/841f2a_c8685ced353b4c3ea20dbb993c4d4d18.pdf)
187
188 # 3D Graphics Texture compression software and hardware
189
190 * [Proprietary Rad Game Tools Oddle Texture Software Compression](https://web.archive.org/web/20200913122043/http://www.radgametools.com/oodle.htm)
191
192 * [Blog post by one of the engineers who developed the proprietary Rad Game Tools Oddle Texture Software Compression and the Oodle Kraken decompression software and hardware decoder used in the ps5 ssd](https://archive.vn/oz0pG)
193
194 # Various POWER Communities
195 - [An effort to make a 100% Libre POWER Laptop](https://www.powerpc-notebook.org/en/)
196 The T2080 is a POWER8 chip.
197 - [Power Progress Community](https://www.powerprogress.org/campaigns/donations-to-all-the-power-progress-community-projects/)
198 Supporting/Raising awareness of various POWER related open projects on the FOSS
199 community
200 - [OpenPOWER](https://openpowerfoundation.org)
201 Promotes and ensure compliance with the Power ISA amongst members.
202 - [OpenCapi](https://opencapi.org)
203 High performance interconnect for POWER machines. One of the big advantages
204 of the POWER architecture. Notably more performant than PCIE Gen4, and is
205 designed to be layered on top of the physical PCIE link.
206 - [OpenPOWER “Virtual Coffee” Calls](https://openpowerfoundation.org/openpower-virtual-coffee-calls/)
207 Truly open bi-weekly teleconference lines for anybody interested in helping
208 advance or adopting the POWER architecture.
209
210 # Conferences
211
212 ## Free Silicon Conference
213
214 The conference brought together experts and enthusiasts who want to build
215 a complete Free and Open Source CAD ecosystem for designing analog and
216 digital integrated circuits. The conference covered the full spectrum of
217 the design process, from system architecture, to layout and verification.
218
219 * <https://wiki.f-si.org/index.php/FSiC2019#Foundries.2C_PDKs_and_cell_libraries>
220
221 * LIP6's Coriolis - a set of backend design tools:
222 <https://www-soc.lip6.fr/equipe-cian/logiciels/coriolis/>
223
224 Note: The rest of LIP6's website is in French, but there is a UK flag
225 in the corner that gives the English version.
226
227 * KLayout - Layout viewer and editor: <https://www.klayout.de/>
228
229 # The OpenROAD Project
230
231 OpenROAD seeks to develop and foster an autonomous, 24-hour, open-source
232 layout generation flow (RTL-to-GDS).
233
234 * <https://theopenroadproject.org/>
235
236 # Other RISC-V GPU attempts
237
238 * <https://fossi-foundation.org/2019/09/03/gsoc-64b-pointers-in-rv32>
239
240 * <http://bjump.org/manycore/>
241
242 * <https://resharma.github.io/RISCV32-GPU/>
243
244 TODO: Get in touch and discuss collaboration
245
246 # Tests, Benchmarks, Conformance, Compliance, Verification, etc.
247
248 ## RISC-V Tests
249
250 RISC-V Foundation is in the process of creating an official conformance
251 test. It's still in development as far as I can tell.
252
253 * //TODO LINK TO RISC-V CONFORMANCE TEST
254
255 ## IEEE 754 Testing/Emulation
256
257 IEEE 754 has no official tests for floating-point but there are
258 well-known third party tools to check such as John Hauser's TestFloat.
259
260 There is also his SoftFloat library, which is a software emulation
261 library for IEEE 754.
262
263 * <http://www.jhauser.us/arithmetic/>
264
265 Jacob is also working on an IEEE 754 software emulation library written
266 in Rust which also has Python bindings:
267
268 * Source: <https://salsa.debian.org/Kazan-team/simple-soft-float>
269 * Crate: <https://crates.io/crates/simple-soft-float>
270 * Autogenerated Docs: <https://docs.rs/simple-soft-float/>
271
272 A cool paper I came across in my research is "IeeeCC754++ : An Advanced
273 Set of Tools to Check IEEE 754-2008 Conformity" by Dr. Matthias Hüsken.
274
275 * Direct link to PDF:
276 <http://elpub.bib.uni-wuppertal.de/servlets/DerivateServlet/Derivate-7505/dc1735.pdf>
277
278 ## Khronos Tests
279
280 OpenCL Conformance Tests
281
282 * <https://github.com/KhronosGroup/OpenCL-CTS>
283
284 Vulkan Conformance Tests
285
286 * <https://github.com/KhronosGroup/VK-GL-CTS>
287
288 MAJOR NOTE: We are **not** allowed to say we are compliant with any of
289 the Khronos standards until we actually make an official submission,
290 do the paperwork, and pay the relevant fees.
291
292 ## Formal Verification
293
294 Formal verification of Libre RISC-V ensures that it is bug-free in
295 regards to what we specify. Of course, it is important to do the formal
296 verification as a final step in the development process before we produce
297 thousands or millions of silicon.
298
299 * Possible way to speed up our solvers for our formal proofs <https://web.archive.org/web/20201029205507/https://github.com/eth-sri/fastsmt>
300
301 * Algorithms (papers) submitted for 2018 International SAT Competition <https://web.archive.org/web/20201029205239/https://helda.helsinki.fi/bitstream/handle/10138/237063/sc2018_proceedings.pdf> <https://web.archive.org/web/20201029205637/http://www.satcompetition.org/>
302
303 Some learning resources I found in the community:
304
305 * ZipCPU: <http://zipcpu.com/> ZipCPU provides a comprehensive
306 tutorial for beginners and many exercises/quizzes/slides:
307 <http://zipcpu.com/tutorial/>
308 * Western Digital's SweRV CPU blog (I recommend looking at all their
309 posts): <https://tomverbeure.github.io/>
310 * <https://tomverbeure.github.io/risc-v/2018/11/19/A-Bug-Free-RISC-V-Core-without-Simulation.html>
311 * <https://tomverbeure.github.io/rtl/2019/01/04/Under-the-Hood-of-Formal-Verification.html>
312
313 ## Automation
314
315 * <https://www.ohwr.org/project/wishbone-gen>
316
317 # LLVM
318
319 ## Adding new instructions:
320
321 * <https://archive.fosdem.org/2015/schedule/event/llvm_internal_asm/>
322
323 # Branch Prediction
324
325 * <https://danluu.com/branch-prediction/>
326
327 # Python RTL Tools
328
329 * [Migen - a Python RTL](https://jeffrey.co.in/blog/2014/01/d-flip-flop-using-migen/)
330 * [LiTeX](https://github.com/timvideos/litex-buildenv/wiki/LiteX-for-Hardware-Engineers)
331 An SOC builder written in Python Migen DSL. Allows you to generate functional
332 RTL for a SOC configured with cache, a RISCV core, ethernet, DRAM support,
333 and parameterizeable CSRs.
334 * [Migen Tutorial](http://blog.lambdaconcept.com/doku.php?id=migen:tutorial>)
335 * There is a great guy, Robert Baruch, who has a good
336 [tutorial](https://github.com/RobertBaruch/nmigen-tutorial) on nMigen.
337 He also build an FPGA-proven Motorola 6800 CPU clone with nMigen and put
338 [the code](https://github.com/RobertBaruch/n6800) and
339 [instructional videos](https://www.youtube.com/playlist?list=PLEeZWGE3PwbbjxV7_XnPSR7ouLR2zjktw)
340 online.
341 * [Minerva](https://github.com/lambdaconcept/minerva)
342 An SOC written in Python nMigen DSL
343 * Minerva example using nmigen-soc
344 <https://github.com/jfng/minerva-examples/blob/master/hello/core.py>
345 * [Using our Python Unit Tests(old)](http://lists.libre-riscv.org/pipermail/libre-riscv-dev/2019-March/000705.html)
346 * <https://chisel.eecs.berkeley.edu/api/latest/chisel3/util/DecoupledIO.html>
347 * <http://www.clifford.at/papers/2016/yosys-synth-formal/slides.pdf>
348
349 # Other
350
351 * <https://debugger.medium.com/why-is-apples-m1-chip-so-fast-3262b158cba2> N1
352 * <https://codeberg.org/tok/librecell> Libre Cell Library
353 * <https://wiki.f-si.org/index.php/FSiC2019>
354 * <https://fusesoc.net>
355 * <https://www.lowrisc.org/open-silicon/>
356 * <http://fpgacpu.ca/fpga/Pipeline_Skid_Buffer.html> pipeline skid buffer
357 * <https://pyvcd.readthedocs.io/en/latest/vcd.gtkw.html> GTKwave
358 * <http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_Resets.pdf>
359 Synchronous Resets? Asynchronous Resets? I am so confused! How will I
360 ever know which to use? by Clifford E. Cummings
361 * <http://www.sunburst-design.com/papers/CummingsSNUG2008Boston_CDC.pdf>
362 Clock Domain Crossing (CDC) Design & Verification Techniques Using
363 SystemVerilog, by Clifford E. Cummings
364 In particular, see section 5.8.2: Multi-bit CDC signal passing using
365 1-deep / 2-register FIFO synchronizer.
366 * <http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.pdf>
367 Understanding Latency Hiding on GPUs, by Vasily Volkov
368 * Efabless "Openlane" <https://github.com/efabless/openlane>
369 * Co-simulation plugin for verilator, transferring to ECP5
370 <https://github.com/vmware/cascade>
371 * Multi-read/write ported memories
372 <https://tomverbeure.github.io/2019/08/03/Multiport-Memories.html>
373 * Data-dependent fail-on-first aka "Fault-tolerant speculative vectorisation"
374 <https://arxiv.org/pdf/1803.06185.pdf>
375 * OpenPOWER Foundation Membership
376 <https://openpowerfoundation.org/membership/how-to-join/membership-kit-9-27-16-4/>
377 * Clock switching (and formal verification)
378 <https://zipcpu.com/formal/2018/05/31/clkswitch.html>
379 * Circuit of Compunit <http://home.macintosh.garden/~mepy2/libre-soc/comp_unit_req_rel.html>
380 * Circuitverse 16-bit <https://circuitverse.org/users/17603/projects/54486>
381 * Nice example model of a Tomasulo-based architecture, with multi-issue, in-order issue, out-of-order execution, in-order commit, with reservation stations and reorder buffers, and hazard avoidance.
382 <https://www.brown.edu/Departments/Engineering/Courses/En164/Tomasulo_10.pdf>
383 # Real/Physical Projects
384
385 * [Samuel's KC5 code](http://chiselapp.com/user/kc5tja/repository/kestrel-3/dir?ci=6c559135a301f321&name=cores/cpu)
386 * <https://chips4makers.io/blog/>
387 * <https://hackaday.io/project/7817-zynqberry>
388 * <https://github.com/efabless/raven-picorv32>
389 * <https://efabless.com>
390 * <https://efabless.com/design_catalog/default>
391 * <https://wiki.f-si.org/index.php/The_Raven_chip:_First-time_silicon_success_with_qflow_and_efabless>
392 * <https://mshahrad.github.io/openpiton-asplos16.html>
393
394 # ASIC tape-out pricing
395
396 * <https://europractice-ic.com/wp-content/uploads/2020/05/General-MPW-EUROPRACTICE-200505-v8.pdf>
397
398 # Funding
399
400 * <https://toyota-ai.ventures/>
401 * [NLNet Applications](http://bugs.libre-riscv.org/buglist.cgi?columnlist=assigned_to%2Cbug_status%2Cresolution%2Cshort_desc%2Ccf_budget&f1=cf_nlnet_milestone&o1=equals&query_format=advanced&resolution=---&v1=NLnet.2019.02)
402
403 # Good Programming/Design Practices
404
405 * [Liskov Substitution Principle](https://en.wikipedia.org/wiki/Liskov_substitution_principle)
406 * [Principle of Least Astonishment](https://en.wikipedia.org/wiki/Principle_of_least_astonishment)
407 * <https://peertube.f-si.org/videos/watch/379ef007-40b7-4a51-ba1a-0db4f48e8b16>
408 * [Rust-Lang Philosophy and Consensus](http://smallcultfollowing.com/babysteps/blog/2019/04/19/aic-adventures-in-consensus/)
409
410 * <https://youtu.be/o5Ihqg72T3c>
411 * <http://flopoco.gforge.inria.fr/>
412 * Fundamentals of Modern VLSI Devices
413 <https://groups.google.com/a/groups.riscv.org/d/msg/hw-dev/b4pPvlzBzu0/7hDfxArEAgAJ>
414
415 # 12 skills summary
416
417 * <https://www.crnhq.org/cr-kit/>
418
419 # Analog Simulation
420
421 * <https://github.com/Isotel/mixedsim>
422 * <http://www.vlsiacademy.org/open-source-cad-tools.html>
423 * <http://ngspice.sourceforge.net/adms.html>
424 * <https://en.wikipedia.org/wiki/Verilog-AMS#Open_Source_Implementations>
425
426 # Libre-SOC Standards
427
428 This list auto-generated from a page tag "standards":
429
430 [[!inline pages="tagged(standards)" actions="no" archive="yes" quick="yes"]]
431
432 # Server setup
433
434 * [[resources/server-setup/web-server]]
435 * [[resources/server-setup/git-mirroring]]
436 * [[resources/server-setup/nagios-monitoring]]
437
438 # Testbeds
439
440 * <https://www.fed4fire.eu/testbeds/>
441
442 # Really Useful Stuff
443
444 * <https://github.com/im-tomu/fomu-workshop/blob/master/docs/requirements.txt>
445 * <https://github.com/im-tomu/fomu-workshop/blob/master/docs/conf.py#L39-L47>
446
447 # Digilent Arty
448
449 * https://store.digilentinc.com/pmod-sf3-32-mb-serial-nor-flash/
450 * https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists/
451 * https://store.digilentinc.com/pmod-vga-video-graphics-array/
452 * https://store.digilentinc.com/pmod-microsd-microsd-card-slot/
453 * https://store.digilentinc.com/pmod-rtcc-real-time-clock-calendar/
454 * https://store.digilentinc.com/pmod-i2s2-stereo-audio-input-and-output/
455
456 # CircuitJS experiments
457
458 * [[resources/high-speed-serdes-in-circuitjs]]
459
460 # ASIC Timing and Design flow resources
461
462 * <https://www.linkedin.com/pulse/asic-design-flow-introduction-timing-constraints-mahmoud-abdellatif/>
463 * <https://www.icdesigntips.com/2020/10/setup-and-hold-time-explained.html>
464 * <https://www.vlsiguide.com/2018/07/clock-tree-synthesis-cts.html>
465 * <https://en.wikipedia.org/wiki/Frequency_divider>
466
467 # Geometric Haskell Library
468
469 * <https://github.com/julialongtin/hslice/blob/master/Graphics/Slicer/Math/GeometricAlgebra.hs>
470 * <https://github.com/julialongtin/hslice/blob/master/Graphics/Slicer/Math/PGA.hs>
471 * <https://arxiv.org/pdf/1501.06511.pdf>
472 * <https://bivector.net/index.html>