intel: intel_texture_drawpixels() can't handle GL_DEPTH_STENCIL.
[mesa.git] / docs / shading.html
1 <HTML>
2
3 <TITLE>Shading Language Support</TITLE>
4
5 <link rel="stylesheet" type="text/css" href="mesa.css"></head>
6
7 <BODY>
8
9 <H1>Shading Language Support</H1>
10
11 <p>
12 This page describes the features and status of Mesa's support for the
13 <a href="http://opengl.org/documentation/glsl/" target="_parent">
14 OpenGL Shading Language</a>.
15 </p>
16
17 <p>
18 Last updated on 15 December 2008.
19 </p>
20
21 <p>
22 Contents
23 </p>
24 <ul>
25 <li><a href="#envvars">Environment variables</a>
26 <li><a href="#120">GLSL 1.20 support</a>
27 <li><a href="#unsup">Unsupported Features</a>
28 <li><a href="#notes">Implementation Notes</a>
29 <li><a href="#hints">Programming Hints</a>
30 <li><a href="#standalone">Stand-alone GLSL Compiler</a>
31 <li><a href="#implementation">Compiler Implementation</a>
32 <li><a href="#validation">Compiler Validation</a>
33 </ul>
34
35
36
37 <a name="envvars">
38 <h2>Environment Variables</h2>
39
40 <p>
41 The <b>MESA_GLSL</b> environment variable can be set to a comma-separated
42 list of keywords to control some aspects of the GLSL compiler:
43 </p>
44 <ul>
45 <li>dump - print GLSL shader code to stdout at link time
46 <li>log - log all GLSL shaders to files.
47 The filenames will be "shader_X.vert" or "shader_X.frag" where X
48 the shader ID.
49 <li>nopt - disable compiler optimizations
50 <li>opt - force compiler optimizations
51 <li>uniform - print message to stdout when glUniform is called
52 </ul>
53 <p>
54 Example: export MESA_GLSL=dump,nopt
55 </p>
56
57
58 <a name="120">
59 <h2>GLSL 1.20 support</h2>
60
61 <p>
62 GLSL version 1.20 is supported in Mesa 7.3 and later.
63 Among the features/differences of GLSL 1.20 are:
64 <ul>
65 <li><code>mat2x3, mat2x4</code>, etc. types and functions
66 <li><code>transpose(), outerProduct(), matrixCompMult()</code> functions
67 (but untested)
68 <li>precision qualifiers (lowp, mediump, highp)
69 <li><code>invariant</code> qualifier
70 <li><code>array.length()</code> method
71 <li><code>float[5] a;</code> array syntax
72 <li><code>centroid</code> qualifier
73 <li>unsized array constructors
74 <li>initializers for uniforms
75 <li>const initializers calling built-in functions
76 </ul>
77
78
79
80 <a name="unsup">
81 <h2>Unsupported Features</h2>
82
83 <p>
84 The following features of the shading language are not yet fully supported
85 in Mesa:
86 </p>
87
88 <ul>
89 <li>Linking of multiple shaders does not always work. Currently, linking
90 is implemented through shader concatenation and re-compiling. This
91 doesn't always work because of some #pragma and preprocessor issues.
92 <li>gl_ClipVertex
93 <li>The gl_Color and gl_SecondaryColor varying vars are interpolated
94 without perspective correction
95 </ul>
96
97 <p>
98 All other major features of the shading language should function.
99 </p>
100
101
102 <a name="notes">
103 <h2>Implementation Notes</h2>
104
105 <ul>
106 <li>Shading language programs are compiled into low-level programs
107 very similar to those of GL_ARB_vertex/fragment_program.
108 <li>All vector types (vec2, vec3, vec4, bvec2, etc) currently occupy full
109 float[4] registers.
110 <li>Float constants and variables are packed so that up to four floats
111 can occupy one program parameter/register.
112 <li>All function calls are inlined.
113 <li>Shaders which use too many registers will not compile.
114 <li>The quality of generated code is pretty good, register usage is fair.
115 <li>Shader error detection and reporting of errors (InfoLog) is not
116 very good yet.
117 <li>The ftransform() function doesn't necessarily match the results of
118 fixed-function transformation.
119 </ul>
120
121 <p>
122 These issues will be addressed/resolved in the future.
123 </p>
124
125
126 <a name="hints">
127 <h2>Programming Hints</h2>
128
129 <ul>
130 <li>Declare <em>in</em> function parameters as <em>const</em> whenever possible.
131 This improves the efficiency of function inlining.
132 </li>
133 <br>
134 <li>To reduce register usage, declare variables within smaller scopes.
135 For example, the following code:
136 <pre>
137 void main()
138 {
139 vec4 a1, a2, b1, b2;
140 gl_Position = expression using a1, a2.
141 gl_Color = expression using b1, b2;
142 }
143 </pre>
144 Can be rewritten as follows to use half as many registers:
145 <pre>
146 void main()
147 {
148 {
149 vec4 a1, a2;
150 gl_Position = expression using a1, a2.
151 }
152 {
153 vec4 b1, b2;
154 gl_Color = expression using b1, b2;
155 }
156 }
157 </pre>
158 Alternately, rather than using several float variables, use
159 a vec4 instead. Use swizzling and writemasks to access the
160 components of the vec4 as floats.
161 </li>
162 <br>
163 <li>Use the built-in library functions whenever possible.
164 For example, instead of writing this:
165 <pre>
166 float x = 1.0 / sqrt(y);
167 </pre>
168 Write this:
169 <pre>
170 float x = inversesqrt(y);
171 </pre>
172 <li>
173 Use ++i when possible as it's more efficient than i++
174 </li>
175 </ul>
176
177
178 <a name="standalone">
179 <h2>Stand-alone GLSL Compiler</h2>
180
181 <p>
182 A unique stand-alone GLSL compiler driver has been added to Mesa.
183 <p>
184
185 <p>
186 The stand-alone compiler (like a conventional command-line compiler)
187 is a tool that accepts Shading Language programs and emits low-level
188 GPU programs.
189 </p>
190
191 <p>
192 This tool is useful for:
193 <p>
194 <ul>
195 <li>Inspecting GPU code to gain insight into compilation
196 <li>Generating initial GPU code for subsequent hand-tuning
197 <li>Debugging the GLSL compiler itself
198 </ul>
199
200 <p>
201 After building Mesa, the glslcompiler can be built by manually running:
202 </p>
203 <pre>
204 make realclean
205 make linux
206 cd src/mesa/drivers/glslcompiler
207 make
208 </pre>
209
210
211 <p>
212 Here's an example of using the compiler to compile a vertex shader and
213 emit GL_ARB_vertex_program-style instructions:
214 </p>
215 <pre>
216 bin/glslcompiler --debug --numbers --fs progs/glsl/CH06-brick.frag.txt
217 </pre>
218 <p>
219 results in:
220 </p>
221 <pre>
222 # Fragment Program/Shader
223 0: RCP TEMP[4].x, UNIFORM[2].xxxx;
224 1: RCP TEMP[4].y, UNIFORM[2].yyyy;
225 2: MUL TEMP[3].xy, VARYING[0], TEMP[4];
226 3: MOV TEMP[1], TEMP[3];
227 4: MUL TEMP[0].w, TEMP[1].yyyy, CONST[4].xxxx;
228 5: FRC TEMP[1].z, TEMP[0].wwww;
229 6: SGT.C TEMP[0].w, TEMP[1].zzzz, CONST[4].xxxx;
230 7: IF (NE.wwww); # (if false, goto 9);
231 8: ADD TEMP[1].x, TEMP[1].xxxx, CONST[4].xxxx;
232 9: ENDIF;
233 10: FRC TEMP[1].xy, TEMP[1];
234 11: SGT TEMP[2].xy, UNIFORM[3], TEMP[1];
235 12: MUL TEMP[1].z, TEMP[2].xxxx, TEMP[2].yyyy;
236 13: LRP TEMP[0], TEMP[1].zzzz, UNIFORM[0], UNIFORM[1];
237 14: MUL TEMP[0].xyz, TEMP[0], VARYING[1].xxxx;
238 15: MOV OUTPUT[0].xyz, TEMP[0];
239 16: MOV OUTPUT[0].w, CONST[4].yyyy;
240 17: END
241 </pre>
242
243 <p>
244 Note that some shading language constructs (such as uniform and varying
245 variables) aren't expressible in ARB or NV-style programs.
246 Therefore, the resulting output is not always legal by definition of
247 those program languages.
248 </p>
249 <p>
250 Also note that this compiler driver is still under development.
251 Over time, the correctness of the GPU programs, with respect to the ARB
252 and NV languagues, should improve.
253 </p>
254
255
256
257 <a name="implementation">
258 <h2>Compiler Implementation</h2>
259
260 <p>
261 The source code for Mesa's shading language compiler is in the
262 <code>src/mesa/shader/slang/</code> directory.
263 </p>
264
265 <p>
266 The compiler follows a fairly standard design and basically works as follows:
267 </p>
268 <ul>
269 <li>The input string is tokenized (see grammar.c) and parsed
270 (see slang_compiler_*.c) to produce an Abstract Syntax Tree (AST).
271 The nodes in this tree are slang_operation structures
272 (see slang_compile_operation.h).
273 The nodes are decorated with symbol table, scoping and datatype information.
274 <li>The AST is converted into an Intermediate representation (IR) tree
275 (see the slang_codegen.c file).
276 The IR nodes represent basic GPU instructions, like add, dot product,
277 move, etc.
278 The IR tree is mostly a binary tree, but a few nodes have three or four
279 children.
280 In principle, the IR tree could be executed by doing an in-order traversal.
281 <li>The IR tree is traversed in-order to emit code (see slang_emit.c).
282 This is also when registers are allocated to store variables and temps.
283 <li>In the future, a pattern-matching code generator-generator may be
284 used for code generation.
285 Programs such as L-BURG (Bottom-Up Rewrite Generator) and Twig look for
286 patterns in IR trees, compute weights for subtrees and use the weights
287 to select the best instructions to represent the sub-tree.
288 <li>The emitted GPU instructions (see prog_instruction.h) are stored in a
289 gl_program object (see mtypes.h).
290 <li>When a fragment shader and vertex shader are linked (see slang_link.c)
291 the varying vars are matched up, uniforms are merged, and vertex
292 attributes are resolved (rewriting instructions as needed).
293 </ul>
294
295 <p>
296 The final vertex and fragment programs may be interpreted in software
297 (see prog_execute.c) or translated into a specific hardware architecture
298 (see drivers/dri/i915/i915_fragprog.c for example).
299 </p>
300
301 <h3>Code Generation Options</h3>
302
303 <p>
304 Internally, there are several options that control the compiler's code
305 generation and instruction selection.
306 These options are seen in the gl_shader_state struct and may be set
307 by the device driver to indicate its preferences:
308
309 <pre>
310 struct gl_shader_state
311 {
312 ...
313 /** Driver-selectable options: */
314 GLboolean EmitHighLevelInstructions;
315 GLboolean EmitCondCodes;
316 GLboolean EmitComments;
317 };
318 </pre>
319
320 <ul>
321 <li>EmitHighLevelInstructions
322 <br>
323 This option controls instruction selection for loops and conditionals.
324 If the option is set high-level IF/ELSE/ENDIF, LOOP/ENDLOOP, CONT/BRK
325 instructions will be emitted.
326 Otherwise, those constructs will be implemented with BRA instructions.
327 </li>
328
329 <li>EmitCondCodes
330 <br>
331 If set, condition codes (ala GL_NV_fragment_program) will be used for
332 branching and looping.
333 Otherwise, ordinary registers will be used (the IF instruction will
334 examine the first operand's X component and do the if-part if non-zero).
335 This option is only relevant if EmitHighLevelInstructions is set.
336 </li>
337
338 <li>EmitComments
339 <br>
340 If set, instructions will be annoted with comments to help with debugging.
341 Extra NOP instructions will also be inserted.
342 </br>
343
344 </ul>
345
346
347 <a name="validation">
348 <h2>Compiler Validation</h2>
349
350 <p>
351 A <a href="http://glean.sf.net" target="_parent">Glean</a> test has
352 been create to exercise the GLSL compiler.
353 </p>
354 <p>
355 The <em>glsl1</em> test runs over 170 sub-tests to check that the language
356 features and built-in functions work properly.
357 This test should be run frequently while working on the compiler to catch
358 regressions.
359 </p>
360 <p>
361 The test coverage is reasonably broad and complete but additional tests
362 should be added.
363 </p>
364
365
366 </BODY>
367 </HTML>